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Abstract. The paper deals with non-negative stochastic processes 
X ( t ,  a) ( t  3 0) with stationary and independent increments, continu- 
ous on the right sample functions, non-degenerate to 0, and falling 
the initial condition X ( 0 ,  w) = 0. The main aim is to study the 
probability distribution v, of the random Laplace functional 
1; e x p ( - t X ( z ,  co))dz for t > 0. In particular, a necessary and suffi- 
cient condition in terms of corresponding representing measures for v,  
to be multiplicatively autoregressive is established. 

1. Preliminaries and notation. This paper* is organized as follows. Sec- 
tion 1 collects together some basic facts and notation concerning infinitely 
divisible probability distributions needed in the sequel. In Section 2 a class B, 
of Bernstein functions is discussed. In the last section this class 9, is applied to 
study the random Laplace functionals for some stochastic processes. 

We denote by JY the set of all non-negative bounded countably additive 
measures defined on Bore1 subsets of the real line R = ( - a, a). Given M E  A 
we denote by suppM the support of M and we put 

b,  (M) = inf supp M, b ,  (M) = sup supp M 

By B we denote the subset of JY consisting of probability measures. By S, we 
denote the probability measure concentrated at the point c. For M, N E d we 
write M < N whenever M (A)  < N (A) for all Bore1 subsets A of R. Further, by 
M * N we denote the convolution of M and N. Given M E  &, by we denote 
the Fourier transform of M, i.e. 

Q1 a (s) = j eisx M (dx)  (s E R). 
- m  

By the Ltvy-Khinchin Representation Theorem ([3], Chapter XVII,2), 
infinitely divisible probability measures on R are of the form e(a ,  N), where 
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~ E R ,  N E &  and 

isx 
(1 . )  Z(u, N)(J) = exp 

where for x = 0 the integrand is assumed to be - s2/2. The following statement 
was proved by Esseen in [2]: 

P~oposrno~ 1.1. Let p = e (a, N). Then b ,  (p) 3 - co if and only if 
N ((- m , 01) = 0 and ii x- ' N (dx) < m. Moreover, 

m 

(i.2) b,  (p) = a- 1 x(l + x 2 ) - I  (1 -e-r)-2 N ( d x ) .  
0 

The class 9 consists of self-decomposable probability measures, i.e, the 
limit distributions of normed sums a, (XI + X, + . . . + X,,) + b,, where a, > 0, 
b, E R, and XI ,  X,, . . . are independent real-valued random variables fulfilling 
the condition 

lim max P (a, IX,I > 6 )  = 0 for every E > 0. 
n+m lGkGn 

A representation of the class 9 was found by P. Levy (see [4], formula (1.1)). 
Namely, ~ E Y  if and only if p = e(a, N )  with a~ R and 

where c 2 0, k(x) is non-positive on (-my 0) and non-negative on (0, co), k (x) 
is non-increasing on each of the intervals (-a, 0) and (0, a ) ,  and 

We say that a measure p from 9 is strictly unimodal at the point q if p is 
absolutely continuous on (- co, q) u (q, CQ) and has a density increasing on 
(b, (p), q) and decreasing on (q, b, (p)). 

We denote by A+ the subset of A consisting of measures M with 
suppoM c R+ = [0 ,  oo) and M ( R + )  >O. Further, we put 8, =9nA!+.  
Given M E M +  we denote by M the Laplace transform of M, i.e. 

m 

M ( z ) =  Je-""M(dx) (zER+). 
0 

PROPOSITION 1.2. Let ,u E 9 + and p # 6,. Then p E 2' and p is strictly 
unimodal at 0 if and only if 

m 

(1.5) P(z) = exp j x-'(e-"- l)k(x)dx, 
0 

where k (x) is non-increasing on (0, m), 0 < k(0 +) < 1, 0 < k(x) < 1 for 
XE(O, CQ) and 1," x-I k(x)dx < co. For x = 0 the integrand is assumed to be 
-k(O+)z. 
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Proof.  Necessity.  Suppose that p belongs to 9 n P+ and is strictly 
unimodal at 0. Then 

and p = e (a, N), where a e R and N is given by formula (1.3). Applying Propo- 
sition 1.1 we conclude that N ((- co , 01) = 0 or, equivalently, k (x) = 0 for 
x E ( - m , 0) and c = 0 in (1.3). Moreover, 

