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Abstract. A central limit theorem and a corresponding functional 
central h i t  theorem are given under a uniform mixing condition for 
uniformly inf~tesimal triangular arrays of random variables which 
take values in a locally compact second countable Abelian group. The 
limiting distribution in the central limit theorem is Gaussian and the 
limiting distribution in the functional central limit theorem is the dis- 
tribution of a Gaussian process with independent increments and con- 
tinuous sample paths - a Wiener-type process. 

1. Introduction. Throughout this article G will denote a locally compact 
second countable Abelian group, and will denote the dual group of 6. Thus, 

is the set of continuous homomorphisms of G into the unit circle group Tof 
complex numbers of modulus one, with topoIogy induced from the complex 
plane and the group operation of complex multiplication. We endow with 
the topology of uniform convergence on compact subsets and the natural 
group operation induced by the operation on T Then e is, like G, a locally 
compact second countable Abelian group. We shall denote by {x, y )  the value 
of the homomorphism y E e at the point x E G. Choose and fix a local inner 
product g on G x e; that is, g is a function with the properties specified in 
Lemma 5.3 on p. 83 of Parthasarathy [ 5 ] .  

All random variables that we consider will be assumed to be Borel measu- 
rable and their distributions will therefore be Borel measures. The mode of 
convergence in the central limit theorem will be weak convergence of probability 
measures on G. The characteristic function of a probability measure ,u on G is 
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the complex-valued function jl defined on I? by 

j i ( ' J ) : = J ( x , y ) p ( d x )  for a l l y ~ G .  
G 

It is well known that there is a one-one correspondence between probability 
measures on G and their characteristic functions on and that a sequence (p,) 
of probability measures on G converges weakly to the probability measure p on 
G as n +  co if and only if fi,(y)+ji('J) as n +  m for each y ~ e .  

The limiting distribution in the central limit theorem below is Gaussian. 

. DEF~ITION 1. A continuous nonnegative function cp defined on l? is called 
a continuous nonnegative quadratic fom on if it satisfies the equation 

A probability measure p on G is called Gaussian if its characteristic function is 
of the form 

where x, is a fixed point of G and cp is a continuous nonnegative quadratic 
form on e. The Gaussian distribution is symmetric if x, is the identity of G. m 

In fact, any function which has the form of the right-hand side of equation 
(I) is the characteristic function of some (Gaussian) probability measure on G. 
The above definition of Gaussian distributions is equivalent to the definition of 
Gaussian distributions in Parthasarathy [5], the equivalence also being proved 
there. Heyer [4] also considers other candidates for the description 'Gaussian 
distribution' and calls the distributions defined in Definition I Gaussian dis- 
tributions in the sense of Parthasarathy. 

For general facts about locally compact second countable Abelian groups 
we refer the reader to Hewitt and Ross [3] and Rudin [6] ,  and for the theory of 
probability measures on such groups we recommend Heyer [4] and Parthasa- 
rathy 151. 

The results in this paper concern a triangular array of G-valued random 
variables {X, , j :  j = 1, 2 ,  .. ., k,; n = 1,  2 ,  . ..) defined on a probability space 
(52, 9, P).  Given such an array, define the following sub-a-fields of 9: for each 
positive integer PZ and positive integers a, b such that a < b, let 

&(n,  a ,  b ) : =  c { X , , ~ :  a < j < b ) ,  

where Xn,j = e, the identity of G, whenever j is not an integer in the range 
1 < j < k,. For positive integers n, k define 

$,(k):= sup sup {IP(BIA)-P(3)I:  
1 SsQ 

<s+kCk. 

