TOPOLOGY OF THE CONVERGENCE IN PROBABILITY ON A LINEAR SPAN OF A SEQUENCE OF INDEPENDENT RANDOM VARIABLES

BY

K. PIETRUSKA-PALUŚ AND W. SMOLEŃSKI (WARSAW)

Abstract. Let \(X_1, X_2, \ldots \) be a sequence of independent symmetric Hilbert space valued non-degenerated random variables and let \(L_X \) denote the closed linear span of \(\{X_n\} \) in \(L_0(\Omega, \mathcal{F}, P; H) \). If \(L_X \) is a locally convex subspace of \(L_0 \), then \(L_X \) is Banach iff \(L_X \) does not contain an isomorphic copy of \(\mathbb{R}^\infty \) iff

\[
\sup_n P(X_n = 0) < 1.
\]

If, moreover, \(X_n \) are equidistributed and \(P(X_n = 0) = 0 \), then

\[
\left\{ Y \in L_X : P\left(\|Y\| > \frac{1}{201}\right) < \frac{1}{201} \right\}
\]

is a bounded neighbourhood of zero.

In this note we will investigate the topology of the convergence in probability for random variables of the form \(\sum a_n X_n \), \(n = 1, 2, \ldots \), where \(a_n \) are real numbers, \(\{X_n\} \) is a fixed sequence of independent symmetric non-degenerated Hilbert space valued random variables and the series converges in probability. We denote the linear space of random variables of this form by \(L_X \). It is easy to see that \(L_X \) endowed with the topology \(\tau_P \) of the convergence in probability is a complete separable linear-metric space.

Theorem 1. If \((L_X, \tau_P) \) is locally convex, then the following conditions are equivalent:

(i) \((L_X, \tau_P) \) is a Banach space;

(ii) \(L_X \) does not contain a subspace isomorphic to \(\mathbb{R}^\infty \);

(iii) \(\sup P(X_n = 0) < 1 \).

Before proving Theorem 1, we will introduce some notation and prove some lemmas. We use "\(: = \)" as "equal by definition".
For \(n = 1, 2, \ldots \) and \(t \in \mathbb{R} \) we have \(Q_n(t) := E \min(1, ||tX_n||^2) \). It is easy to see that \(Q_n(0) = 0 \),

\[
\lim_{t \to \infty} Q_n(t) = 1 - P(X_n = 0),
\]

\(Q_n(t) = Q_n(-t) \) and, for \(t_1 \geq t_2 \geq 0 \), \(Q_n(t_1) \geq Q_n(t_2) \).

For \(\varepsilon > 0 \)

\[
U_\varepsilon := \{ Y \in L_X : Y = \sum a_n X_n \text{ and } \sum Q_n(a_n) < \varepsilon \},
\]

\[
V_\varepsilon := \{ Y \in L_X : P(||Y|| > \varepsilon) < \varepsilon \}.
\]

Lemma 1. \(\varepsilon U_\varepsilon \subset V_{2\varepsilon} \subset U_{400\varepsilon} \) for \(0 < \varepsilon < 1/400 \).

Proof. The inclusions follow directly from the following beautiful estimates [4]:

1. if \(0 < \varepsilon < 1/200 \) and \(P(||\sum a_n X_n|| > \varepsilon) < \varepsilon \), then \(\sum Q_n(a_n) < 200\varepsilon \);
2. \(P(||\sum a_n X_n|| > \varepsilon) < 2\sum Q_n(a_n \varepsilon^{-1}) \) for every \(\varepsilon > 0 \).

Remark. Propositions (1) and (2) are stated in [4] under the assumption that \(X_1, X_2, \ldots \) are equidistributed real random variables. But those assumptions are not used in the proof, which can be rewritten (with obvious changes) in the Hilbert space case.

Lemma 2. If \(\text{conv } U_\varepsilon \subset U_\eta \) for some \(0 < \varepsilon < 1 - \sup P(X_n = 0) \) and \(\eta > 0 \), then

\[
\forall \varepsilon > 0 \exists r = r(\varepsilon) > \forall n \in \mathbb{N} \forall t \in \mathbb{R} \quad Q_n(t) < \varepsilon \Rightarrow Q_n(rt) < \delta.
\]

Proof. Let us assume that the implication is false. Then for some \(\delta > 0 \) there exist sequences \((n_k) \) and \((t_k) \) of positive integers such that

\[
Q_{n_k}(t_k) < \varepsilon \quad \text{and} \quad Q_{n_k}(\frac{t_k}{k}) \geq \delta.
\]

Since \(\delta < 1 - \sup P(X_n = 0) \), we have

\[
\forall n \in \mathbb{N} \exists t_n > 0 \forall t > t_n \quad Q_n(t) > \varepsilon.
\]

