CUMULANTS FOR STATIONARY MIXING RANDOM SEQUENCES AND APPLICATIONS TO EMPIRICAL SPECTRAL DENSITY

BY

P. DOUKHAN (Orsay) and J. R. LEÓN (Caracas)

Abstract. We first give a central limit theorem for a stationary strongly mixing sequence without any mixing rate assumption following ideas of Rosenblatt [23]. We then study functional central limit convergence and law of the iterated logarithm for the empirical spectral density considered like a random element of some Sobolev space.

1. Introduction. In the first part of this work we use cumulant techniques derived from [23]. We first show moment sums inequalities for stationary random sequences with finite cumulant sums; we also show that those cumulant sums are finite under convenient mixing rate assumptions.

Recall that a discrete time process $\left(X_{n}\right)$ is said to be strongly mixing with mixing coefficients α_{t} if $\alpha_{t} \rightarrow 0$ for $t \rightarrow \infty$ with

$$
\alpha_{t}=\operatorname{Sup}|P(A \cap B)-P(A) P(B)|,
$$

the supremum being taken over A, B, such that $A \in \sigma\left(\ldots, X_{p-1}, X_{p}\right)$, $B \in \sigma\left(X_{p+t}, X_{p+t+1}, \ldots\right)$, where p is any integer.

We derive a central limit theorem for a strongly mixing and stationary sequence under finiteness of cumulant sums and without any mixing rate assumption. We also obtain a law of iterated logarithm (LIL) assuming some mixing rate assumption weaker than usual (see [22]and a convergence rate in Lévy distance for central limit theorem.

In the second part we study the behaviour of empirical spectral density I_{n} of a centered stationary strongly mixing sequence $\left(X_{n}\right)_{n \geqslant 0}$:

$$
I_{n}(g)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} g(\lambda)\left\{R_{0}(n)+2 \sum_{k=1}^{n-1} R_{k}(n) \cos k \lambda\right\} \mathrm{d} \lambda
$$

with

$$
R_{k}(n)=\frac{1}{n} \sum_{j=1}^{n-k} x_{j} x_{j+k}
$$

Here g belongs to a Sobolev space H_{s} defined below and I_{n} is considered like a random element of the dual space H_{-s} of H_{s}. We write I for the element of H_{-s} defined by the spectral density f of the sequence (x_{n}). Without mixing assumption we show that $E\left\{n\left\|I_{n}-I\right\|_{-s}^{2}\right\}$ is bounded (using cumulant sums assumptions). Afterwards we show functional convergence of $\sqrt{n}\left(I_{n}-I\right)$ to a Gaussian random variable of H_{-s} under strongly mixing rate assumption. The problem is that $I_{n}-I$ is not a sum of mixing random elements of H_{-s} except if $I_{n}-I$ acts only on the finite-dimensional subspace of H_{s} of l-th degree trigonometric polynomials. We also prove a bounded law of iterated logarithm with a strong mixing rate assumption. To obtain it we use a decomposition of $I_{n}-I$ into an $l(n)$-dimensional sum of mixing elements and a little part. The mixing rate of those elements is $\operatorname{Inf}\left\{\alpha_{n-l(n)}, 1\right\}$. We give a Lévy speed of convergence for them and we conclude with usual techniques (see [9]). This leads to a result similar to those of [2] concerning almost sure behaviour of $\operatorname{Max}{ }\left\{\left|R_{k}(n)-r_{k}\right| ; 0 \leqslant k \leqslant w_{n}\right\}$. We also show a uniform law of iterated logarithm for $I_{n}-I$ on the Sobolev space H_{s}.

Classical results concerning Gaussian processes can be found in [3], like LIL for $I_{n}(g)-I(g)$ with $g \in L^{2}\left(f^{2}(\lambda) d \lambda\right)$. Rosenblatt [23] and Dalhaus [7] show a central limit theorem. Rosenblatt uses a kernel estimate and Dalhaus uses more general spectral estimates for a fixed function g. The only functional results that we know concerning $I_{n}-I$ use a martingale approach [4]; the author shows a uniform LIL for a class of functions with rapidly decreasing Fourier's coefficients.

We now investigate fields of applications for this work. First of all note that $R_{k}(n)=I_{n}\left(e_{k}\right)$ if $e_{k}(x)=\cos k x$, so results for empirical covariances are obtained. Then Whittle's approximate log-likehood of stationary Gaussian processes [25] can be studied with

$$
\ln (f)=-\frac{1}{2}\left\{I_{n}\left(\frac{1}{f}\right)+n \log \sigma_{0}^{2}\right\}
$$

In chapter XIV of [3] the authors give results concerning identification of ARMA processes (see theorem 3:5); they use a uniform LIL for I_{n} relative to Gaussian processes proved by Bouaziz; our results seem to be tractable here. Now, in the convergence of approximate likehood used for estimation of parameters of spectral density, $I_{n}(f)$ is the main term [15]; for this likehood is maximized

$$
D\left(f_{\theta}, I_{X}\right)=\int_{-\pi}^{\pi} \log f_{\theta}(\omega)+\frac{X^{(\omega)}}{f_{\theta}(\omega)} d \omega,
$$

where I_{X} is the periodogram and f_{θ} the spectral density of the process; our results give a LIL for D. Finally, Bouaziz [5] gives other applications of our results.
2. Cumulants. Let $\left\{A_{1}, \ldots, A_{k}\right\}$ be centered real-valued random variables. We write $A=\left(A_{1}, \ldots, A_{k}\right)$ and $m_{v}=\mathrm{E} A_{1}^{v_{1}} \ldots A_{k}^{v_{k}}$ if $v=\left(v_{1}, \ldots, v_{k}\right) \in N^{k}$.

If $\varphi(t)=\mathrm{E} e^{i t A}, t \in \boldsymbol{R}^{k}$, is the characteristic function of A, we obtain Taylor expansions of $\varphi(t)$, and $\log \varphi(t)$ if A admits n-th order moments:

$$
\begin{gathered}
\varphi(t)=\sum_{|v|<n} \frac{i^{|v|}}{v!} m_{v} t^{v}+O\left(|t|^{n}\right) \\
\log \varphi(t)=\sum_{|v|<n} \frac{i^{|v|}}{v!} c_{v} t^{v}+O\left(|t|^{n}\right) \quad \text { for } t \rightarrow 0 .
\end{gathered}
$$

Here $\quad v=\left(v_{1}, \ldots, v_{k}\right) \in N^{k}, \quad t=\left(t_{1}, \ldots, t_{k}\right) \in R^{k} \quad$ and $\quad|v|=v_{1}+\ldots+v_{k}$, $v!=v_{1}!\ldots v_{k}!, t=t_{1}^{\nu_{1}} \ldots t_{k}^{v_{k}}$.

