ON MARCINKIEWICZ-ZYGMUND LAWS OF LARGE NUMBERS IN BANACH SPACES AND RELATED RATES OF CONVERGENCE

BY

WOJBOR A. WOYCZYŃSKI (CLEVELAND, OHIO)

Abstract. The paper studies asymptotic almost sure and tail behavior of sums \((X_1 + \ldots + X_n) / n^{1/p} \), \(1 < p < 2 \), for independent, centered random vectors \(X_n, n = 1, 2, \ldots \), taking values in Banach space \(E \). The obtained results are in the spirit of Mazurkiewicz-Zygmund, Hsu-Robbins-Erdős-Spitzer, and Brunk theorems for real random variables and show the essential role played by the geometry of \(E \) in the infinite-dimensional case.

1. Introduction and preliminaries. Let \((E, \| \cdot \|) \) be a real separable Banach space. In the present paper we study strongly measurable random vectors \(X \) on a probability space \((\Omega, \mathcal{F}, \mathbb{P}) \) with values in \(E \). If \(E \|X\| < \infty \), then \(EX \) stands for the Bochner integral, and throughout the paper \((X_i)_{i=1,2,\ldots} \) will be independent random vectors in \(E \), with \(S_0 = 0 \), \(S_n = X_1 + \ldots + X_n \), \(n = 1, 2, \ldots \), and \((r_i) \) will stand for a Rademacher sequence, i.e., a sequence of real independent random variables with \(\mathbb{P}(r_i = \pm 1) = 1/2 \).

We recall a couple of definitions (for more information cf., e.g., [14]).

Definition 1.1. Let \(1 < p < 2 \). A Banach space \(E \) is said to be of Rademacher type \(p \) (R-type \(p \)) if there exists \(C \) such that for every \(x, \ldots, x_n \in E \)

\[
E \left\| \sum_{i=1}^n r_i x_i \right\| \leq C \left(\sum_{i=1}^n \| x_i \|^p \right)^{1/p}.
\]

Definition 1.2. Let \(1 < p < 2 \). \(l_p \) is said to be finitely representable in \(E \) if for every \(\varepsilon > 0 \) and every \(n \in \mathbb{N} \) there exist \(x_1, \ldots, x_n \in E \) such that for all \(\alpha_1, \ldots, \alpha_n \in \mathbb{R} \)

\[
\left(\sum_{i=1}^n |\alpha_i|^p \right)^{1/p} \leq \left\| \sum_{i=1}^n \alpha_i x_i \right\| \leq (1 + \varepsilon) \left(\sum_{i=1}^n |\alpha_i|^p \right)^{1/p}.
\]
Example 1.1. \(l_p \) is of \(R \)-type \(\min(p, 2) \) for any \(p \geq 1 \). \(l_p \) is finitely representable in \(l_q \) for any \(q \leq p \), but \(l_p \) is not finitely representable in \(l_q \) if \(q > p \). On the other hand, by Dvoretzky's theorem, \(l_2 \) is finitely representable in \(E \) for any infinite dimensional \(E \).

Definition 1.3. A sequence \((X_i)\) of random vectors in \(E \) is said to have uniformly bounded tail probabilities by tail probabilities of a real random variable \(X_0 \) if there exists \(C > 0 \) such that for every \(t > 0 \) and every \(i \in \mathbb{N} \)

\[
P(\|X_i\| > t) \leq CP(\|X_0\| > t).
\]

The main results of the paper deal with the almost sure convergence of sums \(S_n/n^{1/p} \) and with the rate of convergence to zero of tail probabilities \(P(\|S_n/n^{1/p}\| > \varepsilon) \) under restrictions on individual random vectors \(X_i \) and on geometric structure of \(E \). For real-valued independent identically distributed \((X_i)\) (\(E = \mathbb{R} \)) the problem of rates of convergence was studied in a series of papers by Erdös [3], Spitzer [12], Baum and Katz [1], and in the case of a general Banach space \(E \) certain interesting results have been obtained by Jain [4].

As far as the strong and weak laws of large numbers of Marcinkiewicz-Zygmund type (i.e., for \(S_n/n^{1/p} \) and i.i.d. \((X_i)\)) are concerned the following is known:

In the case \(p = 1 \), R. Fortet and M. Mourier proved in 1953 that, without any restrictions on \(E \), if \((X_i)\) are i.i.d., \(E\|X_1\| < \infty \) and \(E X_1 = 0 \), then \(S_n/n \to 0 \) a.s. On the other hand, Maurey and Pisier [10] have shown that \((r_1 x_1 + \ldots + r_n x_n)/n^{1/p} \to 0 \) a.s. for any bounded sequence \((x_n) \subseteq E \) if and only if \(l_p \) is not finitely representable in \(E \) (1 \(\leq p < 2 \)). In 1977, Marcus and Woyczyński [8], [9] proved that \(S_n/n^{1/p} \to 0 \) in probability for any i.i.d. \((X_i)\) satisfying the condition

\[
\lim_{n \to \infty} n^p P(\|X_i\| > n) = 0
\]

if and only if \(l_p \) is not finitely representable in \(E \).