which yields the inequality 
1 

Further, by (1.4), 

and, by (1.2), (1.3) and (1.6), 
m 

LE = J (1 +x2)-I  k(x)dx. 
0 

Consequently, formula (1.1) can be written in the form 
m 

, i T ( s ) = e x p ~ ~ - ~ ( e ' ~ ~ - l ) k ( x ) d x  ( s E R ) ,  
0 

which yields representation (1.5). If p + 6,, then k(O+) > 0. By (1.8) it remains 
to prove the inequalities 

and 

(1.10) k ( x ) < l  for x ~ ( 0 , c o ) .  

Suppose the contrary k (0 +) > 1. Then, by (1.7), the measure p fulfils the 
conditions of Theorem 1.3, part (vii), in [4]. Consequently, p is not unimodal 
at 0. This proves inequality (1.9). 

If k (0 +) = 1 = k (u) for some u ~(0, CQ), then, by Theorem 1.4 in [4], the 
measure p is not strictly unimodal. This proves inequality (1.10). The necessity 
of our conditions is thus proved. 

Sufficiency. Suppose that p E 9+ and its Laplace transform is given by 
formula (1.5). It is clear that FEY. Moreover, the measure p fulfils the con- 
ditions of Theorem 1.3, parts (ii) and (iii), in [4]. Consequently, the measure p is 
absolutely continuous on [0, CQ) with a density decreasing on (0, co). Thus ,u is 
strictly unimodal at 0, which completes the proof. 
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As an immediate consequence of our Proposition 1.2, Theorem 1.3, parts 
(ii) and (iii), and Theorem 1.6 in [4] we get the following statement: 

P ~ o ~ o s r ~ r o ~  1.3. Suppose that ~ € 9 ,  n 9, p # 60 and ,u is strictly unitno- 
dal at 0. Then 

and p is absolutely continuous on R+ with absolutely continuous positive density 
g ( x )  fuEJilling for some a E [O, 1) the condition 

where the function f is slowly varying at 0. 

2. A class of Bernstein functions. Given M E A'+ we denote by ( M )  the 
Bernstein transform of M, i.e. 

Here for x = 0 the integrand is assumed to be z. It is clear that the measure 
M is uniquely determined by its Bernstein transform. Moreover, it is easy to 
check the inequalities 

Denote by '3 the set of all completely monotone functions on the open 
half-line (0, m). Let &T be the set of all functions (M) with A4 E A+. It is well 
known that F E 98 if and only if F is continuous on 10, co), F (0) = 0, F does not 
vanish identically, and F is differentiable on (0, oo) with (d/dz)F~%'. 

Given M E  A+ and a > 0 we define a probability measure y, ( M )  on R + by 
setting 

m 

(2.3) y, ( M )  (dx)  = c,  ( M  (03) 6, (dx) + e-"" j (1 - e P y ) -  M (dy) dx, 
X 

where c = a / ( M )  (a). It is clear that for a, b > 0 the formula 

holds with c,,, = ca+,/ca. Further, by a simple calculation we get the formulae 

and for u > 0 
03 

ya(M)( [u ,  a)) = a- 'c ,  1 ( l - e - X ) - l  (e-au-e-a")(dx).  
U 
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Hence 

(2.6) 6, (MI = b,  (Y, (W) (a > 0). 

Moreover, from formula (2.3) we get the following statement: 

PROPOSITION 2.1. For every M E A ,  and a > 0 the probability measure 
y,(M) is strictly unirnodal at 0. 

Put for XER+ 

(2.7) n ( d x )  = x l ( l  - e - " ) e P x d x .  . .. 

