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Abstract We obtain an almost sure convergence limit theorem 
for independent nonidentically distributed random variablcs. Lct S,, 
n 2 1, be the partial sums of independent random variables with zero 
means and finite variances and Iet a (x )  be a real function. We present 
sufficient conditions under which in logarithmic means U ( S , , / ( E S ~ ) ~ ' ~ )  
converges almost surely to jmma(x)d@(x). 

1. Hntroduction. Let {X,, n 2 1)  be a sequence of independent random 
variables, defined on some probability space (9, d ,  P), such that EX, = 0 and 
EX;=a;T:<co, n 2 1 .  

Let us put 

S , = O ,  & = X I +  ...+ Xn, V i = E S i .  

It is well known that under some additional assumption 

where @ denotes the standard normal distribution. But for mathematical statis- 
tics it may be of some interest whether assertions are possible for almost every 
realization of the random variables X,, n 2 1. Namely, for x EW we denote by 
S ,  the probability measure on R which assigns its total mass to x. Let us 
observe that the distribution function of S jI.', is just the average of the random 
measure 6sn(,,1,, with respect to P, i.e., for every A E B ( R )  

Of course, for every w EQ, {Ss,(,),,,, n  2 1) is a sequence of probability mea- 
sures on the space (R ,  B(R)). Moreover, under the assumptions of Theorem 2 
of Rodzik and Rychlik [S], P-as. 
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where 5 denotes the weak convergence of measures on (R ,  a@)). Thus we 
form time averages with respect to a logarithmic scale and prove almost sure 
convergence for the resulting random measures. 

In this paper we present sufficient conditions under which P-a.s. 

(1.2) (log VZ)-l (CT;/V~~) a (Sk (w)/h) + j a (x) d @  (x) as n + co 
k =  1 -03 

for a real function a ( - )  which is almost everywhere continuous and la(x)l 
< exp(yx2) for some y < 114. Of course from (1.2) we easily get (1.1). 

The almost sure version of the central Iimit theorem has been studied by 
many authors in the case where (X,, n 2 1) is a sequence of independent or 
weakly dependent and identically distributed random variables. In this case, 
(1.1) and some extensions of (1.1) have been considered by Schatte [9], Bro- 
samler [3], Lacey and Philipp [S], Atlagh and Weber [I], Berkes and Dehling 
[2], Peligrad and Shao [6]. The assertion (1.21, in the case of independent and 
identically distributed random variables, has been considered by Schatte [lo]. 
Thus the main result presented in this paper extends Theorem 1 of [lO] to the 
case of nonidentically distributed random variables. In the proofs we shall also 
follow the ideas of [lo]. 

2. Results. We shall now state the main results of the paper. 

THEOREM 1. Let {X,, n 2 1) be a sequence of independent random variables, 
dejined on (a, d ,  P), with EX,  = 0 and 0 < EX: = cr: < CQ, n 2 1. Define, 
for n 2 1 ,  Sn = X1 + .. . +X,, V: = ES?. Let a (x )  be a real function which 
is a.e. continuous and for which la (x)l < exp (yx2) for some y < 1/4. Assume 

(2.1) ( max ai)/V: + 0 as n + ao , 
16k6n 

and for some positive, nondecreasing real function f on R', such that the 
function f(x)/x is nonincreusing on R', 

(2.3) lirn (log V:)-' (cr;/V:) (f (v~)/v,$" (log v:)'~~' 2y)+1  = 0, 
n+ m k =  1 

and 
a, 

(2.4) 2 (f(v:))-'EX:I(X: .f(v:)) < W. 
n = f  

Then 

(2.5) P ( lirn (log v:) - (~$1 v:) a (Sk/&) = j .a (x) dB (x)) = 1 .  
11'00 k =  1 -03 
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Let us observe that, in general, (2.2) does not imply (2.3). For example, if 
y > 0 and Vi = n, n 2 2, f (x) = x/(log x ) ~ ,  then (2.2) holds. But 

1 
- < (1ogN)-I x ' ( l o g N ~ ) ~ ~ d x  = ( 3 y + l ) ' ( l o g ~ ) ~ ~ + ~ ( l o g N ) - l +  o~ 

l i N  
as N + m .  