In this paper we show, in particular, that for independent \((X_i)\) with uniformly bounded tail probabilities the implication "if \(E\|X_i\|^p < \infty \) and \(E X_i = 0 \), then \(S_n/n^{1/p} \to 0 \) a.s." also depends in an essential way on \(l_p \) not being finitely representable in \(E \). We also prove that a Banach space analogue of Brunk's strong law of large numbers (cf. [2], [11]) depends on the \(R \)-type of \(E \). Brunk's type strong law is particularly useful in cases where one has information about existence of moments of \(X_i \)'s of orders greater than 2. Such information may not be utilized in the framework of Kolmogorov-Chung's strong law.

As far as the rates of convergence are concerned a number of simple remarks are in order here. Directly from definitions and from Chebyshev's inequality one can obtain the following "trivial" rate:
PROPOSITION 1.1. Let $1 \leq p \leq 2$ and let E be of R-type p. If (X_i) are i.i.d. with $E \|X_1\|^p < \infty$ and $EX_1 = 0$, then

$$P(\|S_n/n\| \geq \varepsilon) = O(n^{1-p}) \quad \text{for every } \varepsilon > 0.$$

Also some exponential rates can be immediately obtained without any restrictions on the geometric structure of E.

PROPOSITION 1.2. If (X_i) are i.i.d. with $EX_1 = 0$ and with the property that for every $\varepsilon > 0$ there exist C_ε and β_ε such that for every $\beta \leq \beta_\varepsilon$

$$E \exp \left[\beta \|X_1\| \right] \leq C_\varepsilon \exp \left[\beta \varepsilon \right],$$

then for every $\varepsilon > 0$ there exists $\alpha < 1$ such that

$$P(\|S_n/n\| > \varepsilon) = O(\alpha^n).$$

Proof. By Chebyshev's inequality and for $\delta < \varepsilon$ we get

$$P(\|S_n/n\| > \varepsilon) \leq \exp \left[-\beta_\varepsilon n \varepsilon \right] E \exp \left[\beta_0 \|S_n\| \right] \leq \exp \left[-\beta_\varepsilon n \varepsilon \right] (E \exp [\beta_0 \|X_1\|])^n \leq C_\delta \exp [(\delta - \varepsilon) \beta_\varepsilon]^n.$$

It is also interesting to notice that a sufficiently rapid rate of convergence to zero of tail probabilities $P(\|S_n/a_n\| > \varepsilon)$ implies similar rates of convergence in the strong law, i.e., for the suprema.

PROPOSITION 1.3. Let E be a Banach space and let (X_i) be independent symmetric random vectors in E. Let (a_i), (b_i), $(c_i) \in \mathbb{R}$ be such that

$$0 < a_i \uparrow \infty, \quad b_i, c_i \downarrow 0 \quad \text{and} \quad \sum_{i=1}^{j} 2^i b_{2^i} = O(2^i c_{2^i})$$

and let

$$\sum_{n=1}^{\infty} c_n P(\|S_n/a_n\| > \varepsilon) < \infty \quad \text{for every } \varepsilon > 0.$$

Then

$$\sum_{n=1}^{\infty} b_n P(\sup_{k \geq n} \|S_k/a_k\| > \varepsilon) < \infty \quad \text{for every } \varepsilon > 0.$$

Proof. Grouping the terms in exponential blocks (n: $2^j < n \leq 2^{j+1}$) we get

$$A \equiv \sum_{n=1}^{\infty} b_n P(\sup_{k \geq n} \|S_k/a_k\| > \varepsilon) \leq \sum_{i=1}^{\infty} b_{2^i} \cdot 2^i P(\sup_{k \geq 2^i} \|S_k/a_k\| > \varepsilon) \leq \sum_{i=1}^{\infty} \sum_{j=i}^{\infty} b_{2^i} \cdot 2^i P(\max_{2^j < k \leq 2^{j+1}} \|S_k/a_k\| > \varepsilon)$$
and, by Lévy's inequality,
\[
A \leq 2 \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} b_{2^i} \cdot 2^i \mathbb{P}(\|S_{2^i+1}/a_{2^i+j+1}\| > \varepsilon)
\]
\[
= 2 \sum_{j=1}^{\infty} \left(\sum_{i=1}^{j} b_{2^i} \cdot 2^i \right) \mathbb{P}(\|S_{2^i+1}/a_{2^i+j+1}\| > \varepsilon)
\]
\[
\leq 2 C \sum_{j=1}^{\infty} c_{2^j} \cdot 2^j \mathbb{P}(\|S_{2^j+1}/a_{2^j+j+1}\| > \varepsilon).
\]

Now, by the symmetry assumptions, grouping the terms again as follows:
\[
S_n = S_{2^j+1} - X_{2^j+1} - X_{2^{j+1}-1} - \ldots - X_{n+1}, \quad 2^{j-1} \leq n < 2^j,
\]
we obtain
\[
A \leq 8 C \sum_{n=1}^{\infty} c_n \mathbb{P}(\|S_n/a_n\| > 2\varepsilon).
\]

Two special cases of Proposition 1.3 will be of interest later on.