It is evident that I~EA%'+ and 

Let M E & + .  It is clear that for every b > 0 the function 

belongs to a. Consequently, the superposition of functions (2.8) and (2.9) also 
belongs to L% ([3], Chapter XIII,4). In other words, for every M E & +  and 
b > 0  there exists a measure rb (M) E A+ fulfilling the condition 

Applying inequality (2.2) we have 

Denote by 9 the set of all continuous real-valued functions F  on LO, co), 
positive and differentiable on (0, m), and fulfilling the initial condition 
F (0) = 0. Given F  E 24 we put 

d  
l ( F ) ( z ) = z - F ( z ) / F ( z )  for z ~ ( 0 ,  m). 

dz 

In the sequel, d will denote the set of all functions F on R+ of the form 

m 

F ( z )  = cexp J K ( x ,  z )Q(dx ) ,  
0 

where c > 0, 
m 

K ( x ,  z )  = j y- l  (e-Y -e -zY)  dy ,  
0 
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Q is a non-negative countably additive measure on R + fulfilling the condition 
m 

0  < eP'" Q (dx) < m 
0 

for z > 0. It is easy to check the formula 

m 

(2.12) F(z)  = cexp j ~ - ' ( e - ~ - e - ~ ~ ) Q ( [ o ,  x))dx,  
0 

whew for x = 0 the integrand is assumed to be Q ((0))  z. Observe that d c &3 
and the pair c, Q  is uniquely determined by F. In the sequel we shall use the 
notation F = [ c ,  Q]. 

LEMMA 2.1. F f d  if and only $ F F E ~  and E(F)EV. 

Proof.  The necessity follows from the inclusion d c 9 and the formula 
Z([c, Q]) ( z )  = Q (2). To prove the sufficiency observe that the representation of 
completely monotone functions 

yields 
z 

Consequently, F = [ F ( l ) ,  Q ] ,  which completes the proof. 

LEMMA 2.2. IfF = [c ,  Q] and Q ( R + )  < 1, then F = ( M )  for some M E A +  
and y, ( M )  E 9 for all a E (0,  co). 

Proof.  Put for a > O  and z 2 0  

By standard calculations we get the formula 

m 

G,(z) = exp j x-'(e-""-l)k,(x)dx,  
0 

where ka (x) = e - O X  ( 1  - Q ([O, r))). First we shall prove that there exist proba- 
bility measures ~ l ,  (a > 0) belonging to 9 with the property 

If Q({O)) = 1, then G,(z) = 1 and we put p, = 6, .  In the remaining case we 
have k, (0 +) > 0 and the functions k, fulfil the conditions of Proposition 1.2, 
which yields the existence of probability measures pa with desired properties. 
Starting from the formula 1 (F)(z) = ~ ( z )  and taking into account (2.13) and 
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(2.14) we have 

d 
-F(z+a) = a - l~ (a )~ (z+a ) f i a i , ( z ) ,  
dz 

which yields (dldz) F (z + a) E V for a > 0. Consequently, F (z + a) - F (a) E kB for 
a > 0. Passing a -+ 0 and taking into account the continuity of F on [0, co) and 
the initial condition F (0) = 0 we get the relation F E a. Thus the function F has 
a representation F = ( M )  for some M EM+. By (2.5) and (2.13), f,(M) = G,,  
which, by (214), yields the equality y, (M) = pa. This shows that y, (M) E d;p for 
all a > 0,' which completes the proof. 

Introduce the notation 93, = d n g. The set Bo of Bernstein functions 
will play a crucial role in our considerations. 

THEOREM 2.1. The following conditions are equivalent: 
(i) F E ~ ~ .  
(ii) F E ~  and l ( F )  6 1 .  
(iii) F = [ c ,  Q] and Q ( R + )  < 1. 
(iv) F E ~ ,  I(F)E@ and l ( F )  $ 1. 

Proof.  By (2.11, I(F) 6 1 for F €49, which yields the implication (i) * (ii). 
The implication (ii) =. (iii) is an immediate consequence of the formulae 
1 ([c, Q]) = Q and Q (0 + ) = Q (R,) .  The above formulae and the inequality 
Q (2) < Q (R +) yield the implication (iii) (iv). Finally, the implication (iv) 
* (i) is an immediate consequence of Lemmas 2.1 and 2.2. This completes the 
proof. 

THEOREM 2.2. The set B, is closed under superposition. 

Proof.  Suppose that F, G E 94, and put H (2) = F (G (z)). It is evident that 
H E  9. Since G E a and, by Theorem 2.1, part (iv), I(F) E %, we conclude that the 
superposition 1 (F) (G (2)) also belongs to V ([3], Chapter XIII,4). Taking into 
account the relation 1 (G)E% and the formula 

we have L (H) E %'. The above formula and the inequalities 1 (F) 4 1 and E (G) < 1 
, (Theorem 2.1, part (iv)) show the inequality E(H) < 1, which, by Theorem 2.1, 
I 
+ , part (iv), implies the relation H€Bo.  The theorem is thus proved. 