Thus the boundedness of \((n_k) \) would entail the boundedness of \((t_k) \). But for \((n_k) \) and \((t_k) \) bounded we would have

\[
\lim_{k \to \infty} Q_{n_k}(\frac{t_k}{k}) = 0.
\]

Hence we can assume that \((n_k) \) is strictly increasing.
Consider the following sequence of elements of $\text{conv } U_e$:

\[
Y_1 = t_1 X_{n_1}, \\
Y_2 = \frac{1}{2} t_2 X_{n_2} + \frac{1}{2} t_3 X_{n_3}, \\
\ldots \ldots \ldots \ldots \ldots \\
Y_m = \sum_{k=m}^{2m-1} \frac{1}{m} t_k X_{n_k}.
\]

It is clear that

\[
\sum_{k=m}^{2m-1} Q_n(t_k/m) \geq \sum_{k=m}^{2m-1} Q_n(t_k/k) \geq m\delta.
\]

This contradicts the assumption of the lemma that Y_m belongs to U_e.

Lemma 3. Let $\varepsilon, \lambda > 0$ and let $Z = \sum b_n X_n$, $n = 1, 2, \ldots$, be an element of U_ε. If $Q_n(b_n) < \lambda$ for every n, then $\lambda Z/(\lambda + \varepsilon)$ is an element of $\text{conv } U_\lambda$.

Proof. Since $Q_n(b_n) < \lambda$, there exist positive integers M and $1 = n_0 < n_1 < n_2 < \ldots < n_M$ such that

\[
\sum_{n=1}^{n_1-1} Q_n(b_n) = \lambda_1 < \lambda \quad \text{and} \quad Q_{n_1}(b_{n_1}) \geq \lambda - \lambda_1, \\
\sum_{n=n_1}^{n_2-1} Q_n(b_n) = \lambda_2 < \lambda \quad \text{and} \quad Q_{n_2}(b_{n_2}) \geq \lambda - \lambda_2, \\
\ldots \ldots \ldots \ldots \ldots \\
\sum_{n=n_M-1}^{n_M-1} Q_n(b_n) = \lambda_M < \lambda \quad \text{and} \quad Q_{n_M}(b_{n_M}) \geq \lambda - \lambda_M, \\
\sum_{n=n_M}^{\infty} Q_n(b_n) < \lambda.
\]

Consequently, random variables

\[
Z_k = \sum_{n=n_k-1}^{n_k-1} b_n X_n \quad (k = 1, 2, \ldots, M) \quad \text{and} \quad Z_{M+1} = \sum_{n=n_M}^{\infty} b_n X_n
\]

are elements of U_λ such that $Z_1 + Z_2 + \ldots + Z_M + Z_{M+1} = Z$.

Obviously $M+1 \leq \varepsilon/\lambda + 1$. Thus $\lambda Z/(\lambda + \varepsilon) \in U_\lambda$.

then \((L_X, \tau_F)\) is isomorphic to \(R^\infty\).

Proof. We have to prove that:

(a) for every sequence of real numbers \((a_n)\) the series \(\sum a_n X_n,\)

(b) the sequence

\[
\left(\sum_{n=1}^\infty a_{nk} X_n \right)_{k=1}^\infty
\]

de elements of \(L_X\) converges to zero in probability iff

\[
\lim_{k \to \infty} a_{nk} = 0 \quad \text{for every } n.
\]

Both (a) and (b) follow immediately from the Borel-Cantelli Lemma.

Proof of the Theorem 1. (i) \(\Rightarrow\) (ii) is obvious.

\(~(iii) \Rightarrow ~(ii).\) Let \((n_k)\) be an increasing sequence of positive integers such that \(P(X_{n_k} = 0) > 1 - 1/2^k\). By Lemma 4, the closed linear span of \((X_{n_k})\)

is isomorphic to \(R^\infty\).

(iii) \(\Rightarrow\) (i). It is enough to prove the existence of a bounded neighborhood of zero. Thus, by Lemma 1, it is enough to show that

\[
\exists_{\varepsilon > 0} \forall_{\eta > 0} \exists_{s > 0} \quad s U_\varepsilon \subset U_\eta.
\]

Let us take \(\delta > 0\). Local convexity of \((L_X, \tau_F)\) and Lemma 1 imply the existence of an \(\varepsilon > 0\) such that \(\operatorname{conv} U_\varepsilon \subset U_\delta\). We can assume that \(\varepsilon < 1 - \sup P(X_n = 0)\).