Corollary 1.1. Let E be a Banach space and let (X_i) be independent symmetric random vectors in E. Then
(i) for every $q > 1$ there exists $C > 0$ such that
\[
\sum_{n=1}^{\infty} n^{-q} \mathbb{P}(\sup_{k \geq n} \|S_k/a_k\| > \varepsilon) \leq C \sum_{n=1}^{\infty} n^{-q} \mathbb{P}(\|S_n/a_n\| > \varepsilon);
\]
(ii) there exists $C > 0$ such that
\[
\sum_{n=1}^{\infty} n^{-1} \mathbb{P}(\sup_{k \geq n} \|S_k/a_k\| > \varepsilon) \leq C \sum_{n=1}^{\infty} n^{-1} (\log n) \mathbb{P}(\|S_n/a_n\| > \varepsilon).
\]

2. Rates of convergence based on the Marcinkiewicz-Zygmund inequality.

In Proposition 1.1 we could have only used moments of order p, $1 \leq p \leq 2$, and in Proposition 1.2 exponential moments were needed. The following analogue of the Marcinkiewicz-Zygmund inequality (cf. also results by P. Assouad and B. Maurey and G. Pisier quoted in [14]) permits us to use the information on moments of arbitrary order.

Proposition 2.1. Let $1 < p \leq 2$ and $q \geq 1$. The following properties of E are equivalent:
(i) E is of R-type p.
(ii) There exists C such that for every $n \in \mathbb{N}$ and for any sequence (X_i) of independent random vectors in E with $EX_i = 0$
\[
E \left\| \sum_{i=1}^{n} X_i \right\|^q \leq C E \left(\sum_{i=1}^{n} \|X_i\|^p \right)^{q/p}.
\]
Proof. (i) ⇒ (ii). Let \((\tilde{X}_i) = (X_i - X_i')\) be a symmetrization of \((X_i)\) and let \((r_i)\) be independent of \((X_i)\) and \((X_i')\). Then
\[
E\left\| \sum_{i=1}^{n} X_i \right\|^q \leq E\left\| \sum_{i=1}^{n} \tilde{X}_i \right\|^q = E\left\| \sum_{i=1}^{n} r_i \tilde{X}_i \right\|^q \\
\leq C E\left(\sum_{i=1}^{n} \| \tilde{X}_i \|^p \right)^{q/p} \leq C \cdot 2^q E\left(\sum_{i=1}^{n} \| X_i \|^p \right)^{q/p},
\]
where the first inequality follows from the condition \(E X_i = 0\), and because \((X_i')\) are independent of \((X_i)\), the equality holds by symmetry of \((\tilde{X}_i)\), the second inequality by \(R\)-type of \(E\) and Fubini's theorem, and the third one by the triangle inequality.

The implication (ii) ⇒ (i) follows from the proof of Theorem 3.1 given in the sequel.

Corollary 2.1. Let \(E\) be of \(R\)-type \(p\) and \(q \geq p\). If \((X_n)\) are i.i.d. random vectors in \(E\) with \(E\|X_1\|^q < \infty\) and \(EX_1 = 0\), then \(E\|S_n\|^q = O(n^{q/p})\).

Proof. If \(p = q\), the estimate follows directly from the definition of \(R\)-type \(p\). If \(q > p\), then by Hölder's inequality with exponents \(q/p\) and \(q/(q-p)\) and by Proposition 2.1 we have
\[
E\left\| \sum_{i=1}^{n} X_i \right\|^q \leq C E\left(\sum_{i=1}^{n} \| X_i \|^p \right)^{q/p} \\
\leq C E\left(\sum_{i=1}^{n} \| X_i \|^q \right)^{(q-p)/p} = C n^{q/p} E\|X_1\|^q.
\]
Hence, by Chebychev's inequality we obtain immediately

Corollary 2.2. Let \(E\) be of \(R\)-type \(p\) and \(q \geq p\). If \((X_n)\) are i.i.d. with \(E\|X_1\|^q < \infty\) and \(EX_1 = 0\), then
\[
P\left(\|S_n/n\| > \epsilon \right) = O(n^{q(1/p - 1)}) \quad \text{for every } \epsilon > 0.
\]

Remark 2.1. Jurek and Urbanik [5], studying stable measures on \(E\), define \(E\) as being of type \((s, r)\), \(s \geq 0, r > 0\), whenever there exists \(C\) such that for all \((X_i)\) independent and symmetric in \(E\)
\[
E\left\| \sum_{i=1}^{n} X_i \right\|^r \leq C n^s \sum_{i=1}^{n} E\|X_i\|^r.
\]
Proposition 2.1 implies (as in the proof of Corollary 2.1) that if \(E\) is of \(R\)-type \(p\), then
\[
E\left\| \sum_{i=1}^{n} X_i \right\|^q \leq C n^{q/p - 1} \sum_{i=1}^{n} E\|X_i\|^q \quad \text{for every } q \geq p,
\]
i.e. \(E\) is also of Jurek-Urbanik's type \((q/p - 1, q)\) or, equivalently, \(E\) is of type \((s, p(s+1))\) for every \(s \geq 0\). One can also show (as in Theorem 3.1
below) that if for some \(s > 0 \) the space \(E \) is of type \((s, p(s+1))\), then \(E \) is of \(R\)-type \(p \).

3. Brunk's type strong law and related rates of convergence. The following result extends the Kolmogorov-Chung type strong law in \(E \) obtained by the author and J. Hoffmann-Jörgensen and G. Pisier (cf. [14], p. 390, where \(E \) is of \(R\)-type \(p \), \(1 \leq p \leq 2 \), and \(q = 1 \)). In the case \(E = \mathbb{R} \), \(p = 2 \), \(q \geq 1 \), the theorem is due to Brunk [2] and Prohorov [11].

Theorem 3.1. (a) Let \(1 \leq p \leq 2 \), let \(E \) be of \(R\)-type \(p \), and \(q \geq 1 \). If \((X_n)\) are independent zero-mean random vectors in \(E \) such that

\[
\sum_{n=1}^{\infty} \frac{E\left\|X_n\right\|^{pq}}{n^{pq + 1 - q}} < \infty,
\]

then \(S_n/n \to 0 \) a.s. in norm.