The coefficients c_{v} are called cumulants of A.
Taylor developments lead Leonov and Shyriaev [19] to write

$$
\begin{gather*}
m_{v}=\sum_{\lambda_{1}+\ldots+\lambda_{q}=v} \frac{1}{q!} \frac{v!}{\lambda_{1}!\ldots \lambda_{q}!} \prod_{j=1}^{q} c_{\lambda_{j}} \tag{1}\\
c_{v}=\sum_{\lambda_{1}+\ldots+\lambda_{q}=v} \frac{(-1)^{q-1}}{q} \frac{v!}{\lambda_{1}!\ldots \lambda_{q}!} \prod_{j=1}^{q} m_{\lambda_{j}} .
\end{gather*}
$$

(Sums are taken for every integer q and $\lambda_{1}, \ldots, \lambda_{q} \in N^{k}$ such that $\lambda_{1}+\ldots$ $+\lambda_{q}=v$.)

In the following we also write $c\left(A_{1}, \ldots, A_{k}\right)=c_{v}$ and $m\left(A_{1}, \ldots, A_{k}\right)$ $=m_{v}$ for $v=(1, \ldots, 1)$, and, if $\left(X_{t}\right)$ is the k-th order process, $c\left(t_{2}, \ldots, t_{k}\right)$ $=c\left(X_{0}, X_{t_{2}}, \ldots, X_{t_{k}}\right)$.

Proposition 2.1. Let $\left(X_{t}\right)_{t \in N}$ be a $2 p$-th order stationary centered process satisfying

$$
C_{k}=\sum_{\left(s_{1}, \ldots, s_{k}-1\right) \in N^{k-1}}\left|c\left(s_{1}, \ldots, s_{k-1}\right)\right|<\infty \quad \text { for } k=2,3, \ldots, 2 p
$$

Then

$$
\mathrm{E}\left(X_{1}+\ldots+X_{n}\right)^{2 p} \leqslant \sum_{q=1}^{p} n^{q} \gamma_{q}
$$

where

$$
\gamma_{q}=\sum_{|\pi|=2 p} \frac{(2 p)!}{\pi!} C(\pi), \quad C(\pi)=C_{p_{1}}, \ldots, C_{p_{q}} \quad \text { for } \pi=\left(p_{1}, \ldots, p_{q}\right) \in N^{q}
$$

Remark. For $p=1,2$ more precise statements are classically obtained: $\mathrm{E}\left(X_{1}+\ldots+X_{n}\right)^{2} \leqslant n C_{2}, \mathrm{E}\left(X_{1}+\ldots+X_{n}\right)^{4} \leqslant n C_{4}+3 n^{2} C_{2}^{2}$.

Proof. Let $S_{n}=X_{1}+\ldots+X_{n}$. We compute

$$
\mathrm{E} S_{n}^{2 p}=\sum_{I} \mathrm{E} X_{I(1)} \ldots X_{I(2 p)}
$$

where I runs over the set of maps from $\{1, \ldots, 2 p\}$ to $\{1, \ldots, n\}$.
If $L=\left\{l_{1}, \ldots, l_{r}\right\} \subset\{1, \ldots, 2 p\}$, we write $c(I, L)=c\left(X_{I\left(l_{1}\right)}, \ldots, X_{I\left(l_{r}\right)}\right)$ and formula (1) implies
$\mathrm{E} S_{n}^{2 p}=\sum_{I} \sum_{q \geqslant 1} \frac{1}{q!} \sum_{p_{1}+\ldots+p_{q}=2 p} T_{p_{1} \ldots p_{q}} \quad$ with $T_{p_{1} \ldots p_{q}}=\sum_{I} \sum_{\left(L_{j}\right)} \prod_{j=1}^{q} c\left(I, L_{j}\right)$.
The number of partitions $\left\{L_{1}, \ldots, L_{q}\right\}$ is $q!(2 p)!/ p_{1}!\ldots p_{q}!$, so

$$
\left|T_{p_{1}, \ldots, p_{q}}\right| \leqslant \prod_{j=1}^{q}\left\{\sum_{1 \leqslant t_{1} \leqslant \ldots \leqslant t_{p_{j}} \leqslant n}\left|c\left(X_{t_{1}}, \ldots, X_{t_{p}}\right)\right|\right\} \frac{q!(2 p)!}{p_{1}!\ldots p_{q}!} .
$$

The result follows now from the stationarity of $\left(X_{t}\right)$.
Proposition 2.2. If $\left(X_{t}\right)_{t \in N}$ is a p-th order stationary centered and strongly mixing process such that there is a $\delta \in] 0$, 1] satisfying
(i) $\exists_{C>0} \forall_{n \in N} \quad \mathrm{E}\left|X_{n}\right|^{+\delta}<C$,
(ii)

$$
\sum_{r=0}^{\infty}(r+1)^{k-2} \alpha_{r}^{\delta /(k+\delta)}<\infty \quad \text { for } k=1, \ldots, p
$$

then

$$
C_{p}=\sum_{t_{1}, \ldots, t_{p-1}}\left|c\left(t_{1}, \ldots, t_{p-1}\right)\right|<\infty
$$

Remark 2.2.1. Propositions 2.1 and 2.2 imply a moment inequality (cf. [9]) already known, but Rosenblatt ([24], p. 1179) gives examples of processes with finite cumulants sums and with $\alpha_{n} \geqslant n^{-\varepsilon}$ for arbitrary $\varepsilon>0$.

Proof. If $1 \leqslant t_{1} \leqslant \ldots \leqslant t_{p}$ and $r=t_{l+1}-t_{l}=\operatorname{Max}\left\{t_{j+1}-t_{j} ; j=1, \ldots, p\right.$ $-1\}$, then by (2) we get

$$
\begin{gathered}
c\left(X_{t_{1}}, \ldots, X_{t_{p}}\right) \leqslant\left|\mathrm{E} X_{t_{1}} \ldots X_{t_{p}}-\mathrm{E} X_{t_{1}} \ldots X_{t_{l}} \mathrm{E} X_{t_{l+1}} \ldots X_{t_{p}}\right|+R, \\
R \leqslant \sum_{q} \frac{1}{q_{\lambda_{1}+\ldots+\lambda_{q}=v, \lambda_{j} \neq \nu}} \prod_{j=1}^{q}\left|m_{\lambda_{j}}\right| \text { for } v=(1, \ldots, 1)
\end{gathered}
$$

and $A=\left(X_{t_{1}}, \ldots, X_{t_{p}}\right)$.
By (1) we have

$$
R \leqslant \sum_{q} \frac{1}{q} R(p) \operatorname{Max}_{\lambda_{j} \neq v} \prod_{j=1}^{q}\left|C_{\lambda_{j}}\right|
$$

for some constant $R(p)$ only depending on p.