Denote by A, the subset of A+ consisting of all measures M with 
< M )  

LEMMA 2.3. Suppose that M E  &, and { M )  = [ c ,  Q]. Then 

(2.15) z,(M)(dx)=~-~(l-e-~)e-"Q((O,a-~x))dx f o r a > O ,  

(2.16) ( for O < a < b  

5 - PAMS 16.2 
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and 

(2.1 7 )  z,(M)<T;T for a > 0 .  

Proof.  By (2.10) and (2.12) we get the formula 

which yields (2.15). Since the function Q ( [ O ,  x)) is non-decreasing, we have also 
inequality (2.16). By Theorem 2.1, part (iii), the inequality Q(R, )  < 1 is true. 
Comparing this with (2.7) and (2.15) we get inequality (2.171, which completes 
the proof. 

THEOREM 2.3. The following conditions are equivalent: 
(i) M E J Y ~ ,  

(ii) M E  A+ and y, ( M )  E 9 for all 17: > 0. 
(iii) M s A ,  and z,(IM) 2 z , (M)  for b ~ ( 0 ,  I]. 

Proof .  The implication (i) (ii) is a direct consequence of Theorem 2.1, 
part (iii), and Lemma 2.2. 

To prove the implication (ii) e- (iii) assume that y, ( M ) G  Y for all o > 0. 
First suppose that y, (M) = 6 ,  for some a > 0. Then, by (2.61, b,  (M) = 0 and, 
consequently, M = cd, with some c > 0. Thus { M )  (z) = cz and, by (2.10), 
(z, ( M ) )  (z) = log(1 +z) for all b > 0. Thus z, (M) = z ,  ( M )  for aII b > 0, which 
yields condition (iii). Suppose now that y, (M) # So for aII a > 0. Taking into 
account Propositions 1.2 and 2.1 we have the representation 

where k, ( x )  is non-increasing on (0, a), 0 < k, (0 +) < 1, 0 < k, ( x )  < 1 for 
x  E (0, co) and J'T x- '  k, (xj dx < co. Without loss of generality we may assume 
that the functions k, are continuous on the right. Taking into account (2.4) we 
get, by standard calculations, 

kb ( X )  = e - ( b - a ) x  k , (x)  for 0 < a < b and X E R +  

Hence it follows that the limit 

lim k, ( x )  = k  (x)  
a+O 

exists and the function k ( x )  is non-negative, non-increasing and fulfils the 
equation 

k , ( x ) = e - , " k ( x )  for all b>O and XER+. 

Substituting this into (2.18) and applying formulae (2.5) and (2.10) we get 
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Since the function k(x) is non-increasing, the formula 

defines a non-negative measure on R, for b E (0, 1). Moreover, by (2.19), 

Thus t, (M) = zl ( M )  + N,,  which yields condition (iii). 
It remains to prove the implication (iii) = (i). Suppose that M GAY, and 

. . 
(2.20) . .- T ~ ( M ) > T ~ ( M )  for b ~ ( 0 , 1 ] .  

From (2.10) we get the formula 

( r b ( M ) )  (4 = <TI ( M I )  (bz+ b -  1)+108 < M )  (l)-log < M )  (b) ,  

which yields 

where h (0, b) = b and 

for x E (0, a). In particular, we have z, ( M )  ((0)) = bzl (M) ((O)), which, by 
(2.20), yields tl (M)((O)) = 0. Suppose that a Borel subset E of the half-line 
(0, co) has the Lebesgue measure 0. Consequently, setting 

i 

g ( E ,  x) = 1 1, (bx) h (bx, b) db, 
0 

we have g(E, x) = 0 for x 2 0. By (2.21) we have the formula 

which, by (2.20), yields z, (M)(E) = 0. In other words, the measure zl (M) is 
absolutely continuous on R+ and, consequently, can be written in the form 

zl(M)(dx) = x-'(1 -e-")ePxq (x)dx, 

where q(x) is a non-negative function. Moreover, by (2.21), 

which, by (2.20), yields the inequality q (b-I x) 2 q (x) for all b E (0, 11 and 
almost all x E R + . Consequently, without loss of generality we may assume that 
the function q is non-decreasing and continuous on the left. By (2.1 1) and (2.22), 

a, 

~ - ' ( l - e - ~ ) e - ~ ~ ( b - ~ x ) d x  < log2 for all b ~ ( 0 ,  a). 
0 
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Passing b -+ 0 we get the inequality 