(b) Conversely, if \(q \geq 1 \), \(1 \leq p \leq 2 \), and, for each \((x_i) \subset E \) such that

\[
\sum_{i=1}^{n} \left\|x_i\right\|^{pq}/i^{pq + 1 - q} < \infty,
\]

\(\sum_{i=1}^{n} r_i x_i/n \to 0 \) as \(n \to \infty \)

a.s. in norm, then \(E \) is of \(R\)-type \(p \).

Proof. (a) For \(q = 1 \) the theorem boils down to the Kolmogorov-Chung type strong law as mentioned above.

Assume \(q > 1 \). Then \(\left\|S_n\right\|^{pq} \) is a real submartingale and, by the well-known Hajek-Rényi-Chow type inequality, we get

\[
\varepsilon^{pq} P\left(\sup_{j \geq n} \left\|S_j/j\right\| > \varepsilon\right) = \varepsilon^{pq} \lim_{m \to \infty} P\left(\sup_{m \leq j \leq m+n} \left\|S_j/j\right\|^{pq} > \varepsilon^{pq}\right)
\]

\[
\leq n^{-pq} E\left\|S_n\right\|^{pq} + \sum_{j=n+1}^{\infty} j^{-pq} E\left(\left\|S_j\right\|^{pq} - \left\|S_{j-1}\right\|^{pq}\right)
\]

for every \(\varepsilon > 0 \).

By Proposition 2.1 and by Hölder's inequality,

\[
E\left\|S_j\right\|^{pq} \leq C E\left(\sum_{i=1}^{j} \left\|X_i\right\|^{p}\right)^{q} \leq C^{q-1} \sum_{i=1}^{j} E\left\|X_i\right\|^{pq},
\]

so that by (3.1) and Kronecker's lemma we obtain

\[
j^{-pq} E\left\|S_j\right\|^{pq} \to 0 \quad \text{as} \quad j \to \infty.
\]

Also the series on the right-hand side of (3.2) converges because of Proposition 2.1. Hence, summing by parts,

\[
\sum_{j=1}^{n} (j-1)^{-pq} + j^{-pq}) E\left\|S_j\right\|^{pq} \leq \sum_{j=1}^{n} (j-1)^{-pq} + j^{-pq}) j^{-pq-1} \sum_{i=1}^{j} E\left\|X_i\right\|^{pq}
\]

\[
\leq C \sum_{j=1}^{n} E\left\|X_j\right\|^{pq}/j^{pq + 1 - q} + \sum_{i=1}^{n} E\left\|X_i\right\|^{pq}/n^{pq + 1 - q}.
\]
Therefore, for every $\varepsilon > 0$,

$$P(\sup_{j \geq n} \|S_j/j\| > \varepsilon) \to 0 \quad \text{as } n \to \infty.$$

(b) Kahane's theorem (cf. [14], p. 275) states that, for any Banach space E and any p ($0 < p < \infty$), all the $L_p(E)$-norms are equivalent on the span of $(r_i x_i), (x_i) \subset E$. Hence, in view of the closed graph theorem, there exists C such that for all $(x_i) \subset E$

$$E \left\| \sum_{i=1}^{n} r_i x_i n^{-1} \right\| \leq C \left(\sum_{i=1}^{n} \|x_i\|^{p} \right)^{1/pq},$$

so that

$$E \left\| \sum_{i=1}^{n} n^{-1 + (1-q)/pq} r_i x_i \right\| \leq C \left(\sum_{i=1}^{n} \|x_i\|^{p} \right)^{1/pq} \quad \text{for all } (x_i) \subset E.$$

Hence

$$E \left\| \sum_{i=1}^{n} r_i x_i \right\| = E \left\| \sum_{i=n+1}^{2n} r_i x_i \right\| \leq n^{-(1-q)/pq} E \left\| \sum_{i=1}^{n} \frac{i^{1+(1-q)/pq}}{2n} r_i x_i + \sum_{i=n+1}^{2n} \frac{i^{1+(1-q)/pq}}{2n} r_i x_i \right\| \leq n^{-(1-q)/pq} C \cdot 2^{1/pq} \left(\sum_{i=1}^{n} \|x_i\|^{p} \right)^{1/pq}.$$

Now, since for any α, β ($0 < \alpha, \beta < \infty$) and $a_i \geq 0$ the inequality

$$\left(\sum a_i^\alpha \right)^{1/\alpha} \leq n^{1/\alpha - 1/\beta} \left(\sum a_i^\beta \right)^{1/\beta}$$

holds, we have

$$E \left\| \sum_{i=1}^{n} r_i x_i \right\| \leq C \cdot 2^{1/pq} n^{-(1-q)/pq} n^{1/pq - 1/p} \left(\sum_{i=1}^{n} \|x_i\|^{p} \right)^{1/p} \leq C \cdot 2^{1/pq} \left(\sum_{i=1}^{n} \|x_i\|^{p} \right)^{1/p}.$$

The following "rate of convergence" result for the weak law is associated with the strong law above.

Theorem 3.2. Let $1 \leq p \leq 2$ and $q \geq 1$. The following properties of a Banach space E are equivalent:

(i) E is of R-type p.

