TOPOLOGY OF THE CONVERGENCE IN PROBABILITY ON A LINEAR SPAN OF A SEQUENCE OF INDEPENDENT RANDOM VARIABLES

K. Pietruska-Pałuba
W. Smoleński

Abstract: Let X_1, X_2, \ldots be a sequence of independent symmetric Hilbert space valued non-degenerated random variables and let L_x denote the closed linear span of \{ X_n \} in $L_0(\Omega, \mathcal{F}, P; H)$. If L_x is a locally convex subspace of L_0, then L_x is Banach iff L_x does not contain an isomorphic copy of R^∞ iff

$$\sup_n P(X_n = 0) < 1.$$

If, moreover, X_n are equidistributed and $P(X_n = 0) = 0$, then

$$\left\{ Y \in L_x : P \left(\| Y \| > \frac{1}{201} \right) < \frac{1}{210} \right\}$$

is a bounded neighbourhood of zero.

2000 AMS Mathematics Subject Classification: Primary: -; Secondary: -;
Key words and phrases: -

THE FULL TEXT IS AVAILABLE HERE