. . 

On the other hand, in general, (2.3) does not imply (2.2) either. For exam- 
ple, if -4 < y < 0 and V: = n, n > 2, f (x) = ~( logx)-~-Y,  then 

(log n) (f (n)/n)ll" = (log n)-lP+ m as n + m , 
and 

= (7y/8 + 1)-l ((log N)7Yi8+1- (log2)7ytst1)(logN)-1 + 0 as N -+ oo. 

We also note that if y < 0, then (2.2) implies (2.3). This is a consequence of 
the Toeplitz lemma. 

Now let us observe that if (2.2) and (2.4) hold, then 

(2.6) X ,  (2 log log V,2)'I2/r/, -+ 0 a.s. as n + co . 

Namely, we have 

m 

C P (v; 1X.I (2 log log V.')'i2 2 (2 loglog V:)"' (f (v~)/v:)~") 
n = l  

Since, by (2.2), (2loglog ~:)l/'(f (v:)/v.~)"' + 0 as n + m, it follows that 
(2.6) holds. 

On the other hand, by (2.4) and Kronecker's lemma 

Let us put 

Then, taking into account the assumptions concerning the function f, 
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we get 

Hence, by (2.Q there exists an E > 0 such that L, (8) + 0 as n -+ co; in fact, 
for every s >, f (a:)/a: 

(2.8) L,(E)+O as n j c o .  

Thus, by (2.61, (2.8) and Lemma 2 (ii), every sequence (X,, n 2 1) satisfying 
the assumptions of Theorem 1 satisfies also the central limit theorem. 

COROLLARY 1. Under the aswmptions of Theorem 1 with some 0 < y < 1/4, 
for every Q > 0 

n 

P(lim (log ~ , 2 ) - ~  C (u: S ~ Q / V ~ ~ Q + ~ ) )  = 2Q ( - l I 2  r(, +I - 1 
n-t co 

XI a)) - 
k =  1 

and 
n 

THEOREM 2. Let (X,, n 2 1) be a sequence of independent random variables, 
defined on (52,  d ,  P), with E X ,  = 0, 0 < EX: = c2 < oo, n > I .  If; for some 
O < r < l ,  

then for every real function a(x) which is a.e. continuous and la(x)l < exp(yx2), 
Y < 1/4, 

(2.10) P (lim (log n)-I C k-l a (S&kll" = J a (x)  d 8  (x)) = 1. 
n + m  k = I  - m  

COROLLARY 2. Let {X,, n 2 1 )  be a sequence of independent random varia- 
bles, deJined on (a, d ,  P), with EX,  = 0, 0 < EX: = a2 and E IX,J2' 
= f i z+a  < a, n >, 1, for some 6 > 0. If a(x) is a real function which is a.e. 
continuous and la(x)l < exp(yx2) for some y < 114, then (2.10) holds and 
for euery Q > 0 
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3. Auxiliary lemmas. The proof of Theorem 1 is based o n  a martingale 
form of the Skorokhod representation theorem and on the Tomkins law of the 
iterated logarithm. 

We present these results for the convenience of the reader. 

LEMMA 1 (Strassen [ll], Theorem 4.4). Let (X,, n 2 1 )  be a sequence 
of random uariables such that, for aII n, E (X: lX1, . . ., Xn-  is deJined and 
E (X,IX,, . . ., XnP,) = 0 P-as. Put 

S , = C X i  a d  K =  CE(XT(X1 ,..., Xi- l ) ,  
. . ism i < n  

where, in order to avoid trivial complications, we assum Vl = EX: > 0. Let f be 
a positive, nondecreasing real function f on R+ such that the function f{x) lx is 
nonincreasing on Rf. Assume that T/, -, m P-a.s. as n -, oo and 

Let S be the (random) function on Rf v { O )  obtained by interpolating S, at 
in such a way that S(0)  = 0 and S is constant in each (V,,  V,,,,) 

(or, alternatively, is linear in each {K, K+,)). Then without loss of generality 
there is a Brownian motion ( W(t), t 2 0) such that, as t + co, 

LEMMA 2 (Tomkins [12], Theorem 3.1). Let (X,, n 2 1) be a sequence of 
independent random variables such that EX,  = 0 and EX: < oo, n 2 1. DeJine, 
for n 2 1, S, =XI+ ... +X,, V;5. = ES;, t,2 = 2loglogV~,  and the Lindeberg 
function 

n 

Suppose that 

(3.3) t,XJT/,+Oa.s. and C Q  a s n j o o .  

