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Abstrod. Let B,(.)  be a fractional Brownian motion on R 
with parameter 1/2 < H < 1, and consider its smoothed version 
b ; H j  K ( ( t -  sj/b,)BH(s) ds, t e R ,  where the kernel K ( . )  is a density func- 
tion and the b, > 0 are some bandwidths. The derivative of this pro- 
cess arises naturally as a heuristic approximation of a nonparametric 
kernel regression estimator when the normal errors are long-range 
dependent. We show that, with suitable centering and norming, thc 
distribution of the supremum and absolute supremum of this deriva- 
tive over the intcrval [0, 11 converges, as n + m, to the Gumbel ex- 
treme-value distribution and its square, respectively. A version of the 
problem for fiiite differences is also considered, along with higher- 
-order derivatives. 

1. Introduction and statement of results. Consider a Gaussian process 
BH (t), t E R, with mean zero and with stationary increments, determined by the 
covariance function 

where H, the Hurst index, is a number such that 112 < H < 1. The process 
B,( . )  is called a fractional Brownian motion and coincides with the ordinary 
standard Brownian motion when H is taken to be formally as H = 112. The 
process B,( . )  is self-similar with parameter H, i.e. for every fixed c > 0 the 
distributional equality 

holds. Fractional Brownian motions are the only Gaussian processes among 
self-similar processes that arise as distributional limits of normalized par- 
tial-sum processes based on long-range dependent random variables; cf. Taqqu 
[6], [7], and the references therein. It is proved by Mandelbrot and Van Ness 
[4] that, for elementary events outside a set of probability zero, any separable 
version of B,( . )  has continuous, nowhere differentiable sample functions. 
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For a fixed H ~(1/2 ,  I), we consider the smoothed fractional Brownian 
motion obtained as a convolution of B,( . )  with a smooth probability density 
function K (.): 

where b, is a sequence of positive constants tending to zero. Any convergence 
relation is meant as n -i oo unless otherwise specified. Also, single and double 
integrals without specified boundaries are meant to be over the whole real line 
R 'or plane R2, respectiveIy. It is easy to see that B,,,(.)  inherits the order of 
smoothness of K ( .), i.e. if K (.) is continuously differentiable a given number of 
times, then so is El,, ,( .) .  Furthermore, since the sample functions of B,(.) are 
continuous, bil- ' BH,, ( a )  converges to B, (a) uniformly over every finite interval 
for every bounded kernel K for which xK (x) -i 0 as 1x1 + Q; cf. Theorem 1A of 
Parzen [ S ] .  

Our primary objective here is to consider asymptotic extremal properties 
of the derivative B;I,,(.) of Bas,(-), i.e. the asymptotic behavior of suprema of 
the process 

v, (t) : = Bh,n ( t )  = - b i t H  ~ K ( Y ) B , ( ~ ) ~ ~ ,  ~ E R ,  

in the case when the second equality in (1.3) is valid. We also consider a second 
process that has asymptotic extremal properties similar to those of Kt.), de- 
fined as 

1 t-s 1 
(1.4) ~ . ( t ) : =  p ~ R ( - ) - ( B H ( s + ~ ) - q ( l ) ) ~ ,  bn n L E R .  

The processes x(.) and W,(-)  appear as heuristic approximations to the ran- 
dom parts of the Priestley-Chao and the Gasser-Miiller nonparametric regres- 
sion estimators in a fixed-design model with long-range dependent normal 
errors, respectively. We refer to [2] for a description and-an analysis of the 
related statistical problem and a discussion leading to the processes x(-) and 
W, (-). (We note that the relationship between the main parameter a in [2] and 
the Hurst index H here is ci = 2-2H.) In this note, we determine the asymp- 
totic distributions of the suprema of K(.) and IK(-)I over the interval [0, 11,  
and the analogous results for W, (.) are derived from those for T/, (-). While we 
trust that these results are interesting in their own right, they are certainly 
relevant concerning the description of the asymptotic distributions of maximal 
deviations of regression estimators under long-range dependence. We have 
shown in [2] that, with suitable centering and norming, the distributions of the 
one- and two-sided maximal deviations of both the Priestley-Chao and the 
Gasser-Miiller estimators from the estimated function, calculated over an in- 
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creasingly finer grid of points in [O, 11, converge to the Gumbel extreme-value 
distribution and its square, respectively. Here we prove that the same proper- 
ties hold both for 5 (-) and W, (.), the asymptotic analogues of the estimators, 
when the maxima over an increasingly finer grid of points in [ O ,  11 are replaced 
by the suprema over all the points in the interval [0, I]. These results for the 
suprema and absolute suprema of TI (.) and W, (-1 suggest that the same should 
hold for the one- and two-sided maximal deviations of the kernel regression 
estimators. However, it appears to be a difficult open problem to see whether 
this is indeed true. 

