ASYMPTOTIC MULTIVARIATE NORMALITY FOR THE SUBSERIES VALUES OF A GENERAL STATISTIC FROM A STATIONARY SEQUENCE WITH APPLICATIONS TO NONPARAMETRIC CONFIDENCE INTERVALS

E. Carlstein

Abstract: Let \(\{Z_i : -\infty < i < +\infty\} \) be a strictly stationary \(\alpha \)-mixing sequence with unknown marginal distributions and unknown dependence structure. Suppose that, given data \(\overline{Z}_{im} := (Z_{i+1}, Z_{i+2}, \ldots, Z_{i+m}) \), the statistic \(s_{im} := s_m(\overline{Z}_{im}) \) is a point estimator of the unknown parameter \(\theta \). If a sample series \(\overline{Z}_{in} \) is available, then the subseries values \(s_{im}(0 \leq i < i + m \leq n) \) may be used to construct a nonparametric confidence interval on \(\theta \) via either Student’s distribution or via the Typical Value principle. The asymptotic justification for both methods rests upon a more general result which provides necessary and sufficient conditions for asymptotic multivariate normality of subseries values.

2000 AMS Mathematics Subject Classification: Primary: -; Secondary: -;

Key words and phrases: -