ADMISSIBLE ESTIMATORS OF VARIANCE COMPONENTS IN NORMAL MIXED MODELS

BY

STEFAN ZONTEK (WROCLAW)

Abstract. A sufficient condition for an invariant quadratic estimator of a linear function of the vector of variance components to be admissible under the mean square error among all translation invariant estimators is given.

1. Introduction. Throughout the paper Y will stand for a random n-vector normally distributed with expectation $A\beta$ and covariance matrix $\sum_{i=1}^{p} \sigma_i V_i$, i.e., let

$$Y \sim N(A\beta, \sum_{i=1}^{p} \sigma_i V_i),$$

where A is a known $(n \times k)$-matrix, V_1, \ldots, V_p are known nonnegative definite $(n \times n)$-matrices, while $\beta \in \mathbb{R}^k$ and $\sigma_1 \geq 0, \ldots, \sigma_p \geq 0$ are the unknown parameters. Assume that

$$\mathcal{R}(A) + \mathcal{R}(\sum_{i=1}^{p} V_i) = \mathbb{R}^n,$$

where $\mathcal{R}(\cdot)$ denotes the range of the matrix argument.

We concentrate on estimation of a linear function $F'\sigma$, where F' is the transpose of $(p \times s)$-matrix F $(s \leq p)$, while $\sigma = (\sigma_1, \ldots, \sigma_p)'$ is the vector of variance components. The regression vector is treated as a nuisance parameter.

We consider a class \mathcal{F}_p of estimators based on MY, where M is the orthogonal projection matrix on the null space of A'. These estimators are invariant with respect to the translations $Y \rightarrow Y + A\beta$, $\beta \in \mathbb{R}^k$, and MY is a maximal invariant for this group of translations. Clearly, $MY \sim N(\theta_n, M\sigma)$, where θ_n denotes the zero vector in \mathbb{R}^n, while

$$M_\sigma = \sum_{i=1}^{p} \sigma_i M_i, \quad M_i = MV_i M, \quad i = 1, \ldots, p.$$

To compare estimators we shall use the mean square error defined for any estimator $\delta = \delta(MY)$ of $F'\sigma$ by

$$R(\delta, \sigma) = E(\delta - F'\sigma)'(\delta - F'\sigma).$$
Let \(\Theta \) be a subset of \(\mathbb{R}^p \) defined by
\[
\Theta = \{ \sigma \in \mathbb{R}^p : \sigma \geq 0, \mathcal{R}(M_\sigma) = \mathcal{R}(M) \},
\]
where the expression \(\sigma \geq 0, (\sigma > 0) \) means that all coordinates of \(\sigma \) are nonnegative (positive). Consider a subset \(2_F \subset \mathcal{I}_F \) of the form
\[
q_u = q_u(Y) = \frac{Y'M_u^+ Y}{2 + r} F'u, \quad u \in \Theta,
\]
where \(r = \text{rank}(M) \), while \(M_u^+ \) denotes the Moore-Penrose g-inverse of \(M_u \). The estimators in \(2_F \) have the following property. For a given \(u \in \Theta \) the estimator \(q_u \) minimizes the risk at each point \(\sigma = \lambda u, \lambda > 0 \), among all invariant quadratic estimators, i.e., among estimators of the form
\[
(Y'M A_1 MY, \ldots, Y'M A_p MY),
\]
where \(A_1, \ldots, A_p \) can be arbitrary symmetric \((n \times n)\)-matrices.

Note that if \(M_1, \ldots, M_p \) commute, as in the case of balanced models, then there exist idempotent nonzero matrices \(Q_1, \ldots, Q_m \), say, with their ranges contained in \(\mathcal{R}(M) \), such that \(Q_i Q_j \) is zero matrix for \(i \neq j = 1, \ldots, m \), and that
\[
M_i = \sum_{j=1}^{m} h_{ij} Q_j, \quad i = 1, \ldots, p.
\]
In this case \(M_u^+ \) can be represented as
\[
M_u^+ = \sum_{j=1}^{m} (1/\theta_j) Q_j,
\]
where \((\theta_1, \ldots, \theta_m)^\prime = H'u \), while \(H = (h_{ij}) \).