From another hand a result by Davydov [8] shows that the first term is majorized by $10 \alpha_{r}^{\delta /(p+\delta)} C^{p /(p+\delta)}$ and we have

$$
\begin{aligned}
& C_{p} \leqslant 10 p!C^{p /(p+\delta)} \sum_{r=0}^{\infty}(r+1)^{p-2} \alpha_{r}^{\delta /(p+\delta)}+R(p) \sum_{q} \frac{1}{q_{p_{1}+\ldots . . . p_{q}=p}^{p_{j} \neq p}} C_{p_{1}} \ldots C_{p_{q}} . \\
& \text { The result follows by induction. }
\end{aligned}
$$

Theorem 2.3. Let $\left(X_{t}\right)_{t \in \mathcal{N}}$ be a fourth order stationary centered and strongly mixing real process such that

$$
K=\sum_{k=0}^{\infty} k|c(k)|<\infty \quad \text { and } \quad C=\sum_{i . j . k}|c(i, j, k)|<\infty .
$$

Then, if there are some positive constants $A, \gamma<\gamma_{1}$ with $\alpha_{t}<A t^{-\gamma_{1}}$, and if

$$
\sigma^{2}=c(0)+2 \sum_{k=1}^{\infty} c(k) \neq 0
$$

we have
$\operatorname{Sup}_{z}\left|\boldsymbol{P}\left(n^{-1 / 2}\left(X_{1}+\ldots+X_{n}\right)<z\right)-\boldsymbol{P}(Y<z)\right|<$ Const $n^{-\varepsilon}, \quad \varepsilon=3 \gamma /(24+36 \gamma)$, where Y denotes a centered Gaussian random variable with variance σ^{2}.

Remarks. 2.3.1. Without any mixing rate assumption we also can get a CLT analogous to [23], chap. III, Pb. 4; it was shown by [24] that the assumptions are really weaker than usual condition

$$
\sum_{n=0}^{\infty} \alpha_{n}^{(1+\delta) /(2+\delta)}<\infty
$$

(see [14]). Moreover, in the example by Rosenblatt, $c(n)=n^{-1-\beta}$, so that the condition of Remark 2.3 .3 is satisfied and the result is valid here.
2.3.2. Ibragimov [16] shows that if $\left(X_{n}\right)$ is a Gaussian process, our cumulant assumptions imply mixing but no explicit estimation of the mixing rate in the case of CLT. To verify the assumptions of theorem 2.3 we have still some additional smoothness condition for spectral density to add ([16], Chap. 6, Théorème 8). Note that finiteness of K implies differentiability.
2.3.3. The assumption $K<\infty$ can be weakened by

$$
C_{2}=\sum_{n=0}^{\infty}|c(n)|<\infty \quad \text { and } \quad \frac{1}{k} \sum_{n=0}^{k} n|c(n)| \xrightarrow[k \rightarrow \infty]{\longrightarrow} 0
$$

2.3.4. Peligrad [20] shows under ϱ-mixing assumption that

$$
\sum_{i=0}^{\infty} \varrho^{2 / k}\left(2^{i}\right)<\infty
$$

implies $C_{k}<\infty$. This assumption is weaker than that usual for α-mixing.

Proof. Let $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ be a thrice continuously differentiable function with bounded derivatives. We estimate

$$
\Delta=\left|\mathrm{E} f\left(\frac{X_{1}+\ldots+X_{n}}{\sqrt{n}}\right)-f(Y)\right| .
$$

Condition $K<\infty$ implies $C_{2}<\infty$ and σ^{2} is finite. Set $p=p(n)$, $q=q(n), l=[n /(p+q)]$ (integer part) and

$$
\lim _{n \rightarrow \infty} \frac{p(n)}{q(n)}=\infty .
$$

We group the variables as follows:

$$
\frac{I_{1}}{p} / / / \frac{I_{2}}{p} / / / /-\ldots / / / \frac{I_{p}}{p} / / / \|_{(n-l(p+q)) \text { terms }}
$$

So $\quad \operatorname{Card}\left(I_{1}\right)=\ldots=\operatorname{Card}\left(I_{l}\right)=p, \quad$ and $J=\left\{1,2, \ldots, n_{\}} \backslash\left(I_{1} \cup \ldots \cup I_{l}\right)\right.$ satisfies Card $J=n-l p$. We now set

$$
u_{h}=\frac{1}{\sqrt{n}} \sum_{i \in I_{h}} X_{i}(h=1, \ldots, l) \quad \text { and } \quad v=\frac{1}{\sqrt{n}} \sum_{i \in J} X_{i} .
$$

We have $\Delta \leqslant a+b+c$ and

$$
\begin{aligned}
a & =\left|\mathrm{E} f\left(u_{1}+\ldots+u_{l}+v\right)-f\left(u_{1}+\ldots+u_{l}\right)\right|, \\
b & =\mid E f\left(u_{1}+\ldots+u_{l}-f\left(y_{1}+\ldots+y_{l}\right) \mid,\right. \\
c & =\left|\mathrm{E} f\left(y_{1}+\ldots+y_{l}\right)-f(Y)\right|,
\end{aligned}
$$

where y_{1}, \ldots, y_{l} are centered i.i.d. Gaussian variables with the variance σ_{p}^{2} that u_{1}.

Write $M_{j}=\sup \left\{\left|f^{(j)}(t)\right| ; t \in \boldsymbol{R}\right\}, j=0,1,2,3$. We have

$$
\begin{equation*}
a^{2} \leqslant M_{1}^{2} n^{-1} \sum_{i, j \in J} \mathrm{E} X_{i} X_{j} \leqslant M_{1}^{2} \frac{n-l p}{n} C_{2} \leqslant \frac{q}{p+q} M_{1}^{2} C_{2} \xrightarrow[n \rightarrow \infty]{ } 0, \tag{i}
\end{equation*}
$$

(ii) $\quad b \leqslant \sum_{j=1}^{l-1} b_{j}$ with $b_{j}=\left|\mathrm{E} f\left(Z_{j}+u_{j}\right)-f\left(Z_{j}+y_{j}\right)\right|$

$$
\text { and } Z_{j}=u_{1}+\ldots+u_{j-1}+y_{j+1}+\ldots+y_{l}
$$

Taylor's formula implies:

$$
\begin{aligned}
& f\left(Z_{j}+u_{j}\right)=f\left(Z_{j}\right)+u_{j} f^{\prime}\left(Z_{j}\right)+u_{j}^{2} f^{\prime \prime}\left(Z_{j}\right) / 2+u_{j}^{3} f^{\prime \prime \prime}\left(\xi_{j}\right) / 6, \\
& f\left(Z_{j}+y_{j}\right)=f\left(Z_{j}\right)+y_{j} f^{\prime}\left(Z_{j}\right)+y_{j}^{2} f^{\prime \prime}\left(Z_{j}\right) / 2+y_{j}^{3} f^{\prime \prime \prime}\left(\eta_{j}\right) / 6
\end{aligned}
$$

So

$$
b_{j} \leqslant\left|\mathrm{E} u_{j} f^{\prime}\left(Z_{j}\right)\right|+\frac{1}{2}\left|\mathrm{E} u_{j}^{2} f^{\prime \prime}\left(Z_{j}\right)-\mathrm{E} u_{j}^{2} \mathrm{E} f^{\prime \prime}\left(Z_{j}\right)\right|+\frac{1}{3} M_{3} \mathrm{E}\left|u_{j}\right|^{3} .
$$

But proposition 2.1 shows that

$$
\mathrm{E}\left|u_{1}\right|^{4} \leqslant \frac{1}{n^{2}}\left(p C_{4}+3 p^{2} C_{2}^{2}\right) \leqslant \text { Const } p^{2} / n^{2}
$$