(i) The functions 

L - ( E )  = lim inf L, ( E )  and L + ( E )  = lim sup L, js) 
n+ m n+ m 

are both constant functions, and 

( 1  -L+ (E))'" 4 limsup S,J(l$tn) < ( 1  - L -  ( € ) ) ' I 2  a.s. for every E > 0. 
n+ m 

(ii) If limn,, L,(E) = 0 for some E > 0, then the CLT holds. 
(iii) Let EX: = o(v,~). If  the CLT holds, then 

lim sup Sn/(t,V,J = 1 P-a.s. 
n-m 
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4. Proofs of theorems. The symbol C, with or without subscripts, denotes 
a positive generic constant. 

! 
! P r o  of of The or  em 1. Assume that a ( x )  = I ( -  ,,,, (x )  is the indicator 

function of the interval (- a, u). Let (X,, n g 1) be a sequence of independent 
and normally distributed random variables with zero means and variance c;, 
n 2 1. Then S,/V, is normally distributed with zero mean and variance one. 

Let, for j < n, Sj,n = Sn-Sj  and 

(4-1) gjn = E {(It- m,ul ( s j /F)  - @ (u)) ( I ( -  m,u~ (sn/'Kl- @ (~1)) 3 

where, and in what follows, @ (u) = @ ((- a, u)). Then S j ,  is independent of 
S j  and'normally distributed with zero mean and variance V;,, = V i  - V ; .  Fur- 
thermore, 

and so, by (4.1) and (4.2), 

U 

= (24-I/2 1 exp (- x 2 / 2 )  (@ ( (uK - xVj) /~ j , , )  - @ (u)] dx. 
- m 

On the other hand, by the inequalities (3.3) and (3.4) of Petrov [7], p. 161, 
for every x and u we get 

since T/,/4,, - 1 G F / Q , ,  . Hence, by (4.3) and (4.4), 

where C is an absolute constant. 
It is evident that I~j~l Q 1. Hence, by (4.5) 

where An = ( j :  vf < V:/2) and 3, = ( j  d n: vf > V:/2) -  
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Note also that 

for every j such that V; < ~ $ 2 .  Hence 

Consequently, combining the results from (4.3) down, we get 
iv 

(4.6) E ((log J's-' (CJ,?/v:)(l,- m , u ~  (&/K) - @cu))]' 
n= 1 

N n ~ 3 ~ 2 ,  

Define an increasing sequence of integers (Nk, k B 1) by Vik < 2k2 
< Vik+ l. Since a: = o (V:), as n + my entails V:+ - Vi, necessarily 

and so V i k - 2 k 2  as k+m.  
Hence we infer by combining Chebyshev's inequality, (4.6) and the Borel- 

Cantelli lemma that P-as. 

N k  

(4.7) (log v -  / ( -  K -  @ ( 1 )  + 0 as k -, m. 
n = l  

On the other hand, for Nk < N  < Nk+, we have (log V;)-' G (log v~J - '  and 

N 

(log ~ $ 1 -  1 ( d I V 3  (4 - *,UI (sn/K) - @ (4)I 
n = N k +  1 

Nk+ 1 N k ~ l  "av$k+I 

< (log Vi3-l  (ci/v:) < (log 'ik)-' c 
n = N k +  1 
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Consequently, by (4.7), we get P-a.s. 

N 

(4.8) (log v V )  ( I  S )  @ ( + 0 as n + m. 
n = l  

Thus the case where a (x) = ll - ,,,, (x) and Xn, n 2 1, are normally dis- 
tributed is considered. 

If X,, n 2 1, are not normally distributed, then by Lemma 1 

where {W(t),  t 2 0) is a standard Brownian motion and E, (a) + 0 as n -, oc for 
almost all ~ E Q .  