Karlin [3] has proved that for \(p = 1 \) the set \(2_F, F \in \mathcal{R} \), contains exactly one estimator, which is the only invariant quadratic estimator admissible for \(\sigma \) among \(\mathcal{I}_F \). For \(p > 1 \) and under the assumption that matrices \(M_1, \ldots, M_p \) commute Farrell et al. [2] have shown that each estimator in \(2_F \) is admissible among \(\mathcal{I}_F \). Moreover, they have also proved that \(2_F \), where \(I \) denotes the identity \((p \times p)\)-matrix, represents the class of all invariant quadratic estimators admissible for \(\sigma \) among \(\mathcal{I}_F \). Dey and Gelfand [1] have established the admissibility of estimators in \(2_F, F \in \mathcal{R}^p \), under more restrictive conditions.

In this paper we drop the assumption that matrices \(M_1, \ldots, M_p \) commute and prove that each estimator in a subset \(2_F \) of \(2_F \) consisting of \(q_u \) with \(u > 0 \) is admissible for \(F^\prime \sigma \) among \(\mathcal{I}_F \).

2. Results. We shall use an idea of Farrell et al. [2] to establish the admissibility of estimators in \(2_F \) also in the case where matrices \(M_1, \ldots, M_p \) do not commute.

Theorem. All estimators in \(2_F \) are admissible for \(F^\prime \sigma \) among the class \(\mathcal{I}_F \) of invariant estimators.
Proof. According to a lemma due to Shinozaki (see, e.g., [4]) it is sufficient to prove the theorem for $F = I$.

First note that since

$$M_{\sigma} M_{\mu}^+ M_{\sigma} M_{\mu}^+ M_{\sigma} = \frac{\lambda}{2} M_{\sigma} M_{\mu}^+ M_{\sigma}$$

for $\sigma = \sigma_\lambda = (\lambda/2) u$, $\lambda > 0$, and since $\text{rank}(M_{\mu}) = r$ for $u > \theta_p$, it follows that when $\sigma = \sigma_\lambda$, the random variable $Y' M_{\mu}^+ Y$ has the gamma distribution with the shape parameter $r/2$ and the scale parameter λ. Thus, by Karlin's theorem,

$$q = \frac{2}{2 + r} Y' M_{\mu}^+ Y$$

is admissible for λ among all estimators based on $Y' M_{\mu}^+ Y$.

The risk of any estimator $\delta = (\delta_1, \ldots, \delta_p)'$ at σ_λ can be written as

$$R(\delta, \sigma_\lambda) = \frac{1}{4} \mathbb{E} \left(\sum_{i=1}^p (2\delta_i - \lambda u_i)^2 \right) = \frac{a}{4} \mathbb{E} \left(\sum_{i=1}^p \frac{u_i^2}{a} \left(\frac{2\delta_i - \lambda}{u_i} \right)^2 \right),$$

where $a = \sum_{i=1}^p u_i^2$. Applying Jensen's inequality to the expression in brackets, we obtain the inequality

$$R(\delta, \sigma_\lambda) \geq \frac{a}{4} \mathbb{E} \left(\frac{2}{a} \sum_{i=1}^p u_i \delta_i - \lambda \right)^2$$

which is strict unless $\delta_i/u_i = \delta_j/u_j$ for all $i, j = 1, \ldots, p$.

Since the random variable $Y' M_{\mu}^+ Y$ is a sufficient statistics for λ when $\sigma = \sigma_\lambda$, there exists an estimator δ^* of λ based on $Y' M_{\mu}^+ Y$ as good as $2a^{-1} \sum_{i=1}^p u_i \delta_i$. Moreover, since, as we have already noted, q is admissible for λ and since the mean square error of q_u and q are related at $\sigma = \sigma_\lambda$ by

$$R(q_u, \sigma_\lambda) = \frac{a}{4} R(q, \sigma_\lambda),$$

it follows that if, say, δ dominates q_u, then

$$R(q, \lambda) = \mathbb{E} \left(\frac{2}{a} \sum_{i=1}^p u_i \delta_i - \lambda \right)^2.$$

Consequently, $\delta_i = u_i q$ for all i with probability 1, so that $\delta = q_u$ with probability 1. But this contradicts the assumption that δ dominates q_u and concludes the proof of the Theorem.

It is an open problem whether there exist alternative invariant quadratic estimators to (1.1) admissible for σ in the case where matrices M_1, \ldots, M_p do not commute.
REFERENCES

Institute of Mathematics
Polish Academy of Sciences
ul. Kopernika 18
51-617 Wroclaw, Poland

Received on 12.6.1990