(ii) for every $\varepsilon > 0$ there exists C_ε such that for any independent zero-mean (x_i) in E

$$\sum_{n=1}^{\infty} n^{-1} P(\|S_n/n\| > \varepsilon) \leq C_\varepsilon \sum_{n=1}^{\infty} \frac{E \left\| X_n \right\|^{pq}}{n^{pq + 1 - q}}.$$

Proof. (i) ⇒ (ii). By the Chebyshev, Marcinkiewicz-Zygmund (Proposition 2.1) and Hölder inequalities we get

\[
\sum_{n=1}^{\infty} n^{-1} P(\|S_n\| > \varepsilon n) \leq \sum_{n=1}^{\infty} n^{-1} n^{-pq} \varepsilon^{-pq} E\|S_n\|^{pq}
\]

\[
\leq \varepsilon^{-pq} C \sum_{n=1}^{\infty} n^{-1+(q-1)-pq} \sum_{k=1}^{n} E\|X_k\|^{pq}
\]

\[
\leq C\varepsilon^{-pq} \sum_{k=1}^{\infty} E\|X_k\|^{pq} \sum_{n=k}^{\infty} n^{-pq+q-2}
\]

\[
\leq C\varepsilon^{-pq} \sum_{k=1}^{\infty} E\|X_k\|^{pq/k^{pq+1-q}}.
\]

(ii) ⇒ (i) follows directly from the proof of (b) in Theorem 3.1.

Theorem 4.1. Let \(1 < p < 2\). Then the following properties of a Banach space \(E\) are equivalent:

(i) \(l_p\) is not finitely representable in \(E\).

(ii) For any sequence \((X_i)\) of zero-mean independent random vectors in \(E\) with tail probabilities uniformly bounded by tail probabilities of an \(X_0 \in L^p\), the series

\[
\sum_{n=1}^{\infty} \frac{X_n}{n^{1/p}}
\]

converges a.s. in norm.

(iii) For any sequence \((X_i)\) as in (ii), \(S_n/n^{1/p} \to 0\) a.s.

The proof of Theorem 4.1 will be based on the following

Lemma 4.1. Let \(1 \leq p < 2\), let \(l_p\) be not representable in \(E\), and let \((X_n)\) satisfy assumptions of Theorem 4.1 (ii). Then the series

\[
\sum_{n=1}^{\infty} (X_n - EY_n)/n^{1/p},
\]

where \(Y_n = X_n I (\|X_n\| \leq n^{1/p})\), converges a.s.

Proof. Since

\[
\sum_{n=1}^{\infty} P(X_n \neq Y_n) = \sum_{n=1}^{\infty} P(\|X_n\| > n^{1/p}) \leq C \sum_{n=1}^{\infty} P(|X_0| > n^{1/p}) \leq C_1 E|X_0|^p < \infty,
\]

in view of the Borel-Cantelli lemma it suffices to show that the series \(\sum(Y_n - EY_n)/n^{1/p}\) converges a.s.
Let $r > p$. Then
\[\sum_{n=1}^{\infty} E \| Y_n - E Y_n \|^r n^{-r/p} \leq 2^{r+1} \sum_{n=1}^{\infty} E \| Y_n \|^r n^{-r/p} \]
\[= 2^{r+1} \sum_{n=1}^{\infty} n^{-r/p} \int_{\| X_n \| < n^{1/p}} \| X_n \|^r dP = 2^{r+1} \sum_{n=1}^{\infty} n^{-r/p} \int_0^{n^{1/p}} t^r dP (\| X_n \| < t) \]
\[= 2^{r+1} \sum_{n=1}^{\infty} n^{-r/p} \left(n^{r/p} \int_0^{n^{1/p}} P (\| X_n \| < t) dt \right) \]
\[\leq C_1 \sum_{n=1}^{\infty} \left(1 - n^{-r/p} \int_0^{n^{1/p}} t^r (1 - P (\| X_n \| > t)) dt \right) \]
\[= C_1 \sum_{n=1}^{\infty} n^{-r/p} \int_0^{n^{1/p}} t^{-1} P (\| X_n \| > t) dt = C_1 \sum_{n=1}^{\infty} \int_0^{n^{1/p}} P (\| X_n s^{-1/p} \| > n^{1/p}) ds \]
\[\leq C_2 E |X_0|^p \int_0^{n^{1/p}} s^{-r/p} ds = C_2 \frac{r}{r-p} E |X_0|^p < \infty. \]

By Maurey-Pisier's theorem (see [10] and [14], p. 371) and by assumption, there exists $r > p$ such that E is of R-type r. Therefore, the estimate above and Theorem V.7.5 in [14] give the desired a.s. convergence of $\sum (Y_n - EY_n) n^{-1/p}$.

Proof of Theorem 4.1. (i) \Rightarrow (ii). In view of Lemma 4.1 it is sufficient to prove the absolute convergence of the series $\sum EY_n n^{-1/p}$. Since $EX_n = 0$ and $p > 1$, we have
\[\sum_{n=1}^{\infty} \| EY_n \|^n n^{-1/p} \leq \sum_{n=1}^{\infty} n^{-1/p} \int_0^{n^{1/p}} tdP (\| X_n \| < t) \]
\[= - \sum_{n=1}^{\infty} n^{-1/p} \int_0^{n^{1/p}} tdP (\| X_n \| > t) \]
\[= \sum_{n=1}^{\infty} \left(P (\| X_n \| > n^{1/p}) + \int_0^{n^{1/p}} P (\| X_n s^{-1/p} \| > n^{1/p}) ds \right) \leq C E |X_0|^p, \]
which gives (i) \Rightarrow (ii).