Since T~ (IM) €A+, we have also the inequality 

Starting from (2.10) and (2.22) we get, by standard calculations, 

Passing b -t 0 we obtain the formula 

m 

{ M )  (z) = { M )  (1) exp x-I (e-x- e-"") q (x) dx .  
0 

Setting Q ([O, x)) = q (x) for x > 0 we define a measure Q which, by (2.23) and 
(2.24) belongs to A, and fulfils the inequality Q ( R + )  6 1. Moreover, 
( M )  = [ { M )  (I), Q] which, by Theorem 2.1, part (iii), shows that ME.,&,. The 
theorem is thus proved. 

THEOREM 2.4. Suppose that M E  A,. Then either M = c6, for some c > 0 
or b,(M) = coy the measure M is absolutely continuous on R+ and for some 
a ,  b ~ C 0 ,  1) 

(2.25) 

and 

(2.26) 

where fo and f, are slowly varying at 0 and co, respectively. 

P r o  of. Suppose that M E  4 , .  By Proposition 2.1 and Theorem 2.3, part 
(ii), the probability measure y ,  (M) is strictly unimodal at 0 and belongs to 9. If 
y1 (M) = a,, then, by (2.6), b, (M) = 0, which yields the equality M = c6, for 
some c > 0. Suppose now that y ,  (M) # 6,. Then, by Proposition 1.3, the mea- 
sure y,  ( M )  is absolutely continuous on R+ with absoluteIy continuous positive 
density g (x) fulfilling for some a E [0, 1) condition (1.12) and b, (7, (M)) = oo . 
The last equality and (2.6) yield b,(M) = co. Denoting by g* (x) the almost 
everywhere derivative of g (x) and taking into account (2.3) we get, by standard 
calculations, 

M(dx) = c~'(1-eS)(g(x)+g*(x))dx, 
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which shows that the measure M is absolutely continuous on R , .  Since, by 
(2.31, 1; y-'M(dy)/g(x) tends to a positive limit as x -+ 0, relation (2.25) is an 
immediate consequence of (1.12). 

To prove relation (2.26) observe that, by Theorem 2.1, 
m 

( M )  (2) = c exp j K (x, 4 Q (dx) 
0 

with some c > 0 and 0 < Q (R,) d 1. Define the auxiliary measure U by setting 

U (dx) = x (1 - e-")- M (dx). 
Then ' " 

Since for every z > 0 

and 

we have, by (2.27), 

0 (zt)/o (t) -, Z- as t+O 

with b = 1 -Q ( R + ) E  [0, 1). Applying the classical Tauberian Theorem ([3], 
Chapter XIII,5) we get the formula 

where f is slowly varying at oo. Observe that ji y ~ ( d y ) / ~ ( [ O ,  x)) tends to 
a positive limit as x + a. Thus relation (2.26) is an immediate consequence of 
(2.28), which completes the proof. 

3. Autoregressive Laplace functionals. A family A, ( t  > 0) of probability 
measures on R is called autoregressiue if the mapping 

is continuous in the topology of weak convergence in 9 and for every pair 
u, t with U E ( O ,  t] there exists a measure ~ € 9  such that 

A, = A, * Q. 
The set of all such factors Q will be denoted by B(u, t). It is easy to check that 
the set 9 ( u ,  t) is compact, 

- 
lim 9(~, ,  tJ c 9 ( u 7  t), 
n+ m 
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where denotes the upper topological limit, u, + u > 0 and t ,  + t .  Moreover, 
for 0 < to  c t, < . . . < tn  the inclusion 

is true. Here dl a d ,  denotes the set of all measures p * v with , U E . ~ ~  and 
v € d Z .  

LEMMA 3.1. For auto~egressive families and every pair u, t with tk E (0, t] the 
set 9 ( u ,  t) contains an injhitely divisible probability measure. 

