MOUVEMENTS BROWNIENS ASYMÉTRIQUES MODIFIÉS EN DIMENSION FINIE ET OPÉRATEURS DIFFÉRENTIELS À COEFFICIENTS DISCONTINUS

Michèle Mastrangelo
Mouloud Talbi

Abstract: We consider a partial differential equation of parabolic type on $\mathcal{E} = \mathbb{R}^d$ ($d \in \mathbb{N}^*$),

$$
\frac{\partial u}{\partial t}(x, t) = Lu(x, t), \quad x \in \mathcal{E}, \ t \in \mathbb{R}_+, \\
u(x, 0) = f(x), \quad u(\cdot, t)/\partial \mathcal{E} = 0
$$

where $L = (C_1V + D_1W)\Delta + \delta_S A \nabla$, V and W being two subdomains of \mathcal{E} such that $\mathcal{E} = V \cup W \cup S$, $V \cap W \neq \emptyset$ and S being a C^2-variety. The functions C and D are C^2 on \mathcal{E}, δ_V is the surface-vector-measure on S, A is a function defined on S which will be precised later on, $\delta_S A$ is a generalized drift, ∇ [resp. Δ] is the classical gradient [resp. Laplacian operator] on \mathbb{R}^d.

We give, via a modified skew Brownian motion, a stochastic resolution of (1) - L being considered as a generalized infinitesimal generator - and we study the continuity properties of the transition probability densities and of their derivatives at the neighborhood of S.

2000 AMS Mathematics Subject Classification: Primary: --; Secondary: --;
Key words and phrases: --

The full text is available HERE