From another hand, mixing inequality shows [7] that, for $0<\varrho<\frac{1}{2}$,

$$
\begin{aligned}
& b_{j} \leqslant 10 \alpha_{q}^{3 / 4-\varrho}\left(\mathrm{E} u_{j}^{4}\right)^{1 / 4} M_{1}+5 \alpha_{q}^{1 / 2-\varrho}\left[\mathrm{E}\left(u_{j}^{2}-\mathrm{E} u_{j}^{2}\right)^{2}\right]^{1 / 2} M_{2}+\left(1 / 3 M_{3}\right)\left(\mathrm{E} u_{j}^{4}\right)^{3 / 4}, \\
& b_{j} \leqslant 10 \alpha_{q}^{3 / 4-\varrho}\left(\mathrm{E} u_{j}^{4}\right)^{1 / 4} M_{1}+10 \alpha_{q}^{1 / 2-\varrho}\left(\mathrm{E} u_{1}^{4}\right)^{1 / 2} M_{2}+M_{3}\left(\mathrm{E} u_{1}^{4}\right)^{3 / 4} / 3 \\
& \\
& \leqslant C t\left\{\alpha_{q}^{3 / 4-\varrho} \sqrt{p / n}+\alpha_{q}^{1 / 2-\varrho} \frac{p}{n}+\left(\frac{p}{n}\right)^{3 / 2}\right\} .
\end{aligned}
$$

Hence $b \leqslant C t\left\{\sqrt{l} \alpha_{q}^{3 / 4-e}+\alpha_{q}^{1 / 2-e}+1 / \sqrt{l}\right\}$; we see that $b \rightarrow 0$ if

$$
l(n) \alpha_{q(n)} \xrightarrow[n \rightarrow \infty]{ } 0, \quad l(n) \xrightarrow[n \rightarrow \infty]{ } \infty \quad \text { for } \varrho=1 / 4
$$

We have
(iii) $c \leqslant\left|l \sigma_{p}^{2}-\sigma^{2}\right| M_{2} \quad$ and $\quad \sigma_{p}^{2}=\frac{1}{n}\left\{\mathbf{E} X_{0}^{2}+2 \sum_{k=1}^{p}(p-k+1) \mathrm{E} X_{0} X_{k}\right\}$,
so (see 2.3.3)

$$
\left|l \sigma_{p}^{2}-\sigma^{2}\right| \leqslant \frac{l}{n} \sum_{k=1}^{p} k \mathrm{E} X_{0} X_{k}+\frac{q}{p+q} \sigma^{2} .
$$

The assumption $K<\infty$ implies $c \rightarrow 0$ (see 2.3.3) if $\lim q / p=0$.
The CLT follows from a choice of $p(n)$ and $q(n)$ satisfying

$$
\lim _{n \rightarrow \infty} \frac{p(n)}{q(n)}=\lim _{n \rightarrow \infty} q(n)=\infty, \quad \lim _{n \rightarrow \infty} \frac{q(n)}{p(n)} \alpha_{q(n)}=0
$$

To prove 2.3 we can use functions f such that $M_{j} \leqslant C_{1} \varepsilon^{-j}$ (like in [17]) and the left member of the inequality is majorized by $C_{2} \varepsilon+\Delta(\varepsilon)$, where $\Delta(\varepsilon)$ is estimated before.

Theorem 2.4. If $\left(X_{t}\right)_{t \in \mathbb{N}}$ is a strongly mixing process satisfying assumptions of theorem 2.3 with $\gamma=1$, then

$$
\varlimsup_{n \rightarrow \infty} \frac{\left|X_{1}+\ldots+X_{n}\right|}{2 \sigma_{n}^{2} \log \log \sigma_{n}^{2}}=1 \text { a.s., } \quad \text { where } \sigma_{n}^{2}=\mathrm{E}\left(X_{1}+\ldots+X_{n}\right)^{2}
$$

Sketch of the proof. We follow the lines of the proof of [22]. Thus
we show that
(a)

$$
\left|\boldsymbol{P}\left(X_{1}+\ldots+X_{n}<z \sigma_{n}\right)-\varphi(z)\right| \leqslant C n^{-\varepsilon} .
$$

Indeed, it follows from 2.4 and the fact that Levy me distance of two Gaussian variables $N\left(0, \sigma_{1}^{2}\right), N\left(0, \sigma_{2}^{2}\right)$ is of order $\left|\sigma_{1}-\sigma_{2}\right|^{1 / 3}$, and $\left|\sigma_{n}^{2} / n-\sigma^{2}\right|$ $<4 K / n$.
(b) If $\alpha_{n}<C n^{-\gamma}, \gamma>1$,

$$
P\left(\underset{1 \leqslant k \leqslant n}{\operatorname{Max}}\left(X_{1}+\ldots+X_{k}\right) \geqslant x\right) \leqslant 2 \boldsymbol{P}\left(X_{1}+\ldots+X_{n} \geqslant x-2 \sigma_{n}\right)+C n^{-\varepsilon}
$$

$$
\text { for } \varepsilon<\gamma-1
$$

(c) If $t=b \sqrt{\log \log \sigma_{n}^{2}}$, then

$$
\begin{aligned}
\exists_{C_{1}, c_{2}} C_{1}\left(\log \sigma_{n}^{2}\right)^{-b^{2}} /\left(t+\frac{1}{t}\right) \leqslant P\left(X_{1}+\ldots+X_{n} \geqslant b\right. & \left.\sqrt{2 \sigma_{n}} \log \log \sigma_{n}^{2}\right) \\
& \leqslant C_{2}\left(\log \sigma_{n}^{2}\right)^{-b^{2}} / t
\end{aligned}
$$

The proofs of (b) and (c) are analogous to those of [22]; proof of theorem then follows as in [21].

Remark 2.5.1. Kuelbs and Philipp [18] show a strong invariance principle which implies LIL under stationarity assumption and $\alpha_{n} \leqslant \mathrm{Cn}^{-(1+\varepsilon)(1+2 / \delta)}$ for some $\varepsilon, \delta>0$ and $E\left|X_{1}\right|^{2+\delta}<\infty$.

For $\delta=2$ it is Reznik's [22] assumption. We replace here a strong mixing rate assumption by mixing rate and cumulants assumptions.
3. Empirical spectral density. In the following $\left(X_{t}\right)_{t \in N}$ is a fourth order stationary centered and strongly mixing real random process. We define empirical covariances $R_{k}(n)$ and periodogram I_{n} of $\left(X_{t}\right)$:

$$
\begin{gathered}
R_{k}(n)=\frac{1}{n} \sum_{j=1}^{n-k} X_{j} X_{j+k}, \quad k=0,1, \ldots, n-1 ; \\
I_{n}(\lambda)=\frac{1}{2 \pi}\left\{R_{0}(n)+2 \sum_{k=1}^{n-1} R_{k}(n) \cos k \lambda\right\}, \quad-\pi \leqslant \lambda \leqslant \pi .
\end{gathered}
$$

Let $r_{k}=\mathrm{E} X_{0} X_{|k|}, k=0, \pm 1, \pm 2, \ldots$ We make the following assumption:

$$
\begin{equation*}
\varrho=\sum_{k=1}^{\infty} r_{k}^{2}<\infty . \tag{A.1}
\end{equation*}
$$