The implication (ii) \Rightarrow (iii) follows by a straightforward application of Kronecker’s lemma.

(iii) \Rightarrow (i). This implication is essentially due to Maurey and Pisier [10] (cf. also [14], p. 389). We quote the proof for the sake of completeness.

In view of Kronecker’s lemma it suffices to construct, in any Banach space E such that l_p is finitely representable in E, a sequence $(x_n) \subset E$,

Marcinkiewicz-Zygmund laws of large numbers
\(\|x_n\| \leq 1, n = 1, 2, \ldots, \) such that for a sequence \((N_k) \subset N, N_k \to \infty, \) for all choices of \(\varepsilon_n = \pm 1 \) and for all \(k \in N \)

\[
N_k^{-1/p} \left\| \sum_{i=1}^{N_k} \varepsilon_i x_i \right\| > \frac{1}{2}.
\]

Put \(N_1 = 1 \) and choose any \(x_1 \in E, \|x_1\| = 1, \) Suppose \(N_1, \ldots, N_k \) and \(x_1, \ldots, x_N \) have been chosen so that \(\|x_i\| \leq 1, i = 1, \ldots, N_k, \) and for all \(\varepsilon_i = \pm 1 \) inequality (4.1) is satisfied. Choose \(N_{k+1} \in N \) large enough for

\[
N_{k+1}^{-1/p} \left[\frac{2}{3} (N_{k+1} - N_k)^{1/p} - N_k \right] > \frac{1}{2}.
\]

Since \(l_p \) is finitely representable in \(E, \) we can find \(x_{N_k+1}, \ldots, x_{N_k+1} \) such that for all \((\alpha_k) \subset R \)

\[
\frac{2}{3} \left(\sum_{i=N_k+1}^{N_{k+1}} |\alpha_i|^p \right)^{1/p} \leq \left| \sum_{i=N_k+1}^{N_{k+1}} \alpha_i x_i \right| \leq \left(\sum_{i=N_k+1}^{N_{k+1}} |\alpha_i|^p \right)^{1/p}.
\]

Therefore

\[
N_{k+1}^{-1/p} \left\| \sum_{i=1}^{N_{k+1}} \varepsilon_i x_i \right\| \geq N_{k+1}^{-1/p} \left\| \sum_{i=N_k+1}^{N_{k+1}} \varepsilon_i x_i \right\| - \left\| \sum_{i=1}^{N_k} \varepsilon_i x_i \right\| > N_{k+1}^{-1/p} \left[\frac{2}{3} (N_{k+1} - N_k)^{1/p} - N_k \right] > \frac{1}{2} \quad \text{for all } \varepsilon_n = \pm 1.
\]

For spaces \(E \) such that \(l_1 \) is not finitely representable in \(E, \) i.e., for \(B \)-convex spaces (see [14], Chapter VII), Lemma 4.1 permits to prove the following

Theorem 4.2. The following properties of a Banach space \(E \) are equivalent:

(i) \(l_1 \) is not finitely representable in \(E. \)

(ii) For any sequence \((X_i)\) of independent zero-mean random vectors in \(E \) with tail probabilities uniformly bounded by tail probabilities of an \(X_0 \in L \log^+ L, \)

the series

\[
\sum_{n=1}^{\infty} \frac{X_n}{n}
\]

converges a.s.

(iii) For any sequence \((X_i)\) as in (ii), \(S_n/n \to 0 \) a.s. as \(n \to \infty. \)

Proof. (i) \(\Rightarrow \) (ii). In view of Lemma 4.1 it suffices to prove that \(\sum \|EY_n\| n^{-1} \) converges whenever \(X_0 \in L \log^+ L. \) Since \(EX_n = 0, \) by integration by parts
we obtain
\[
\sum_{n=1}^{\infty} \|EY_n\| n^{-1} < \sum_{n=1}^{\infty} n^{-1} \sum_{n=1}^{\infty} n^{-1} \int dt P(\|X_n\| < t) = \sum_{n=1}^{\infty} P(\|X_n\| > n) n^{-1} \sum_{n=1}^{\infty} P(\|X_n\| > n) dt
\]
\[
\leq C_1 \mathbb{E}|X_0| + \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} n^{-1} P(|X_0| > k)
\]
\[
= C_1 \mathbb{E}|X_0| + \sum_{k=1}^{\infty} (\log k) P(|X_0| > k)
\]
\[
\leq C_1 \mathbb{E}|X_0| + \sum_{k=1}^{\infty} \log^+ |X_0| < \infty.
\]

(ii) \implies (iii) follows directly from Kronecker's lemma, and (iii) \implies (i) can be proved exactly as (iii) \implies (i) in Theorem 4.1.