Let us fix an \(\eta > 0\) and let us take a \(\lambda > 0\) such that \(\operatorname{conv} U_\lambda \subset U_{\eta/2}\). By Lemma 2 there exists an \(r = r(\eta/2\varepsilon)\) such that

\[
\forall_{n \in N} \forall_{t \in \mathbb{R}} \quad Q_n(t) < \varepsilon \Rightarrow Q_n(rt) < \frac{\eta \lambda}{2\varepsilon}.
\]

We claim that

\[
(\ast) \quad s U_\varepsilon \subset U_\eta \quad \text{for } s = \min \left(\frac{1}{F}, \frac{\lambda}{\lambda + \varepsilon} \right).
\]

Let \(Y = \sum_{n=1}^\infty a_n X_n\) be an element of \(U_\varepsilon\). Let \(N_\lambda = \{n \in N : Q_n(a_n) \geq \lambda\}\). Since \(Q_n(a_n) < \varepsilon\), we have \(Q_n(ra_n) < \eta \lambda/2\varepsilon\). Obviously \(\text{card } N_\lambda \leq \varepsilon/\lambda\). Hence

\[
\sum_{n \in N_\lambda} Q_n(ra_n) < \frac{\eta \lambda}{2}\varepsilon.
\]
On the other hand, by Lemma 3, we have

\[\frac{\lambda}{\lambda + \varepsilon} \sum_{n \in \mathbb{N}} a_n X_n \in \text{conv } U_\varepsilon \subset U_{\eta/2}. \]

Thus

\[\sum_{n=1}^{\infty} Q_n(sa_n) < \eta, \]

q.e.d.

As a corollary we get

Theorem 2. If \(X_1, X_2, \ldots \) are equidistributed and \((L_X, \tau_\rho)\) is locally convex, then

(a) \(E\|X_1\|^p < \infty \), for every \(0 < p < 1 \)

(b) if, moreover, \(P(X_1 = 0) = 0 \), then

\[\left\{ Y \in L_X : P\left(\|Y\| > \frac{1}{201} \right) < \frac{1}{201} \right\} \]

is a bounded neighbourhood of zero in \((L_X, \tau_\rho)\).

Proof. (a) From Theorem 1 we know that \((L_X, \tau_\rho)\) is a Banach space. Thus, by a theorem of Nikishin ([5], Theorem 1)(1) there exists an \(A \in \mathcal{F} \), \(P(A) \geq \frac{1}{2} \), such that \(E\|X_n\|^p X_A \leq c_p \). Since \(X_n \) are equidistributed and independent, it follows that \(E\|X_1\|^p < \infty \) for every \(0 < p < 1 \).

(b) In view of Lemma 1 it is enough to prove that

\[\forall \eta > 0 \exists \varepsilon > 0 \quad sU_\varepsilon \subset U_\eta, \quad \text{where } \varepsilon = \frac{200}{201}. \]

Let us fix \(\eta > 0 \) and let us take \(\lambda > 0 \) such that \(\text{conv } U_\lambda \subset U_{\eta/2} \). Since \(Q_1 = Q_2 = \ldots \) and \(\lim_{t \to \infty} Q_1(t) = 1 \), there exists an \(r > 0 \) such that

\[Q_n(t) < \varepsilon \Rightarrow Q_n(rt) < \frac{\eta \lambda}{2 \varepsilon}. \]

Now we can rewrite the part of the previous proof starting from (*).

Remarks. The case of \(H = \mathbb{R} \) and \(X_1, X_2, \ldots \) equidistributed symmetric random variables is better known.

1. It is proved in [1] that, for equidistributed real symmetric random variables, “locally convex” and “Banach” is the same for \((L_X, \tau_\rho)\) (see also [2] for a survey of results).

(1) It is stated for \(H = \mathbb{R} \) and \(\Omega = [0, 1] \) but, again, the proof can be just re-written to get what we want.
2. The case of X_1, X_2, ... real symmetric equidistributed, with $P(X_1 = 1) = P(X_1 = -1) = \frac{1}{2}$, shows that $\{ Y \in L_X : P(\| Y \| > \frac{1}{2}) < \frac{1}{2} \}$ is not, in general, a bounded neighbourhood for a locally convex τ_p. However, in this real case $\frac{1}{2} - \varepsilon$ works for every $\varepsilon > 0$. The last statement follows from the following estimate (obtained from Inequality II, p. 6, in [3] and from [6]): for every $0 < \lambda < \frac{1}{2}$, if $P(\| \sum a_n X_n \| > \varepsilon) < \lambda$, then

$$\sqrt{\sum a_n^2} < 4 \frac{\varepsilon}{1 - 2\lambda}.$$

3. For every $1 \leq p < 2$ there exists a sequence X_1, X_2, ... of equidistributed symmetric independent real r.v.'s such that $E|X|^p < \infty$, but (L_X, τ_p) is not locally convex.(2)

Indeed, let (l_i) be an increasing sequence of positive integers such that

\[(*) \quad \sum_{i=1}^{\infty} l_i \left(\frac{l_{i-1}}{l_i} \right)^{2/p} i^{2/p} < \infty, \quad l_0 = 1 \]

(e.g. $l_i = 2^{l_{i-1}+1}$, $c > p/(2-p)$).