The spectral density f of $\left(X_{t}\right)$ is the even L^{2} - function defined by

$$
f(\lambda)=\sum_{k=-\infty}^{+\infty} r_{k} e^{i k \lambda}=r_{0}+2 \sum_{k=1}^{\infty} r_{k} \cos k \lambda \in L^{2}[-\pi, \pi] .
$$

We define

$$
I_{n}(g)=\int_{-\pi}^{\pi} g(\lambda) I_{n}(\lambda) d \lambda, \quad g \in L^{2}[-\pi, \pi] .
$$

Note that $R_{k}(n)$ estimates r_{k}, and $I_{n}(g)$ estimates

$$
I(g)=\int_{-\pi}^{\pi} g(\lambda) f(\lambda) \frac{d \lambda}{2 \pi}
$$

If g is odd, then $I(g)=I_{n}(g)=0$ and else for

$$
\bar{g}(x)=\frac{1}{2}(g(\bar{x})+g(-x)), \quad I(\bar{g})=I(g), I_{n}(\bar{g})=I_{n}(g) ;
$$

so we only consider even functions $g \in L^{2}[-\pi, \pi]$.
Our aim is to study the functional asymptotic behaviour of $I_{n}(g)$. We consider the Sobolev space H_{s} for $s>1$:

$$
H_{s}=\left\{g \in L^{2}[-\pi, \pi] ; g(-x)=g(x), \sum_{k=1}^{\infty} k^{s}|\hat{g}(k)|^{2}<\infty\right\}
$$

with

$$
\hat{g}(k)=\int_{-\pi}^{\pi} \cos k x g(x) \frac{d x}{2 \pi}, \quad \hat{g}(0)=\int_{-\pi}^{\pi} g(x) \frac{d x}{2 \pi} .
$$

This space is Hilbert with the norm

$$
\|g\|_{s}=\left\{|\hat{g}(0)|^{2}+2 \sum_{k=1}^{\infty} k^{s}|\hat{g}(k)|^{2}\right\}^{1 / 2} .
$$

The dual space H_{-s} of H_{s} relatively to the duality

$$
\left(g_{1}, g_{2}\right)=\int_{-\pi}^{\pi} g_{1}(x) g_{2}(x) \frac{d x}{2 \pi}
$$

has norm $\|\cdot\|_{-s}$,

$$
\|T\|_{-s}=\sup \left\{|T(g)| ;\|g\|_{s} \leqslant 1\right\}=\left\{\mid T\left(e_{0}\right) \|^{2}+2 \sum_{k=1}^{\infty} k^{-s} T\left(e_{k}\right)^{2}\right\}^{1 / 2}
$$

with $e_{k}(x)=\cos k x, k=0,1, \ldots$
We write $B_{s}=\left\{g \in H_{s} ;\|g\|_{s} \leqslant 1\right\}$. Note that $I_{n}, I \in H_{-s}$. Let $Y_{j, k}$ $=X_{j} X_{j+k}-r_{k}$. We have

Proposition 3.1. If $\left(X_{t}\right)_{t \in \boldsymbol{N}}$ is a fourth-order stationary process satisfying Assumptions (A.1) and (A.2),
(A.2) $d(k)=\sum_{j=1}^{\infty}\left|c\left(Y_{0, k}, Y_{j, k}\right)\right| \leqslant \gamma<\infty$ for some constant $C>0, \quad k=0,1, \ldots$,
then

$$
\mathrm{E}\left\|I_{n}-I\right\|_{-s}^{2}=\mathrm{E} \sup \left\{\left|I_{n}(g)-I(g)\right|^{2} ; g \in B_{s}\right\} \leqslant C_{1} / n
$$

for some constant C_{1}, if $s>1$.
Proof. $I_{n}(g)-I(g)=T_{1}+T_{2}+T_{3}$ with $g \in B_{s}$,

$$
\begin{gathered}
T_{1}=\hat{g}(0) A_{0, n}+2 \sum_{k=1}^{n-1} \hat{g}(k) A_{k, n}, \quad \text { where } A_{k, n}=R_{k}(n)-\mathrm{E} R_{k}(n), \\
T_{2}=2 \sum_{k=1}^{n-1}\left(\mathrm{E} R_{k}(n)-r_{k}\right) \hat{g}(k), \quad T_{3}=2 \sum_{k=n}^{\infty} \hat{g}(k) r_{k} .
\end{gathered}
$$

So

$$
T_{2}=2 \sum_{k=1}^{n-1} \frac{k}{n} r_{k} \hat{g}(k) \quad \text { and } \quad\left|T_{2}\right| \leqslant 2 \varrho / \sqrt{n}, \quad\left|T_{3}\right| \leqslant 2 \varrho / \sqrt{n}
$$

From another hand,

$$
\mathrm{E} \sup _{g} T_{1}^{2} \leqslant \mathrm{E} A_{0, n}^{2}+2 \sum_{k=1}^{n-1} k^{-s} \mathrm{E} A_{k, n}^{2} \leqslant\left(1+2 \sum_{k=1}^{\infty} k^{-s}\right) \gamma / n .
$$

Remarks. 3.1.1. Leonov and Shyriaev's [19] formula for products implies $c\left(Y_{0, k}, Y_{j, k}\right)=c(k, j, j+k)+r_{j}^{2}+r_{j+k} r_{j-k}$, hence.

$$
d(k) \leqslant \sum_{k=0}^{\infty}|c(k, j, j+k)|+3 \sum_{j=1}^{\infty} r_{j}^{2} .
$$

Assumptions (A.1) and (A.2) are satisfied if (A.1) is realized and $C_{4}<\infty$.
3.1.2. If $\left(X_{t}\right)_{t \in \mathbb{N}}$ is strongly mixing with

$$
A=\sum_{n=0}^{\infty} \alpha_{n}^{\delta /(2+\delta)}<\infty \quad \text { and } \quad \mathrm{E}\left|X_{0}\right|^{4+2 \delta}<\infty
$$

assumptions (A.1) and (A.2) are satisfied with

$$
\varrho \leqslant 100 A^{2}\left(\mathrm{E}\left|X_{0}\right|^{2+\delta}\right)^{4 /(2+\delta)}, \quad \gamma=40 A\left(\mathrm{E}\left|X_{0}\right|^{4+2 \delta}\right)^{4 /(4+2 \delta)}
$$

Proposition 3.2. If $\left(X_{t}\right)_{t \in \mathcal{N}}$ is fourth order stationary strognly mixing and satisfies assumptions (A.1) and " $C_{4}<\infty$ " and one of the following:
(a) $\sum_{i, j, k} i|c(i, j, k)|<\infty, C_{8}<\infty$ and $\left(X_{t}\right)$ is stationary to order 8 ,
(b) $\sum_{n=0}^{\infty} \alpha_{n}^{\delta /(4+\delta)}<\infty \quad$ for some $\left.\left.\delta \in\right] 0,2\right]$ with $\mathrm{E}\left|X_{0}\right|^{4+\delta}<\infty$, then $\sqrt{n}\left(I_{n}(g)-I(g)\right)$ converges weakly to a centered Gaussian random variable with variance $\sigma^{2}(g)$ for $g \in H_{s}$ (see formula $(*)$) if $\sigma^{2}(g)>0$.