P r o  of. By (3.1) we may restrict ourselves to the case 0 < u < t. For every 
integer n we put 

Let QR,, E 24 (tk - tR,") (k  = 1, 2, . . . , n). By (3.3) the relation 

is true. Moreover, by (3.1) and (3.21, the triangular array e,,, (k = 1, 2, .. ., n; 
n = 1 ,  2 ,  . . .) consists of asymptotically negligible measures, i.e. for every se- 
quence k, of indices Mlling the inequality 1 < kn < n 

lim Q ~ , , ~  = 6,.  
n+ m 

By the compactness of 9 (u, t )  and (3.4) the sequence *]E= e k ,  contains a con- 
vergent subsequence. Its limit belongs to (u, t )  and is intinitely divisible ([3], 
Chapter XVII,7), which completes the proof. 

An autoregressive family A, ( t  > 0) is said to be strictly autoregressive if for 
every pair u, t with u E (0, t ]  the set 9 (u, t) consists of probability measures 
concentrated at single points. 

Given a random variable X we denote by distrX its probability distri- 
bution. For two independent random variables X and Y with distrX = p and 
distr Y = v we put p o  v = distrXE 

A family A, (t > 0) of probability measures on R is called muitipIicatively 
autoregressive if the mapping 

is continuous and for every pair u, t with u E (0, t ]  there exists a measure v E 9 
such that A, = I, o v. If in addition v is concentrated at a single point, then the 
family in question is called multiplicatively strictly autoregressive. 

Throughout this paper X ( t ,  m) ((t 2 0) will denote a nonnegative stochas- 
tic process with stationary and independent increments, continuous on the 
right sample functions, non-degenerate to 0 and fulfilling the initial condition 
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X(0, w )  = 0. Setting p, = distr X (t ,  w) (t 2 0)  we have the formula 

(2) = exp ( - t  ( M )  (2)) for some M E A!, . 

This uniquely determined measure M is called the representing measure for the 
process in question. We denote by % the class of all processes X(i, w )  with the 
above properties. 

A process X ( t ,  w) from O with the representing measure M is called stable 
if (M) (z) = C Z P  for some c > 0 and p ~ ( 0 ,  11. For p = 1 the process is deter- 
ministic,. i.e. X (& io) = ct with probability 1. 

Let X(t, w) be a process from X with the representing measure M. It is 
evident that for every a > 0  the process nX (t, w)  also belongs to 9". Denote by 
Ma its representing measure. Since (Ma) (2) = { M )  (az), we have the formula 

Two processes X (t, w) and Y ( t ,  w) from 2T are said to be independent if for 
all finite collections t,, t,, . . ., t, and u,, u,, .. ., u, of non-negative numbers 
the vector-valued random variables 

are independent. One can easily check that for independent processes X (t, w )  
and Y ( t ,  m) from X the composition Z(t, o) = Y(X(t, w), w)  also belongs 
to A?. Moreover, denoting by M, N and S the representing measures for 
X (t, a) ,  Y (t, w) and Z (t, o) ,  respectively, we have the formula 

It was proved in [5], Example 3.4, that for every process X(t,  EX and 
t > 0 the random Laplace functional J," e-'X('*")dz is finite and positive with 
probability 1. Introduce the notation 

00 

V, = distr 1 e-fX(r+"l dr (t > 0). 
0 

The aim of this section is to describe processes X (t, w )  from X in terms of their 
representing measures for which the family v, (t > 0) is multiplicatively autore- 
gressive. 

EXAMPLE 3.1. Let X(t,  w) be a stable process from X with < M )  (z) = czP 
for some c > 0 and p ~ ( 0 ,  11. It was shown in [ 5 ] ,  Example 4.1, that the 
probability distribution (3.7) is given by the formula 
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where a( t )  = ( ~ t ) - ~  and op is the probability distribution with the Laplace 
transform 

It is clear that the family v, is multiplicatively strictly autoregressive. 