Define : 

Under the condition of part (i) of the Theorem below, as pointed out at the 
beginning of the proof of Lemma 1 in the next section, a2 is the constant 
variance of the mean zero stationary Gaussian process 

and hence it is a positive number. Since 0 < 2-2H < 1, the condition also 
implies that 

a2 = P ( H ,  K ) : =  - 
2 

dudv 

is finite. Furthermore, the condition ensures, by Lemma 1 below, that the 
covariance function R (y) : = E (Z  (0) Z (Y)), y E R, of Z (-) is twice differentiable, 
and it turns out that for the second derivative R " ( - )  of R(.)  we have 
Rf'(0) = -A2. Hence, by Lemma 3 of Section 9.3 in CramCr and Leadbetter 
[I], A2 is in fact the second spectral moment of Z (.), and hence positive. So, the 
integrals in (1.5) and (1.7) are negative. 

THEOREM. (i) If K ( a )  is a differentiable density with a bounded derivative 
K' (.) and a .  support contained in (- 1, I), then 

+ e ~ p ( - e - ~ ) ,  X E R ,  
and 

+ exp {-2e-x}, X E R .  
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(ii) Suppose, in addition, that the second derivative K" (-) of K (.) also exists 
and is bounded and that nb:+~/,/= + m. Then the two statements in part 
(i) hold as well for W,(.) in place of K(. ) .  

The result can be generalized for higher-order derivatives of B,,, (.). Con- 
sider some m EN. Suppose that the kernel K (-) has a support contained in 
(- 1, I), is rn times differentiable and the m-th derivative K("'(-) of K ( . )  is 
bounded. Then the m-th derivative of B,, , ( . )  can be written as 

.. . 1 
B@& (t) = - K ' " l ( 7 )  B, (s) ds, t e R . 

bf+rn 

This is the asymptotic analogue of the random part of the Priestley-Chao 
kernel estimator of the (m- 1)-st derivative of the regression function in the 
fixed-design modeI, considered in [ 2 ] ,  with long-range dependent normal er- 
rors. If we definex,, (t) : = b,"-l BE; (t), t E R, so that V,,, (.) = V,, (a), then part (i) 
of the theorem remains true for I/.,, replacing V,, provided we also replace 
a(H, K) = a, (H, K) and 3, ( H ,  K) = I., (H, K )  by the square roots of 

G: (H , K )  : = - + j~ ~ 1 " )  (u) K ( ~ )  ( v )  IU - vlZH 
and 

H (2H - 1) K'") (u) K'"') (v) 
K ) : =  - 

2 SS dudv, 
lu - vt2 - 2H 

respectively. This follows by making straightforward changes in the proofs of 
Lemma 1 and the Theorem below. 

2. Proofs. We need two lemmas. Consider first the process Z (.), defined in 
(1.6), and let R (y) = E (2 (0) ~ ( y ) ) ,  y E R, as above. 

LEMMA 1. If the conditions of part (i) of the Theorem are satisJied, then Z ( . )  
is a stationary process, its covariance function R(.) is twice digerentiable and, 
with i12 = A2(H, K) given in (1.7), Rtl(0) = -A2. 

Proof .  In view of the assumptions on the kernel, we have J K' (s) ds = 0. 
This and (1.1) together imply that 

for all x ,  y E R, where, since K' (.) is bounded, the integral exists in the Lebesgue 
sense. Thus the process 2 (.) is indeed stationary, and its variance is cr2 = R (0). 
(Another form of a2 comes from (2.5) below, where r (0) = 1.) Hence, by Lem- 
ma 3 of Section 9.3 in Cramer and Leadbetter [I], all the statements will follow 
if we show that 
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Set 
I - 1  1 ,  I,+:= ( (u ,  v): v - u > 2 ( s ( ) n I ,  

J: := { (u ,  0): 0 < v -u  < 2)sl) n I ,  

I , : = { ( u , v ) : u - v > 2 l s l ] n i ,  S E R ,  
and put 

L 

for - 1 G u ,  v < 1 and S E ( -  1, 1). Then, using the equality 

SS K' (u) K' ( v )  (a- u ) ~ " -  dudv = SS K' (u) K' (v) (u - u ) ' ~ -  dudu, 
1: I.-- 

for all s E (- I ,  1) we obtain 

= : D l ( s ) + D 2 ( s ) .  