Proof. $n\left(I_{n}(g)-I(g)\right)=A+B+C$ with

$$
\begin{aligned}
A & =\sum_{j=1}^{n}\left\{\hat{g}(0) Y_{j, 0}+2 \sum_{k=1}^{l} Y_{j, k} \hat{g}(k)\right\}, \\
B & =-2 \sum_{k=1}^{l} \hat{g}(k) \sum_{j=n-k}^{n} Y_{j, k}, \\
C & =2 \sum_{k=l}^{n-1} \hat{g}(k) \sum_{j=1}^{n-k} Y_{j, k} \quad \text { for any } l \leqslant \frac{n}{2}-1 .
\end{aligned}
$$

We note that $\mathrm{E} C^{2} \leqslant 4 n \gamma\|g\|_{s}^{2} l^{1-s}(s-1)^{-1}, \mathrm{E} B^{2} \leqslant 4 l^{2}\|g\|_{s}^{2} \mathrm{E} X_{0}^{4}(s-1)^{-1}$ using cumulants. Moreover A / \sqrt{n} satisfies assumptions of the central limit result 2.3 under hypothesis (a), with the help of transformation formula for products of cumulants of [19], and assumptions of the result from [10] under hypothesis (b). The limit Gaussian variable of A / \sqrt{n} has variance σ_{l}^{2} converging to $\sigma^{2}(g)$ for $l \rightarrow \infty$, where
(*) $\quad \sigma^{2}(g)=2 \pi\left[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} g(x) g(y) f_{4}(x,-y, y) d x d y+2 \int_{-\pi}^{\pi} g^{2}(x) f^{2}(x) d x\right]$
and

$$
f_{4}(x, y, z)=\frac{1}{(2 \pi)^{3}} \sum_{\alpha, \beta, \gamma=-\infty}^{+\infty} c(\alpha, \beta, \gamma) \exp (-i(\alpha x+\beta x+\gamma z))
$$

are the cumulant spectra of fourth order [6].
Dalhaus's method [7] completes the proof.
Theorem 3.3. If the assumptions of proposition 3.2 are satisfied and $s>1$, then the random sequence $\sqrt{n}\left(I_{n}-I\right) \in H_{-s}$ converges weakly in the quotient space H_{-s} / N_{0} to a Gaussian random variable Y with covariance Γ :

$$
\begin{aligned}
\Gamma(g, g)=\mathrm{E}(Y(g))^{2}=2 \pi\left[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} g(x) g(y)\right. & f_{4}(x,-y, y) d x d y+ \\
& \left.+2 \int_{-\pi}^{\pi} g^{2}(x) f^{2}(x) d x\right], \quad g \in H
\end{aligned}
$$

Here N_{0} denotes the subspace $\left\{g \in H_{-s}, \Gamma(g, g)=0\right\}$.
Remark 3.3.1. In the Gaussian case $f_{4}=0$, so that $N_{0}=\{0\}$ if f is not zero a.s.

Proof. The assumptions $C_{4}<\infty$ and $\sum r_{k}^{2}<\infty, k=0,1,2, \ldots$, show that

$$
\int_{-\pi}^{\pi} \int_{-\pi}^{\pi}\left|f_{4}(x,-y, y)\right| d x d y<\infty, \int_{-\pi}^{\pi} f^{2}(x) d x<\infty
$$

The covariance Γ satisfies $|\Gamma(g, g)| \leqslant G^{2}(s)\|g\|_{s}^{2}$ for some constant $G(s)$ only depending on $s>1$. We can consider the completion H of H_{-s} with norm $\|g\|_{\Gamma}=\sqrt{\Gamma(g, g)}$ by the injection $i: H \rightarrow H_{-s}, i(h)(g)=\Gamma(h, g)$. Let $\left(h_{n}\right)_{n \geqslant 0}$ be a complete orthonormal system for H. We see that

$$
\sum_{n=0}^{\infty} \Gamma\left(h_{n}, g\right)^{2} \leqslant G^{2}(s)\|g\|_{s}^{2}
$$

so Giné ([13], proof of lemma 3.2) shows that $Y \in H_{-s}$ (with the help of Kolmogorov's inequality).

Using de Acosta's method [1] we have to show that $\sqrt{n}\left(I_{n}-I\right)$ is flattly concentrated because of the convergence of finite dimensional repartitions by proposition 3.2, because of linearity (lemma 3.3 of [13] makes use of it).

Let p_{l} be the orthogonal projection of H_{-s} on F_{l}, the closed-subspace spanned by $\left\{e_{k} ; k>l\right\}$. We see that

$$
\mathrm{E}\left\|p_{l}\left(\sqrt{n}\left(I_{n}-I\right)\right)\right\|_{-s}^{2} \leqslant 2 l^{1-s} C_{4}(s-1)^{-1}
$$

which completes the proof.
Let now

$$
Z_{j, l}=\sum_{k=0}^{l} Y_{j, k} e_{k}, \quad A_{n, l}=\sum_{j=i}^{n} Z_{j, l} .
$$

We follow lines of the proof of [11], which is analogous to that of theorem 2.3 in the l-dimensional subspace $E_{!}$of H_{-s}, to show the following

Lemma 3.4. If $\sum k|c(k)|<\infty, C_{4}<\infty, C_{8}<\infty$ and $\alpha_{n} \leqslant \mathrm{Cn}^{-\tau}$, then

$$
L_{n, l}=\operatorname{Sup}_{t>0}\left|\boldsymbol{P}\left(\frac{1}{, n}\left\|A_{n, l}\right\|_{-s}>t\right)-\boldsymbol{P}\left(\left\|Y_{l}\right\|_{-s}>t\right)\right| \leqslant \text { Const } l^{3 / 4} n^{(b-1) / 12}
$$

with Y_{l} the projection of Y on E_{l}, uniformly for $l \leqslant n^{\beta}$ for $\beta<b \leqslant 1 / 10$ such that $\tau \geqslant 1 / 12 b$.

Proof. For any $l \leqslant n^{\beta}$ the random sequence $\left(Z_{1, l}, \ldots, Z_{n, l}, \ldots\right)$ is strongly mixing with mixing coefficient $\hat{\alpha}_{n}=1$ for $n \leqslant l$ and $\hat{\alpha}_{n}=\alpha_{n-l}$, else. For suitable functions f such that $\left\|D^{j} f\right\|_{\infty} \leqslant C t \varepsilon^{-j}(j=0,1,2,3)$, we estimate $\Delta=\left|\mathrm{E} f\left(A_{n, l}, \bar{n}\right)-f\left(Y_{l}\right)\right|$ so that $L_{n, l} \leqslant C t i_{i} \varepsilon+\Delta_{j}$. This computation is based on estimates like

$$
\mathrm{E}\left\|Z_{1, l}+\ldots+Z_{p, l}\right\|_{-s}^{4} \leqslant \text { Const } C_{8} l^{3} p^{2} .
$$