A € A ( n ,  1 ,  s),  P ( A )  > 0, B € M ( n ,  s + k ,  k,)) ,  

where the supremum of the empty set is taken to be 0. 
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2. The central limit theorem 
THWREM 1. Let ( X , 3 j :  j = 1, 2, , . ., k,; n = 1, 2 ,  . . .) be a trianguiar array 

of G-valued random variables and suppose that the following conditions hold as 
n + oo for every neighbourhood N of the identity in G and for every y E G: 

(i) PCY.,jPN)+O, 
j =  1 

kn 

(ii) C IEg (xn,j, Y)I + 0, 
. . j = 1  

where q is a continuous nonnegative quadratic form on @. Suppose also that 

(iv] sup$,,Cj)+O as j +  a. 
n 

k 
Then, as n + a, the distribution of the row sum Sn : = xj> Xngj  converges weak- 
ly to the Gaussian probability measure with characteristic function 

Remark  1. Assumption (i) is a typical uniform infinitesimality condition 
when the limiting distribution is Gaussian, and assumption (ii) ensures that the 
triangular array is asymptotically centred. Condition (iii) provides the limiting 
variance, and assumption (iv) is a uniform mixing condition, which controls the 
extent to which random variables in the same row of the triangular array can 
be dependent. H 

Proof  of Theorem 1. Fix Y E G .  For each n =  1 , 2 ,  ... and 
j = l , 2 ,  . . ., k, define 

UnSj:= g(Xn,j, ~ ) -Eg(Xn , j ,  Y). 
Then 

so, by assumption (iii), 

Choose E > 0 and suppose y is such that pl (y) > 0. Then an > $m for 
all ~ ~ c i e n t l y  large n and, because of assumption (ii), we also have 



for every j whenever ~1 is sufficiently large. Choose a neighbourhood M of the 
identity in G such that 

whenever x EM. Then, using assumption (i), 
k, 

Iim sup 5 P (1 U.J L w,,) 4 lim SUP z P (I un,j1 I 2 
n-rm j = l  n+m j=l  

Therefore 
km c2 kn 

lirn sup a i 2  C E(UiSjn 1 (IUnajl 2 &a,J) 3) -lim sup P(I Un,jl 3 E C T ~ )  = 0, 
n+ m j=  1 Y(YI n+m ,=I 

where c : = 2 supxE~ Ig (x, y)I < a. 
Now apply the main result of Utev [7] to the triangular array of real- 

-valued random variables {U,,i: j = 1, 2,  . . . , k,; n = 1, 2, . . .) to deduce that, 
if q (y) > 0, the distribution of a;' El UnSj converges weakly to the standard 
normal distribution as n + m; note that the uniform mixing condition on the 
Un,j's needed to apply Utev's result is implied by the corresponding assumption 
(iv) on the X,Js. Consequently, 

kn 

E [exp (i (a; ' z u,,~) t)] + exp [-4 t2]  
j= 1 

uniformly in t E K as n + co for each compact subset K of the real line. In 
particular, for any real number t and any sequence i t , )  of real numbers con- 
verging to t, 

Ir, 

E [exp (i (a; z u , ~ )  t,)] + exp [- 4 t Z ]  as n + cc . 
j= 1 

Let tn = a,. Then t, + Jrp Cy) and we obtain 

This holds for each y E such that rp (y) > 0. 
If y is such that p ( y )  = 0, then Var (xy= ";,a + 0, so 
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I 

where 5 denotes convergence in probability, and 

Hence (2) holds for all y E e. 
I 

Now choose a neighbourhood N of the identity in g such that 
(x, y) = exp (ig ( x ,  y)) for all x E N. Then 

The proof of the theorem is completed by application of the L6vy-Cram& 
continuity theorem. m 

3. The functiomal. central limit theorem. Denote by D : = D (LO, 11, G) the 
Skorokhod space of G-valued ciidlag functions defined on the unit interval 
[0, 11 in the real line. We endow D with the Skorokhod topology. If Q is 
a metric which gives the topology of G, then the Skorokhod topology can be 
defrned on D in the same way as in Billingsley [I] or Parthasarathy [5] simply 
by replacing the metric on the real line by q where appropriate. If 93, denotes 
the a-field of Bore1 subsets of D relative to the Skorokhod topology, then much 
of the theory of probability measures on (D ,  a,) and their weak convergence 
can be developed along the same lines as for the case when G is the real line. 