THEOREM 3.1. Let X(t, w) be a processfiom !l with the representing mea- 
sure M.  Then thefamily of probability distributions of the random Laplace func- 
tional j: e-'xcri")dz ( t  > 0)  is multiplicatively autoregressive if and only if 
M E A ' ~ .  If it is the case the probability distribution 

belongs to the class 2' and far non-deterministic processes is absolutely continuous 
an R with continuously diflmentiable density. Moreover, if (M) = [c ,  Q], then 

for some b , ~  R and 

Pro o f. Let X I t ,  a) be a process from 3 with the representing measure M. 
Given a > 0 we denote by Ma the representing measure for the process 
aX(t, a). By (2.10) and (3.5) we have 

Taking into account the above formula and applying Theorem 3.1 of [6] we get 
the equation 

with some at E R and the measure I7 defined by (2.7). Since, by (1. I ) ,  the Fourier 
transform of the right-hand side of the above equation is everywhere Merent 
from 0, we conclude that 

First we shall prove the sufficiency of our condition. Suppose that M ME A, 
and ( M )  = [c, Q]. Put N,  = 17 - z, ( M )  for t > 0. By Lemma 2.3, inequality 
(2.17), N ,  is a non-negative measure on R+ and, by (2.15), formula (3.9) is true. 
Now, by (3.10) and (3.11), we get formula (3.8) with b, = -a,. Given a pair u, t 
satisfying the condition U E ( O ,  t ]  ,we put S,,, = Nu-N, .  By Lemma 2.3, in- 
equality (2.16), we infer that S,, are non-negative measures on R + .  More- 
over, by (3.8), 
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which shows that the family p, is autoregressive. Hence it follows that the 
family v, is multiplicatively autoregressive. Observe that formula (3.9) can be 
rewritten in the form 

N,(dx) = ~- ' ( l -e-")~k,(x)dx,  
where 

k , ( x )  = (ex-1)-l(1-Q([O, t- '4)). 

It is clear that the function kt is non-negative non-increasing on R ,  and fulfils 
the condition 

1 m 

Consequently, by (1.31, p, E 2'. If the process in question is non-deterministic, 
then Q ({O)) < 1. Consequently, kt(O +) = m and kt (u) du = m. Applying 
Theorem 1.3, part (xi), of [4] we conclude that the measure pt is absoluteIy 
continuous on R with continuously differentiable density. 

To prove the necessity of our condition suppose that the family v, defined 
by (3.7) is multiplicatively autoregressive. Consequently, the family p, is autore- 
gressive. Applying Lemma 3.1 we conclude that for every u E (0, 11 there exist 
C,E R and S, EJY such that 

Setting the above expression into (3.10) for t = 1 we get the equality 

Comparing this with equality (3.10) for t = u and taking into account (3.11) we 
get the formula 

which yields z, (M) + S, = z, (M). Thus z, (M) < z, (M) for u E (0, 11, which, by 
Theorem 2.3, part (iii), shows that M E A ~ .  The theorem is thus proved. 

THEOREM 3.2. The family ofprobability distributions of the random Laplace 
functional on' a process X (t , w) from X is metltiplicatiuely strictly autoregressive 
if and only if X(t,  w) is stable. 

Proof .  The sufhiency of our condition is established in Example 3.1. To 
prove the necessity we assume that the probability distributions of the random 
Laplace functional on X(t,  w) form a multiplicatively strictly autoregressive 
family. Hence it follows that the family of probability distributions 
distrl," e-tXf',")d~(t > 0) is strictly autoregressive, which, by Theorem 3.1, for- 
mulae (3.7) and (3.8), yields the equality Q([O, t - ' ~ ) )  = Q([O, u-'x)) for all 
x > O a n d O ~ u d t . H e n c e Q = p 6 , . S i n c e O < Q ( R + ) ~ 1 , w e h a v e O < p ~ 1 .  
Thus (M) (z) = [c, Q] (z) = czP, which shows that the process in question is 
stable. The theorem is thus proved. 
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As an immediate consequence of Theorems 2.2 and 3.1 and formula (3.6) 
we get the following statement: 

THEOREM 3.3. The composition of two independent processes ftom 9" with 
~nultipliclatively autoregressive random Laplace functionals also has mtsltiplica- 
tively autoregressive Laplace functional. 

We conclude this section with some examples. 

EXAMPLE 3.2. Poisson process. The probability distributions p, are given by 
the formula 

with some c 3 0. Here we have M = c (1 - e - ' )  6, which, by Theorem 3.1, 
shows that family (3.7) is not multiplicatively autoregressive. 