It leads to

$$
\begin{aligned}
& \Delta \leqslant \text { Const }\left\{\varepsilon^{-1}\left(\left(\frac{l q}{p}\right)^{1 / 2}+\alpha_{q-l}^{4}\left(\frac{n l}{p}\right)^{1 / 2}\right)+\varepsilon^{-2}\left(\alpha_{q-l}^{4} l^{3 / 2}+l^{2} \frac{q}{p}\right)+\right. \\
& \\
& \left.+\varepsilon^{-3} l^{9 / 4}\left(\frac{p}{n}\right)^{1 / 2}\right\}
\end{aligned}
$$

Put $\varepsilon=l^{3 / 4} n^{(b-1) / 12}$. We get
Lemma 3.5 [9]. If $\mathrm{E}\left|X_{0}\right|^{4+2 \delta}<\infty$ for some $0<\delta \leqslant 2 / 3$ and $\alpha_{n} \leqslant$ Const $n^{-\tau}$ with $\tau>2(1+2 / \delta)$, then, for any $\beta, \varrho>0$ such that $\tau \beta>1+\varrho$, $\beta+\varrho<\delta /(2(2+\delta))$, we have
with $\sigma_{l}=\operatorname{Sup}_{n>0} n^{-1 / 2}\left\|A_{n, l}\right\|_{-s}$.
Note that $\sigma_{l} \leqslant \Sigma=(4 /(s-1)) C_{4}$.
Write now $n\left(I_{n}-I\right)=A_{n, l}+B_{n, l}+C_{n, l}$ like in the proof of proposition 3.2; we see that $\mathrm{E}\left\|B_{n, 2}\right\|_{-s}^{4} \leqslant$ Const $\mathrm{E} X_{0}^{8} I^{4}, \mathrm{E}\left\|C_{n, 2}\right\|_{-s}^{2} \leqslant$ Const $n l^{1-s}$. So

$$
P_{k}=P\left(\operatorname{Max}_{n_{k}<n \leqslant n_{k}+1} \frac{n}{a_{n}}\left\|I_{n}-I\right\|_{-s}>C\right) \quad \text { for } n_{k}=\left[e^{k}\right]
$$

$a_{n}=\sqrt{n \log \log n}$ can be estimated by $P_{k} \leqslant P_{k}^{1}+P_{k}^{2}+P_{k}^{3}$ for $C=C_{1}+$ $+C_{2}+C_{3}$,

$$
\begin{gathered}
P_{k}^{1}=\boldsymbol{P}\left\{\operatorname{Max}_{n \leqslant n_{k}+1}\left\|A_{n, l}\right\|_{-s} \geqslant C_{1} a_{n_{k}},\right. \\
P_{-k}^{2} \leqslant \sum_{n=n_{k}+1}^{n_{k+1}} \boldsymbol{P}\left(\left\|B_{n, l}\right\|_{-s} \geqslant C_{2} a_{n}\right) \leqslant \sum_{n=n_{k}+1}^{n_{k}-1} \mathrm{E}\left\|B_{n, l}\right\|_{-s}^{4}\left(C_{2} a_{n}\right)^{-4} \\
\leqslant C t l^{4} n_{k}^{-1}\left(\log \log n_{k}\right)^{-2} \leqslant C t l^{4} e^{-k}(\log k)^{-2}, \\
P_{k}^{3} \sum_{n=n_{k}+1}^{n_{k+1}} \boldsymbol{P}\left(\left\|C_{n, l}\right\|_{-s}>C_{3} a_{n}\right) \leqslant C t e^{k} l^{1-s}(\log k)^{-1} .
\end{gathered}
$$

From another hand, we see like [9] that, for $l \leqslant n_{k+1}^{\beta}$,

$$
\begin{aligned}
P_{k}^{1} & \leqslant 2 \boldsymbol{P}\left(\left\|A_{n_{k+1}, l}\right\|_{-s} \geqslant C_{1} a_{n_{k}}-20 \sum \sqrt{n_{k+1}}\right)+n_{k+1}^{-\underline{o}} \quad \text { (by 3.5) } \\
& \leqslant 2 \boldsymbol{P}\left(\frac{1}{\sqrt{n_{k+1}}}\left\|A_{n_{k+1}, l}\right\|_{-s} \geqslant C_{1} / 2, \overline{2 \log k}\right)+n_{k+1}^{-\underline{o}} \quad \text { for } k>k_{0}
\end{aligned}
$$

$$
P_{k}^{1} \leqslant 2 \boldsymbol{P}\left(\left\|Y_{l}\right\|_{-s} \geqslant C_{1} / 2 \sqrt{2 \log k}\right)+n_{k+1}^{-Q}+C n_{k+1}^{-3 / 40} l^{3 / 4}
$$

(for $b=1 / 10$ in 3.4),

$$
P_{k}^{1} \leqslant 2 \boldsymbol{P}\left(\|Y\|_{-s} \geqslant C_{1} / 2 \sqrt{2 \log k}\right)+n_{k+1}^{-\varrho}+C n_{k+1}^{-3 / 40} l^{3 / 4}
$$

Choose C_{1} such that $\operatorname{Eexp}\left\{\|Y\|_{-s}^{2} / C_{1}^{2}\right\}<\infty, l=l(k)=e^{\beta k}$ with $\beta<1 / 10$ and $\beta>1 /(s-1)$. We get, by Borel-Cantelli's lemma,

ThEOREM 3.6. If $\left(X_{n}\right)$ is an $8^{\text {th }}$ order stationary mixing sequence with $C_{8}<\infty, \alpha_{n} \leqslant C_{0} n^{\tau}, \tau>10, s>11, \exists_{C>0}$

$$
\overline{\lim } \sqrt{\frac{n}{\log \log n}}\left\|I_{n}-I\right\|_{-s} \leqslant C \text { a.s. }
$$

Note that condition $\tau>10$ implies $C_{4}<\infty$ and $\sum k|c(k)|<\infty$.
Let $1 \leqslant w \leqslant n$. We see that

$$
\left\|I_{n}-I\right\|_{-s} \geqslant w^{-s / 2} \operatorname{Max}_{0 \leqslant k \leqslant w}\left|R_{k}(n)-r_{k}\right|
$$

and
Corollary 3.7. Let $\left(X_{n}\right)$ be an $8^{\text {th }}$ order stationary mixing sequence with $\alpha_{n} \leqslant C_{0} n^{-\tau}$ for some $C_{0}>0, \tau>10$ and $C_{8}<\infty$. Then for $s>11$ there is a constant C such that, for $1 \leqslant w_{n} \leqslant n$,

$$
\varlimsup_{n \rightarrow \infty} n^{1 / 2}(\log \log n)^{-1 / 2} w_{n}^{-s / 2} \operatorname{Max}_{0 \leqslant k \leqslant w_{n}}\left|R_{k}(n)-r_{k}\right| \leqslant C \text { a.s. }
$$

Remark 3.7.1. The normalization goes to infinity if $w_{n}=n^{a}$ with $a<1$. Paper [2] gives an analogous of this result for linear sequences, where w_{n} $=n^{2 / 3}$ with normalization $w_{n}^{-1 / 4}$ in place of $w_{n}^{-s / 2}$.