Before stating the functional central limit theorem we need some further 
terminology. 

DEFINI~ON 2. We shall call a stochastic process S: = {S(t): t E [O,  11) 
a Wiener-type process on G if S has independent increments, the sample paths 
of S are almost surely continuous, S(0) = e (the identity of G), and S ( t )  has 
a symmetric Gaussian distribution for every t. 

We call (cp,, ,:  0 d s d t d 1) a continuous semigroup of continuous non- 
negative quadratic f o r m  on G if each c p , ,  is a continuous nonnegative quadratic 
form on 6, ( s ,  t )  H cp,,(y) is continuous for each y E e, and 

whenever 0 < s d t d u d 1 and y ~ e .  

Note that because of (3) we can write 
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Given a Wiener-type process S : = {S (t): t E LO, 11) on G, there exists 
a corresponding continuous semigroup of continuous nonnegative quadratic 
forms such that 

E E<s(t)-S(s), Y)I = exp C - i ~ s , r I Y ) l  
for 0 < s < t < 1 and y E 6. The converse is also true; see Bingham [2]. (In 
particular, there exists a nontrivial Wiener-type process on G whenever there is 
a nondegenerate Gaussian measure on G, or, equivalently, whenever there is 
a continuous nonnegative quadratic form on 6 which is not identically zero.) 

- D ~ N ~ T I O N  3. In the above situaiion the distribution of S wiIl be called 
a Wiener-type measure with continuous semigroup of continuous nonnegative 
quadratic forms ( c p , , :  0 < s < t < 1). ea 

Given a triangular array { X n a j :  j = 1, 2, . . . , k,; n = 1, 2, . . .) of G-valued 
random variables, define the stochastic process S, : = ( S ,  (t): 0 $ t d 1) with 
sample paths in D by 

Ltknl 

sn(t):= C Xn.j, 
j =  1 

where, for each real number r, [ r ]  denotes the largest integer not exceeding r. 
We can now state the functional central limit theorem. 

THEOREM 2. Let { X n V j :  j = 1,2 ,  . . ., kn; n = 1,2 ,  . . .) be a triangular array 
of G-valued random variables and suppose that 9, = F,,~, where {rp,,: 
0 < s 6 t 6 1) is a continuous semigroup of continuous nonnegative quadratic 
forms on 6. Suppose that the following conditions hold as n -, co for every neigh- 
bourhood N of the identity in G and for every y ~ e :  

li) 

(ii) 

(iii) 

Suppose ialso that 

Then, as n -, co, the distribution of S, conuerges weakly on D to the Wiener-type 
measure with continuous semigroup of continuous nonnegative quadratic forms 
{rp8,t: 0 < s <  t <  I]. 

The proof of Theorem 2 will use the standard technique of proving the 
appropriate convergence of finite-dimensional distributions and establishing 
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weak conditional compactness of the distributions of the processes {S,] on D. 
The fist of these steps is accomplished by Lemma 3 below. First, however, we 
require some preliminary results. 

LEMMA 1. Let {X,,.: j = 1, 2, .. ., k,; n = 1,  2, . . .} be a triangular array of 
G-valued random variables satisfying the assumptions of Theorem 2. Define 
Un,j:= g(Xnaj ,  y ) - E ~ ( x , , ~ ,  y). Then, for each YE&, 

unijiormly i n  t E [ O ,  11 as n + m. Consequently, 

P r  o of. By Lemma 3 in Bingham [2], the convergence in assumption (3) of 
Theorem 2 is in fact uniform in t. Therefore 

which tends to 0 uniformly in t as n + ao. This proves the first part of the 
lemma. 

