CONDITIONS FOR CONVERGENCE OF NUMBER OF CROSSINGS TO THE LOCAL TIME
APPLICATION TO STABLE PROCESSES WITH INDEPENDENT INCREMENTS AND TO GAUSSIAN PROCESSES

J. M. Azaïs

Abstract: Let \(X(t), t \in R \), be a real valued stochastic process admitting a local time and let \(X_\varepsilon(t), \varepsilon \in R^+ \), be a family of smooth processes which converge in some sense to \(X(t) \). We exhibit sufficient conditions for \(L^2 \)-convergence of the number of crossings of \(X_\varepsilon(t) \) to the local time of \(X(t) \), after normalization.

Two main cases are considered for \(X(t) \), stable processes and Gaussian processes.

Two main cases are considered for \(X_\varepsilon(t) \) : \(X_\varepsilon(t) \) being the convolution of \(X(t) \) with a size \(\varepsilon \) approximate identity and \(X_\varepsilon(t) \) being the size \(\varepsilon \) polygonal approximation of \(X(t) \).

Such a convergence is shown to hold for both approximations when \(X(t) \) is a stable process with independent increments with index \(\alpha > 1 \).

Convergence of crossings of the polygonal approximation is shown to hold for a Gaussian process under technical conditions.

2000 AMS Mathematics Subject Classification: Primary: -; Secondary: -;

Key words and phrases: -

THE FULL TEXT IS AVAILABLE HERE