Theorem 4.3. (a) Let \(E \) be a Banach space, 1 < \(p \) < 2, and let \(\alpha \geq 1/p \). Then \(l_p \) is not finitely representable in \(E \) if and only if for each independent zero-mean \((X_i)_i \) in \(E \) with tail probabilities uniformly bounded by tail probabilities of an \(X_0 \in L^p \) we have
\[
\sum_{n=1}^{\infty} n^{2p-1} P(\max_{1 \leq i \leq n} \|S_i\| > n^{\alpha} \varepsilon) < \infty \quad \text{for every } \varepsilon > 0.
\]

(b) Let \(E \) be a Banach space and let 1 \(\leq p \) < 2. Then \(l_p \) is not finitely representable in \(E \) if and only if for each independent zero-mean \((X_i)_i \) in \(E \) with tail probabilities uniformly bounded by tail probabilities of an \(X_0 \in L^p \log L \) we have
\[
\sum_{n=1}^{\infty} n^{-1} (\log n) P(\|S_n\| > n^{1/p} \varepsilon) < \infty \quad \text{for every } \varepsilon > 0.
\]

Proof. (a) We prove first the sufficiency of the condition of \(l_p \) not being finitely representable in \(E \). By Theorem 4.1, \(S_u/n^{1/p} \to 0 \) a.s. and, as is easy to see, also
\[
M_u/n^{1/p} \to 0 \text{ a.s.}, \quad \text{where } M_u = \max_{1 \leq i \leq [u]} \|S_i\|, \quad u \in \mathbb{R}, \quad [u] = \text{entier } u.
\]

Hence, if we introduce Chow's delayed sums
\[
S_{u,v} = \sum_{1 \leq j \leq v} X_{[u]+j}, \quad u, v \in \mathbb{R},
\]
we get

\[M_{n,n} n^{-1/p} \leq (M_n + M_{2n}) n^{-1/p} \to 0 \text{ a.s. as } n \to \infty. \]

Now, in the case \(\alpha = 1/p \), since \(M_{2n,2n} \) (\(n = 1, 2, \ldots \)) are independent, from the Borel-Cantelli lemma we infer that

\[
\sum_{n=1}^{\infty} P(M_{2n,2n} > 2^{n/p} \varepsilon) = \sum_{n=1}^{\infty} P(M_{2n} > 2^{n/p} \varepsilon) \geq \int P(M_{2n} > 2^{(\alpha+1)/p} \varepsilon) \, dt
\]

\[
> (\log 2)^{-1} \int u^{-1} P(M_u > 2^{1/p} e u^{1/p}) \, du \quad \text{for every } \varepsilon > 0,
\]

so that \(\sum n^{-1} P(M_n > n^{1/p} \varepsilon) < \infty \) for every \(\varepsilon > 0 \).

In the case \(\alpha > 1/p \), for \(m \geq 1 \) we have

\[
(m+1)^{\alpha p/(\alpha p - 1)} \geq m^{\alpha p/(\alpha p - 1)} + \frac{\alpha p}{\alpha p - 1} m^{1/(\alpha p - 1)} + m^{1/(\alpha p - 1)},
\]

so that the random variables \(M_{m^{\alpha p/(\alpha p - 1)}, m^{1/(\alpha p - 1)}} \), \(m = 1, 2, \ldots \), are independent. Moreover, by Theorem 4.1,

\[
m^{-\frac{2}{\alpha p - 1}} M_{m^{\alpha p/(\alpha p - 1)}, m^{1/(\alpha p - 1)}} \leq m^{-\frac{2}{\alpha p - 1}} M_{m^{\alpha p/(\alpha p - 1)}, m^{\alpha p/(\alpha p - 1)}} \to 0 \text{ a.s. as } m \to \infty.
\]

Therefore, again by the Borel-Cantelli lemma we obtain

\[
\sum_{m=1}^{\infty} P(M_{m^{\alpha p/(\alpha p - 1)}, m^{1/(\alpha p - 1)}} \leq m^{2/(\alpha p - 1)} \varepsilon) = \sum_{m=1}^{\infty} P(M_{m^{1/(\alpha p - 1)}} \geq m^{2/(\alpha p - 1)} \varepsilon) \geq \int P(M_{1/(\alpha p - 1)} \geq (1 + 1)^{2/(\alpha p - 1)} \varepsilon) \, dt
\]

\[
\geq (\alpha p - 1) \int u^{\alpha p - 1} P(M_u \geq 2^{2/(\alpha p - 1)} u^\varepsilon) \, du,
\]

which gives the desired rate of convergence. The necessity of the condition of \(l_p \) not being representable in \(E \) follows directly from the example developed in the proof of (iii) \(\Rightarrow \) (i) in Theorem 4.1.

(b) Sufficiency. We may assume that \(X_i \)'s are symmetric. The case of zero expectations can be handled by adapting in the standard way the method presented below.
Put $Y_{kn} = X_k I (\|X_k\| < n^{1/p})$. Then
\[
\sum_{n=1}^{\infty} n^{-1} (\log n) P (\|S_n\| > n^{1/p} \varepsilon) \leq \sum_{n=1}^{\infty} n^{-1} (\log n) \left(\bigcup_{k=1}^{n} (\|X_k\| > n^{1/p} \varepsilon) \right) + \sum_{n=1}^{\infty} n^{-1} (\log n) P (\| \sum_{k=1}^{n} Y_{kn} \| > n^{1/p} \varepsilon).
\]

The series on the right-hand side can be estimated from above by
\[
C \sum_{n=1}^{\infty} (\log n) P (\|X_0\| > n^{1/p} \varepsilon) \leq C_1 E |X_0|^{p} \log^{+} |X_0| < \infty,
\]
and the convergence of the second series can be proved as follows.