Let 0 < s < t < 1. Then 

so the second result will follow from the first if we show that 

uniformly in s, t as n + ao. 
For any positive integer r 

[sk . ]+r-1  WnI Uknl 

= E [[F Un, ( Un, j ) ]  + E [( C u n 3 j )  ( X Un,j)I 
j =  1 j= [skn]+ 1 j =  1 j=[skn]f r 
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Here we interpret empty sums as 0 and we have used the inequality given in 
Lemrna 1 on p. 170 of Billingsley [I]. 

Now 

Note that [skJ + r - 1 = [(s + (r - l)/k,) k,] and, by the first part of Lemma 1, it 
follows that the expression on the left-hand side of inequality (5) is bounded 
above by a finite constant that does not depend upon n, r, s, nor t. The same is 
therefore true of the coefficient of $,(r)lt2 in the last line of inequality (4). 
Consequently, because of the mixing condition (assumption (iv)), the Iast ex- 
pression in inequality (4) can be made less than an arbitrary positive E for all 
n, s, t by choosing r sufficiently large. Fix such an r. 

To complete the proof it is therefore enough to show that 

uniformly in s as n -, oo. But IUnSjl 6 c : = 2 sup,, Ig (x, y)l and, for any E > 0, 
[skn]+r-1 [sk,]+r-1 

E [( )2 j ) ]  c2 + r z  ( 1  Un,j/ > E) 

The last sum is dominated by 61 P(I Un,jI > c/r), which, as can be seen from 
the proof of Theorem 1, goes to 0 as n + m. Because E was arbitrary, Lern- 
ma 1 is now proved. ar 

LEMMA 2. Let {X, , j :  j = 1, 2, . . ., k,; n = 1 ,  2, . . .) be a triangular array of 
G-valued random uariables satisfying the assumptions of Theorem 2. Let 
y1 , yz E e. Then 
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P r o of. Write 

Un,j:= g(XnSj ,  J'l)-Efl(Xn,j, )'I) and KDj:= g(Xn,j? J'J-Eg(Xn,j, ~ 2 ) -  

The difference between 

and 

is dominated by 

which, by assumption (ii), converges to 0 uniformly in s, t ,  u, v as n + m.  
Therefore, it is enough to show that 

uniformly as n + m. Since 

it is enough, by Lemma 1, to show that 

uniformly in s, t, u, u as n + a. But this follows by using an argument similar 
to the one in the last part of the proof of Lemma 1. H 

We can now prove the required convergence of the finite-dimensional 
distributions. Note that, for any positive integer k, the dual group of Gk can be 
identified with ck. 

LEMMA 3. Let (Xn,j: j = 1, 2, . . ., k,; n = 1 ,  2, . . .) be a triangular array of 
G-valued random variables that satisfies the assumptions of Theorem 2. Then, for 
every positive integer k and points 0 = to d t ,  < t ,  < . . . < tk in [0 ,  11, the 
distribution of the ~ ~ - u a l u e d  random variable (Sn ( t , ) ,  S ,  (t,), . . ., S, (tk)) conuerges 
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weakly to the Gaussian distribution with characteristic function 

which is the appropriate finite-dimensional distribution for the limiting Wiener- 
-type measure in Theorem 2. 

Proof .  Choose a positive integer k and points t ,  < t ,  < . . . < t ,  in [0, 11. 
Define a lpcal inner product g, on Gk x ek by 

for all x = (x, , x,, . . . , xk) E G: y = (yl, y p  , . . . , ~3 E &, where g is the local 
inner product already fixed on G x G. Define 

(X,,,,.. e )  f o r l d j d [ t l k , l ,  

( , , , j , , . . . e )  for [ t lk , l< j<[ tzkJ ,  
. . . . . . . . . . . . . . . . . . . . . . . . . . .  
( e , .  e X j )  f ~ r [ t ~ - ~ k , l < j < C t ~ k ~ l ,  

(e ,  - - - ,  for [tk k,] < j < k,. 