EWLE 3.3. Gamma process, The probability distributions p, ( t  > 0) are 
given by the formula 

T ~ U S  (z) = (1 + 2)-' and (M) (z) = log (1 + z). Setting Q = f b  P, df we have 

which shows that 1 ((M)) E V. Since E((M)) (0 +) = 1, we conclude, by Theo- 
rem 2.1, part (iv), that (M) or, equivalently, M  €do. Thus, by The- 
orem 3.1, family (3.7) is multiplicatively autoregressive. 

EXAMPLE 3.4. Bessel process. The probability distributions p, and the re- 
presenting measure M  are given by the formulae 

where I, denotes the modified Bessel function of the first kind ([3], Chap- 
ter XIII,7). Setting s (z) = 1 + z + (z2 + 22)'12 we have p, (z) = s (z)-' and 
( M )  (z) = logs (2). Let K ,  denote the modified Heinkel function defined by the 
formula 

for p being not an integer ([I], Chapter 7.2, formula (13)) or by the integral 
representation 
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for p > - 1 2  and XE(O, a) ( [ I ] ,  Chapter 7.3, formula (15 ) ) .  It is clear that 
K,(x)  > 0 for XE(O, m) and p 3 - 1/2. Put for x > 0 

1 

q (x) = IT-' eCx 1 K,(x)  (sin pn) d p  
0 

and Q (dx) = q (x) dx.  From formula (18) in [I], Chapter 7.7, we get 

m 

1 eCZx e-x I ,  (x) d x  = {z2 + 22)-112 s ( 2 ) - P  for p > - 1 ,  
0 . . 

which together with (3.12) yields 

Q (n) = z ' ~ ~ ( z + ~ ) - ~ ~ ~ ( ~ o ~ s ( z ) ) - ~  = Z({M))(z ) .  

Thus I ((M)) E 48. Since E{(M)) (0 +) = i, we conclude, by Theorem 2.1, part 
(iv), that (M) E $Yo or, equivalently, M E  A!, . Thus, by Theorem 3.1, family (3.6) 
is multiplicatively autoregressive. 

EXAMPLE 3.5. Gamma Poisson process. The probability distributions p, 
depend upon a positive parameter s and are given by the formula 

tn , - X X 6 - I  

GFn), where G, (dx) = dx . 
r (4 

Consequently, the representing measure M ,  is given by the formula 

which yields < M )  (2) = 1 - { I +  z)-'. 

First we shall prove the relation 

It is easy to verify that the function 

is non-negative on R +  and 

00 

e - -h (x )dx  = 4 ~ ( l + z ) - ~ ( ( l + z ) ~ - l ) - ~  = l ( ( M 4 ) ) ( z ) .  
0 

Consequently, 1 ((M,))E%',. Since 1 ( (M, ) ) (O+)  = 1, we infer, by Theorem 2.1, 
part (iv), that ( M 4 )  EL@,,. Relation (3.13) is thus proved. 

Given r E (0, 11 we put 

y ( z )  = ( r+z ) - I  and W,(z)  = ( l ~ ~ ( l + z ) ) - ~ ( ( l + z ~ - l ) - r .  
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I t  is clear that KEY. Taking into account the formulae 
1 - r  r 

U,(z)= j ( l + ~ ) - ~ d y ,  K ( z ) = S ( l + ~ ) ~ d y - r  
0 0 

we conclude that U, E V and W, E g. Consequently, the superposition 

beIongs to V ([3], Chapter XIII,4). Since 

. . G ( z = ' r z ( l + i ( l + - ) l = l ( F r ) ( z )  and E(Fr) (O+)=l ,  

we infer, by Theorem 2.1, part (iv), that F ,  E A'O. Taking into account (3.1 3) and 
applying Theorem 2.2 we conclude that the superposition ( M , )  (F, (4) belongs 
to B, for every r ~ ( 0 ,  11. Observe that 

and, consequently, M ,  E AD for s E (0, 41. 
Now we shall prove the converse implication. Suppose that M , E ~ ~ .  

Then, by Theorem 3.1, the probability distributions 
w 

p, = distr (-log 1 e - tX(T~")dz  ) 0 > 0 1  

are infinitely divisible, which, by Proposition 4.1 of 161, yields the relation 
S E ( O ,  41. Consequently, by Theorem 3.1, family (3.7) is multiplicatively autore- 
gressive if and only if s E (0, 41. 
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