Since l_p is not finitely representable in E, by Maurey-Pisier's theorem mentioned before there exists $\delta > 0$ such that E is of R-type $(p + \delta)$. Hence, making use of Chebyshev's inequality and integrating by parts we get
\[
\sum_{n=1}^{\infty} n^{-1} (\log n) P (\| \sum_{k=1}^{n} Y_{kn} \| > n^{1/p} \varepsilon)
\]
\[
\leq C_1 \sum_{n=1}^{\infty} n^{-1-(p+\delta)/p} (\log n) \sum_{k=1}^{n} E \| Y_{kn} \|^{p+\delta}
\]
\[
\leq C_2 \sum_{n=1}^{\infty} n^{-1-(p+\delta)/p} (\log n) \sum_{k=1}^{n} t^{p+\delta} dP (\|X_k\| \leq t)
\]
\[
\leq C_2 \sum_{n=1}^{\infty} n^{-(p+\delta)/p} (\log n) \int_{0}^{\infty} t^{p+\delta-1} P (|X_0| > t) dt
\]
\[
= C_2 \int_{0}^{1} t^{\delta/p} \sum_{n=1}^{\infty} (\log n) P (|X_0 s^{-1/p}| > n^{1/p}) ds
\]
\[
\leq C_3 E |X_0|^{p} \log^{+} |X_0| \int_{0}^{1} s^{-1+\delta/p} ds < \infty.
\]

This completes the proof of the sufficiency.

The necessity can be obtained exactly as in (a).

Corollary 4.1. If l_p is not finitely representable in E, $1 < p < 2$, and (X_i) are i.i.d. zero-mean random vectors in E with $E \|X_1\|^{p} < \infty$, then

\[
P (\|S_n/n\| > \varepsilon) = o (n^{1-p}) \quad \text{for every } \varepsilon > 0.
\]

Corollary 4.2. Let E be of R-type p, $1 < p \leq 2$, and let (X_i) be independent zero-mean vectors in E such that

\[
(4.2) \quad P (\|X_k\| > n) = o (n^{-p})
\]
uniformly in k. Then for every $\delta > 0, \epsilon > 0$

$$P (\| S_n/n \| > \epsilon) = o (n^{1-\frac{\delta}{p}}).$$

Proof. Since E is of R-type p, $l^p - \delta$ is not finitely representable in E for every $\delta > 0$. From (4.2) it follows also that X_i's have tail probabilities uniformly bounded by tail probabilities of an $X_0 \in L^{p-\delta}$. Therefore, by Theorem 4.3,

$$\sum_{n=1}^{\infty} n^{p-\delta-2} P (\| S_n/n \| > \epsilon) < \infty,$$

so that

$$n^{p-\delta-2} P (\| S_n/n \| > \epsilon) = o (n^{-1}),$$

which gives the corollary.

From Corollary 1.1 and Theorem 4.3 we get immediately

Corollary 4.3. If $1 \leq p < 2$ and l_p is not finitely representable in E, then for any sequence (X_i) of independent zero-mean random vectors in E with tail probabilities uniformly bounded by tail probabilities of an $X_0 \in L^p$ if $1 < p < 2$ and of an $X_0 \in L^{\log^+ L}$ if $p = 1$ we have

$$\sum_{n=1}^{\infty} n^{p-2} P (\sup_{k \geq n} \| S_n/k \| > \epsilon) < \infty \quad \text{for every } \epsilon > 0.$$

5. Concluding remarks.

5.1. Brunk's type strong law of large numbers in Banach spaces can be also obtained by using the methods developed by Kuelbs and Zinn [6] (J. Zinn — oral communication). These methods use however a rather powerful tool of exponential inequalities in Banach spaces.

5.2. In the i.i.d. case an alternative proof of results concerning rates of convergence is possible by applying a theorem of Jain [4] who proved that by and large, real-line "rates of convergence" results remain valid in general Banach spaces as long as S_n/n^2 are bounded in probability. In presence of our geometric restrictions on E the latter is, of course, implied by the Marcinkiewicz-Zygmund type strong law. Other extensions along the lines of Jain's paper are also possible (e.g., Orlicz space type moment assumptions). We stuck to a simpler set up to emphasize the relation between geometric and probabilistic phenomena in E.

5.3. It also follows from Jain's paper that, for any Banach space E and any i.i.d. zero-mean (X_i), if $X_i \in L_1 (E)$, then $\sum n^{-2} P (\| S_n/n^2 \| > \epsilon) < \infty$ for every $\epsilon > 0$, and if, for an $\alpha \geq 1/p$, $\sum n^{p-2} P (\| S_n/n^p \| > \epsilon) < \infty$ for every $\epsilon > 0$, then $EX_1 = 0$ and $E \| X_1 \|^p < \infty$.

5.4. If E is a Hilbert space, we can prove a result somewhat stronger than Corollary 4.2. Namely, if (X_i) are i.i.d. in E with $EX_1 = 0$ and
\[
P(\|X_1\| \geq n) = o(n^{-p}) \text{ for a } p > 1, \text{ then } P(\|S_n/n\| > \varepsilon) = o(n^{1-p}) \text{ for every } \varepsilon > 0.
\]

5.5. The validity of the Marcinkiewicz-Zygmund strong law of large numbers for i.i.d. \((X_n)\) in \(E\) is equivalent to \(E\) being of \(R\)-type \(p\) (A. de Acosta — oral communication).

5.6. Taylor and Wei [13] studied weighted sums of independent random vectors in Banach spaces under moment conditions similar to ours, but obtained only weak laws for them (i.e., with convergence in probability).

REFERENCES