We now apply Theorem 1 to the new triangular array of Gk-valued random 
variables {&: j = 1, 2, . . ., k,; n = 1, 2, . . .). This array satisfies assumptions 
(i) and (iv) of Theorem 1 for Gk-valued random variables as immediate con- 
sequences of the corresponding assumptions for the original array. Also 

where to = 0, so assumption (ii) holds for ( X n V j )  with g, in place of g. It remains 
to prove the appropriate version of condition (iii); namely that 

as n + oo. This follows, however, from Lemma 2 (extended from two to k 
summands) and the fact that 
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From Theorem 1 we can now deduce that the distribution of 

converges weakly on Gk to the symmetric Gaussian distribution with continu- 
ous nonnegative quadratic form $. 

By straightforward algebraic manipulation of the characteristic functions, 
this is seen to be equivalent to the conclusion of Lemma 3. s 

The following lemma- will be used to establish the weak conditional com- 
pactness of 'the distributions of the processes IS,} on D. 

LEMMA 4. Let the assumptions and notation be as in Theorem 2 and let p, 
denote the distribution of the process S, on D. For each positive integer rn and 
1 = 0 ,  1 ,  2, . . ., m let 8,: = [lkJm] and oc, = f i l - l  + 1. Suppose that the following 
condition holds, where UnVj = g (XnTj ,  y) -  Eg ( X , , j ,  y): 

For every y €4, E > 0 and y > 0 there exist integers m, and no such that 

whenever rn 2 m, and n 2 no.  
%en (pn) is weakly conditionally compact and gp is the weak limit of any 

subsequence of(,u,), then p(C) = 1,  where C is the subspace of I) consisting of all 
continuous G-valued functions on [0, 11. 

P r o of. The condition (6) in Lemma 4 is essentially the same as (6.13) in 
Bingham [2] and in the same way, using assumption (ii) of Theorem 2 in place 
of the approximate martingale condition, we can show that it implies the 
second condition of Proposition 3 in Bingham [2]. That Proposition therefore 
implies the present result, because by Lemma 3 we know that for each t E [0, 11 
the distribution of Sn(t) converges weakly. 

P roo f  of The  o r  em 2. In view of what has already been shown, the 
proof of Theorem 2 will be complete if it can be verified that the condition (6) 
given in Lemma 4 holds. 

Fix y E and let E > 0. For a, < k < 8, define 

T,:= C u,,~, Ak:=[I?l<3&for every a , < j < k , I T , I > 3 ~ 1 ,  

where, as before, 
Ungj:= g(Xn,j, J')-Eg(Xn,j, Y ) .  

Then, for any positive integer r, 
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Given S > 0 choose r large enough to make $, (r) < 6 for every n. Then for 
this fixed r  we prove that, as n -+ m, 

(8) r max P(ITp1-7J$~)+0.  
fir-rQkCfl~-1 

For each positive integer n and 0 < s < t d 1 define 

j = [skJ + 1 
Since 

1 
(9) 'P(ITBl-Tkl>~)<- max E[(qI-q)2],  

8 1 - r < k < @ ~ - 1  E Z p l - r < k < ~ ~ - l  

it is enough to show that the right-hand side of inequality (9) goes to 0 as 
n -P co. But, if the right-hand side of inequality (9) did not go to 0, there would 
be an > 0 and a sequence of points (s,) such that - 

1 - k < s < 1 and F (s,, l/m) > q for aII n. 

But then s, -+ l/m; so, by Lemma 1, 

which yields a contradiction. Therefore (8) must hold. 
Next, as Un,j = g(X,,j, ~ ) - E g ( x , , ~ ,  y), if we choose a neighbourhood 

N of e in G such that Ig (x, y)l < ~ / ( 2 r )  whenever x E N ,  then assumption (ii) of 
Theorem 2 implies that, if Xn,j E N and n is sufficiently large, then IUn,jl < ~ / r .  
Therefore I UnPj] 2 E/T implies that XnSj $ N when n is sufficiently large. Hence, 
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for large n, 