Observe that since the planar Lebesgue measure of the set J;  u J,f is not 
greater than 4 t/Z lsl, for all s  E (- 1 ,  1) we have 

Since j[ IK' (u) K' (v)l Iv - ~ 1 ' " -  dudv < m by the assumption, this upper bound 
goes to 0 as s+  0. Hence (2.1) will follow if we show that 

Since, for every s  E (- 1, I), I S ~ / ~ U -  V I  < 1/2 on both 1; and I:, we see by 
Newton's binomial expansion that Dl (s)  is equal to 
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+ Sl -1+2H-- u-u U - v  2H(2H-1'(usv)21 2 dudv 

= SS IK' ( 4  K' (41 I 2 (23 (91 dudv 
I,+ ( V - U ) - ~ ~  ,=, v - u  

Thus, for every s E (- 1, I), 
. .. 

Setting momentarily 8 := 2H ( 2 H -  1) and a :  = 2-2H, so that O < a < 1, for 
every x for which 0 < 1x1 g l/2 we have 

Hence, setting 

and denoting by x, the indicator of a set 3 c R2, we have 

B' (s) = JS I K 1 ( u ) ~ ~ l ~ + , ( u , I ) X  (u,v)dudv, - ~ < s < l ,  
I Iu-4 1: 

where 0 < G,,(u, v)x,+ (u, v) d 2H(2H-I), (u, V)EI, SE(-1, I), and for each 
S 

fixed (u, v) E I we have G*, (u, v) x,, (u, v) -+ 0 as s + 0. Thus, by the bounded 
s 

convergence theorem, B' (s) + 0 as s + 0, implying (2.2), and hence the lem- 
ma. 
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LEMMA 2. If K satisfies the conditions of part ( i i )  of the Theorem, then 

Proof.  Using (1.3) and (1.41, an integral transformation and the self-simi- 
larity property of the fractional Brownian motion I?,(-), our difference Dn 
equals 

- sup 1 Kt (u )BH( t -ubn) -K(u ) -  3, t -ubn+- -B,(t-ub,) du 
bfodts l  I C  nb, 'I( a 111 

where A, { f (x)) : = s-I (f (x + s) - f (x)) for any function f (-1 and s > 0. By the 
assumption on K, we have C: = sup,(,,,) IKn(x)l < oo. Thus, using again the 
self-similarity transformation of 3, (-1,  we obtain 

1 2C <-- SUP IB,(u)l. 
b: nbn - 1 - b n $ u G l + b n  

Since sup- - b n ~ u $  +bn  lBA (u)[ = Op ( 1 )  b y  the sample-continuity of B, (.), the 
lemma follows. H 

P r  o of of the  The  o rem. (i) Note again that, as in the proof of Lemma 2, 

1 v,(.) = - S K ' (  u)BH(t-ub,)du J K ' ( U ) B ,  - -u  du, 
ba ('n ) 

whence 

sup V,  ( t )  sup Z Cy) and sup IT/ ,  (t)l sup IZb) l ,  
0 4 t G l  O<y<b;'  O d f C l  0 d y Q b ; '  

where Z ( . )  is the mean-zero Gaussian process defined in (1.6). Hence, setting 

a. : = ,/- and en : = 2log ( l / bn )  +log (A/[2ncr]), 
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where ;l and fl are given in (1.7) and (1.51, and finally Y (.) : = Z (.)/o, it suffices 
to show that 

(2.31 P{a, sup Y(t)-c,<x)+exp{-ex}, XER, 
O < t < b i l  

and 

(2.4) P { a ,  sup JY(t)l-c,<x)+exp{-2e-"1, XER.  
0 G t G b " l  

For (2.3) we check the conditions of a general result concerning the maxima of 
a' Gaussian process over increasing intervals. By Lemma 1, the mean-zero 
Gaussian process Y ( - )  is stationary, has variance 1, and its covariance function 
r (t)  : = E (Y (0) Y (t)) = R (tj/a2, t c R, is twice differentiable with r" (0) = - lZ/a2. 
Furthermore, upon integrating by parts we see that 

H ( 2 H -  1) 
r (t) = 

This implies that r (t) log t  -+ 0 as t + a. Thus (2.3) follows from Theorem 8.2.7 
in Leadbetter et al. 131. 

For all n large enough, the left-hand side of (2.4) is 

P {  sup Y(t) < a;'(x+c,), inf Y ( t )  2 u; ' ( -x - en ) ] .  
O C ~ C ~ ; ~  o < t ~ b ; l  

In view of Corollary 11.1.6 in [3] concerning the asymptotic independence of 
suprema and infima, the Iirnit of the last probability is the same as the limit of 
the product 

P{ sup Y(t)<ail(x+c,))P{ sup [-Y(t)]<a;'(x+c,)] 
O S t S b i l  0 < t < b , '  

But, since Y(.) - Y(.), the second factor here is the same as the first. Thus 
(2.4) follows from (2.3). 

(ii) The assertion here follows directly from part (i) and Lemma 2. 
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