We put $a_i = (l_{i-1}/l_i)^2 i^2$, $i = 1, 2, \ldots$, then

\[(**) \quad \sum_{i=1}^{\infty} l_i a_i^{1/p} < \infty. \]

Let g_1, g_2, ... be a sequence of independent symmetric random variables with distribution

$$P(g_i = l_i) = P(g_i = -l_i) = a_i = \frac{1}{2} - \frac{1}{2} P(g_i = 0)$$

and let $(g_{ij})_{i=1}^{\infty}$, $(g_{i2})_{i=1}^{\infty}$, ... be independent copies of the sequence $(g_i)_{i=1}^{\infty}$. We put

$$X_j = \sum_{i=1}^{\infty} g_{ij}.$$

It follows from $(**)$ that $E|X_j|^p < \infty$.

Let

$$A_i = \frac{i}{l_i}, \quad k_i = \frac{1}{a_i} i = \left(\frac{l_{i-1}}{l_i} \right)^{-2} i^{-3}.$$

(2) We owe this remark to S. Kwapień.
For $0 < \delta < 1$ we have
\[
P\left(\left|\sum_{j=1}^{k_i} X_j\right| > \delta\right) \leq P\left(\left|\sum_{j=1}^{k_i} g_{s_j}\right| > \frac{\delta}{2}\right) +
\quad + P\left(\left|\sum_{j=1}^{k_i} g_{s_j}\right| > \frac{\delta}{2}\right) = I + II,
\]
\[
I \leq \sum_{j=1}^{k_i} \sum_{s=1}^{\infty} P(\{g_{s,j} \neq 0\}) = k_i \sum_{s=1}^{\infty} a_s \leq 2Mk_i a_i = \frac{2M}{i} \to 0
\]

\((\ast)\) implies that \(\sum_{s=1}^{\infty} a_s \leq Ma_i\) for some constant \(M\),
\[
II \leq \left(\frac{2}{\delta}\right)^2 E\left|\sum_{j=1}^{k_i} g_{s,j}\right|^2 = \frac{4}{\delta^2} A_i^2 k_i \left(\sum_{s=1}^{\infty} l_s^2 s^2\right)
\quad = \frac{4}{\delta^2} A_i^2 k_i \left(\sum_{s=1}^{\infty} l_s^2 s^2\right) \leq \frac{4}{\delta^2} M_1 A_i^2 k_i l_{i-1}^2 = \frac{4M_1}{\delta^2 i} \to 0
\]

\((\ast)\) implies that \(\sum_{s=1}^{\infty} l_s^2 s^2 \leq M_1 l_{i-1}^2\) for some constant \(M_1\).

Thus for every $0 < \delta < 1$ there exists an i such that
\[
P\left(\left|\sum_{j=1}^{k_i} X_j\right| > \delta\right) < \delta.
\]

On the other hand, for every i we have
\[
P\left(\frac{1}{i} \left|\sum_{j=1}^{k_i} X_j\right| + A_i \sum_{j=k_i+1}^{2k_i} X_j + \ldots + A_i \sum_{j=(i-1)k_i+1}^{ik_i} X_j\right) \geq 1/5
\]
\[
= P\left(\frac{A_i}{i} \left|\sum_{j=1}^{k_i} X_j\right| \geq 1/5\right) \geq \frac{1}{2} P\left(\frac{A_i}{i} \left|\sum_{j=1}^{k_i} g_{s,j}\right| \geq 1/5\right)
\]
\[
\geq \frac{1}{4} P\left(\max_{1 \leq j \leq ik_i} \frac{A_i}{i} g_{s,j} \geq 1/5\right) = \frac{1}{4} (1-(1-2a_i)^{ik_i})
\]
\[
\geq \frac{1}{4} (1-e^{-2a_i k_i}) = \frac{1}{4} (1-e^{-2}) \geq \frac{1}{5},
\]
which shows that \((L_X, \tau_p)\) is not locally convex.

4. In this case we can give a simple sufficient condition to have \((L_X, \tau_p)\) locally convex, namely, for $t > t_0$, \(tP(|X_1| > t)\) is decreasing.

It can be obtained by the calculating derivative of \(Q(x)/x\). This condition
is sufficient for $Q(x)/x$ to be decreasing in some small neighbourhood of zero, so that Q can be replaced by an equivalent convex function Q_1.

Acknowledgement. We would like to thank S. Kwapięń for his helpful advice.

REFERENCES

Department of Mathematics
Warsaw University
PKiN, 9p.
00-901 Warsaw, Poland

Institute of Mathematics
Warsaw Technical University
Pl. Jedności Robot. 1
00-661 Warsaw, Poland

Received on 9. 12. 1986