Assumption (i) now gives 

8 1 - r - 1  

lim sup P(IT,+,- T,I 2 E) = 0. 
n+m k = a l  

Since 6 was arbitrary, (71, (8) and (10) imply that 

( 1  1) lim sup P ( man 1 U n , j /  3 38) < 2 lim sup max P ( [  2 u.,~I 2 E ) .  .+* a i < k G P ~  j = a r  n+co a r q k S 8 1  j = k  

Let A be a constant such that E < A c~ co. Then 

P I  8 1 

< rnax P(IC u , , ~ J  B A ) +  P ( A >  IC u n , j {  2 ~ )  
a l d k G 8 1  j = k  u l G k d P ~  j =  k  

1 Br 1 81 8 I < , max E [( x ~ n , j ) ~ ] +  - max E [( x ~ n , j ) ~  I ( (  1 U n . j I  < ')I . 
u t d k < B r  j=k  E 4 a l < k < ~ z  j = k  j = k  

Let s, be such that 
Br 

(I- 1)Jm d sn 4 l/m and max E [( u~,~)' ]  = Fn(sn,  l/m). 
a lGkQBr  j = k  

J .. 
Then 

as n -, GO by the uniform convergence of Fn, which was proved in Lemma 1. 
Thus 

" 1 Br 2 C P I ~ )  
limsup rnax E [ ( x  U , j )  ] <7 
n+m 1 = 1  a 1 6 k C B r  j = k  

which can be made as small as we like by choosing A sufficiently large. 
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Write A ,  rp : = rp,,, (y)  - rp(l- I,,, b). We now prove that 

81 Br 

(14) Jim sup maa E [( u.,~)* 1 (1 C ~ n , ~ l  < A)] < 3 (A1 yl2. .,, a z 4 k Q P 1  j = k  j = k  

Suppose that inequality (14) is false. Then there exists 6 > 0 such that the 
maximum on the left is at least 3 (d, tp)' + d for infinitely many n. For each n let 
t , ~  [ ( l -  l)/m, l/m] be such that the maximum on the left-hand side is attained 
at k = tn k,. We shall derive a contradiction. In order to do so, we can assume 
without loss of generality that t ,  4 t E [ ( I -  l)/m, l/m] as n 4 co. 

Define 

Xfnqj:= { for otherwise, 1.k 43 4 d7 

We claim that, as n + m, 

B 1 

(15) C UkYj converges weakly in distribution to JV (0, q ~ , , ~ ~ ,  (y)), 
j = a ~  

the normal distribution with mean 0 and variance q,,,/,(y). To prove this we 
can apply Theorem 1 to the triangular array {U; , j :  j = at, . . ., Pl ;  n = 1, 2, . . .} 
of real-valued random variables, taking G as the real line R. Assumption (i) 
holds for {UApj) as a consequence of assumptions (i) and (ii) for {Xkyj ) .  

Note that 

Take a local inner product g, on R x 2 r R~ such that g,(t,, t,) = t ,  t2 for 
ltll 6 c and all <, E R. For any 5 E R we have 

E [g, (uk,jl 01 = t E  IUk,jl = 07 

so assumption (ii) of Theorem 1 holds, and 

as n 4 a, SO assumption (iii) holds with the quadratic form 5 H t2  rpt,,/,,, (Y). The 
mixing condition for the Uk,j's is implied by the corresponding condition for 
the Xn,j's. Therefore the claim (15) is valid. 
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Consequently, 

PI  P r 
lim SUP max E [( ~ n , j ) ~  1 (I C u n , j l  < A)] ,,+, a 1 6 k 6 P 1  j = k  j = k  

But this contradicts the choice of the sequence ( t , ) ,  so inequality (14) is proved. 
Using (141, we have . . 

By the (uniform) continuity of t wcp,(y), the last expression in inequality (16) 
goes to 0 as m + co. Combining this with ( 1  I), (12) and (13) we see that the 
premises of Lemma 4 are satisfied, so Theorem 2 is proved. 
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