Corollary 3.8. Let $\left(X_{n}\right)$ be an $8^{\text {th }}$ order stationary mixing sequence with $C_{8}<\infty$ and $\alpha_{n} \leqslant C_{0} n^{-\tau}, \tau>10$. Then, if $s>12, \exists_{\Omega_{0}} P\left(\Omega_{0}\right)=1$, and $\omega \in \Omega_{0}$ implies

$$
\varlimsup_{n \rightarrow \infty} \sqrt{\frac{n}{\log \log n}}\left(I_{n}(g)-I(g)\right)=\Gamma^{1 / 2}(g, g), \forall_{g \in H_{s}}
$$

Proof. We see that B_{s} is a compact of H_{t} if $t+1<s$. So there is a family $g_{1}, \ldots, g_{N(z)} \in E_{l(z)}$ such that

$$
B_{s} \subset \bigcup_{i=1}^{N(\varepsilon)}\left(g_{i}+\varepsilon B_{t}\right) .
$$

We show LIL for $I_{n}\left(g_{i}\right)-I\left(g_{i}\right)$. If $g_{i}=\sum_{k=0}^{l} a_{k} e_{k}$, we write

$$
n\left(I_{n}\left(g_{i}\right) I\left(g_{i}\right)\right)=\sum_{j=r}^{n}\left\{a_{0}\left(X_{j}^{2}-r_{0}^{2}\right)+2 \sum_{k=1}^{l}\left(X_{j} X_{j+k}-r_{k}\right) a_{k}\right\}+A_{n}
$$

with $\mathrm{E} A_{n}^{4} \leqslant$ Const, so that $A_{n}(n \log \log n)^{-1 / 2} \underset{n \rightarrow \infty}{ } 0$ a.s.
Theorem 2.5 shows that

$$
\varlimsup_{n \rightarrow \infty} \sqrt{\frac{n}{2 \log \log n}}\left(I_{n}\left(g_{i}\right)-I\left(g_{i}\right)\right)=\Gamma^{1 / 2}\left(g_{i}, g_{i}\right), \quad \omega \in \Omega_{1}, i=1, \ldots, N(\varepsilon)
$$

Now $g \rightarrow \Gamma^{1 / 2}(g, g)$ is continuous on H_{t} and we have

$$
\Omega_{2}=\left\{\omega ; \overline{\lim } \sqrt{\frac{n}{\log \log n}}\left\|I_{n}-I\right\|_{-t} \leqslant C\right\} .
$$

If $\omega \in \Omega_{1} \cap \Omega_{2},\|g\|_{s} \leqslant 1$, and $h \in\left\{g_{1}, \ldots, g_{N(\varepsilon)}\right\}$ is an ε-neighbourhood of g, then we set

$$
J_{n}=\sqrt{\frac{n}{2 \log \log n}}\left(I_{n}-I\right)
$$

and get

$$
\left|J_{n}(g)-\Gamma^{1 / 2}(g, g)\right| \leqslant\left\|J_{n}\right\|_{-t} \varepsilon+\left|J_{n}(h)-\Gamma^{1 / 2}(h, h)\right|+\left|\Gamma^{1 / 2}(h, h)-\Gamma^{1 / 2}(g, g)\right|
$$

Acknowledgements. We are grateful to M. Bouaziz and D. DacunhaCastelle for helpfull discussions concerning this work.

REFERENCES

[1] A. de Acosta, Existence and convergence of probability measures on Banach spaces, Trans. Amer. Math. Soc. 152 (1970), p. 273-298.
[2] An Hong-Zhi, Chen Zhao Guo and E. J. Hannan, Autocorrelation and autoregressive "approximation, Ann. Stat. 10 (1982), p. 926-936.
[3] R. Azencott and D. Dacunha-Castelle, Séries d'observations irrégulières, Masson, Paris 1984.
[4] M. Bouaziz, Vitesse de convergence des mesures spectrales empiriques, CRAS, Série I, 301. 10 (1985), p. 533-535.
[5] - ibidem 296 (1983), p. 1017-1019.
[6] D. Brillinger, Time series Data analysis and theory, Holt, Rinehart and Winston, New York 1975.
[7] R. Dalhaus, Asymptotic normality of spectral estimates, J. Mult. Analysis 16 (1985), p. 412-431.
[8] Yu. Davydov, The invariance principle for stationary processes, Th. Prob. Appl. 15 (1970), p. 487-498.
[9] H. Dehling, Limit theorems for sums of weakly dependent Banach space valued random variables, Z. Wahr. verw. Geb. 63 (1983), p. 393-432.
[10] H. Dehling and W. Philipp, Almost sure invariance principles for weakly dependent vector valued random variables, Ann. Prob. 10 (1982), p. 689-701.
[11] P. Doukhan, J. R. León and F. Portal, Calcul de vitesse de convergence dans le théorème central limite vis à vis distances de Prohorov, Dudley et Levy dans le cas de variables aléatoires dépendantes, Prob. and Math. Stat. 6 (1985), p. 19-27.
[12] P. Douk han et F. Portal, Moments de variables aléatoires mélangeantes, CRAS, Série I, 297 (1983), p. 129-132.
[13] E. Gin é, Invariance test for uniformity on compact Riemannian manifolds based on Sobolev norms, Ann. Stat. 3 (1975), p. 1243-1266.
[14] N. Herrndorf, Stationary strongly mixing sequences non satisfying the central limit theorem, Ann. Prob. 11 (1983), p. 809-813.
[15] Y. Hosoya and M.-Taniguchi, A central limit theorem for stationary processes and the parameter estimation of linear processes, Ann. Stat. 10 (1983), p. 132-153.
[16] I. A. Ibragimov et Yu. Rozanov, Processus aléatoires gaussiens, Mir, Moscou 1974.
[17] J. Kuelbs and T. Kurtz, Berry Essen estimates in Hilbert space and application to the law of iterated logarithm, Ann. Prob. 2 (1974), p. 387.
[18] J. Kuelbs and W. Philipp, Almost sure incariance principles for partial sums of mixing B valued random variables, ibidem 8 (1980), p. 1003-1036.
[19] V. P. Leonov and A. N. Shiraev, On a method of calculation of semi-invariants, Th. Prob. Appl. 5 (1959), p. 460-464.
[20] M. Peligrad, Convergence rates of the strong law for stationary mixing sequences, Z. Wahr. verw. Geb. 70 (1985), p. 307-314.
[21] V. V. Petrov, Sums of independent random variables, Springer, New York 1975.
[22] M. Kh. Reznik, The law of the iterated logarithm for some classes of stationary processes, Th. Prob. Appl. 13 (1968), p. 606-621.
[23] M. Rosenblatt, Stationary sequences and random fields, Birkhauser, Boston 1985.
[24] - Asymptotic noramlity, strong mixing and spectral density estimates, Ann. Prob. 12 (1984), p. 1167-1180.
[25] P. Wittle, The analysis of multiple time series analysis, J. Roy. Stat. Soc. B, 15 (1953), p. 125-139.

Unité Associée 743 CNRS
Bâtiment 425
Statistique Appliquée
Université Paris XI
91405 ORSAY Cedex
France

Departamento de Matematicas Fac. de Ciencias U. C. V. Apartado Postal 21291 Caracas 1020-A Venezuela