Let 
rl. = e = sup I E ~  (m)l (log vt) (f (v:)/v:)'". 

kbn 

Then, by (4.9) and (2.2), 

Let e > 0 be given. Using (4.10) and (4.8), it is easy to see that 

for sufficiently large N and suitable M = M (N). Similarly, the left-hand sum 
can be bounded below, so that (4.8) is established for X,, n 2 1, not necessary 
normally distributed, too. 

Let now a(x) = exp(yx2), y < 1/4, and let {X,, n 3 1) be a sequence of 
independent and normally distributed random variables with zero means and 
variance a:, n 2 1. Then 

Ea (S,/T/,) = (1 - 2y)-'I2. 
We set 

hjn = E ((a (Sj/Vj)- (1 -2y)-'I2) (a (S JV,)- (1 -2y)-li2)]. 

Then, taking into account (4.2), we conclude that 

co m 

(4.11) hi, = (2x1- ' j j exp {yx2 + y [xVj + yQ,,I2/vi - (x2 + y2)/2} dxdy 
- m  - m  
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x exp ( ( y  --+I (xZ + yZ)) dxdy. 
Since (x.5," - y VJ2 2 0, we have 

I 

x2 vj2 + 2xy55,, - y2 vf < xZ v: . 
On the other hand, lexp (x) - 11 6 1x1 (exp x + 1). Hence, for j < n 

x exp ((27 - 1/21 (xZ + y2)) dxdy 

so that for every 1 < j 6 n, n 2 1, lhjaJ < C. Furthermore, by the same inequali- 
ty we get I&l < C(c/J$,.). 

j Thus, as in the case a(x) = I ( -  ,,,, (x), we get P-as. 

Nk 

(log v;J-~ C (cT,~/V,~) {exp (yS,Z/V,2) - (1 - 2 ~ ) - ~ / ~ 5  -) 0 as k + a, 
n = l  

where (NA, k 2 1) is the sequence defined above. Moreover, by the law of the 
iterated logarithm, Theorem 1.106 of Freedman [4j, we have P-as. 

(4.12) exp (ySi/V;) < (log V,2)y+114 

for sufficiently large n. Hence for Nk < N < Nk+l we have (logV;)-l 
< (log ViJ  - l and 

Nk+ 1 

(log v;,)- C (u,2/V,2) lexp (ySi/V,2) - (1 -2~)-''~1 
n=Nk+l 

2 y -  112 < C (log v;k)7-3/4 (log vg,, , -log vik) G Clk . 

Thus P-a.s. ' 
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If X,, n 2 1, are random variables not normally distributed, then 

(4.13) I ~ X P  bS,Z/V,2)- ~ X P  (Y w2 (V,2)/V,2)( 

G (2 Iyl/V,2) IS,- W(V,2)I Inax {ISnI expty5,2/V,2)3 IW(V3l exp (Y WZ (V,2)/V,2)) a 

'But, under the assumptions of Theorem 1, (2.6) and (2.8) hold, so that by 
Lemma 2 (ii) and (iii) 

lim sup ISnl 
= 1 P-a.s. 

n-+ m (2V: log log Vt)1/2 

Thus, by (4.9), Theorem 1.106 of Freedman [4] and (4.14), the right-hand 
side of inequality (4.13) can be bounded by 

for sufilciently large a. Since (2.3) holds and E,  4 O P-a.s., as n + a, so that (2.5) 
also holds for a (x) = exp (yx2), y < 1/4. 

Let now a(x) be a function satisfying the assumptions of Theorem 1. Then, 
similarly to Schatte [lo], we introduce an auxiliary function a, (x) which van- 
ishes for 1x1 > K and is in each of the intervals 

equal to the supremum of a  (x)- exp(yx2) in these intervals. Let 
a,(x) = a ,  (x)+exp(yx2) and choose first K and then L large enough so that 

m m 

a2 (x) d @  (x) < j a (x) dQj (x) + r/2. 

This is possible since a (x) is continuous a.e. and, therefore, Riemann-Stieltjes 
integrable with respect to 8 (x). Obviously, a (x) < a, (x) for every real number x. 
The function a, (x) is a finite linear combination of the special functions already 
considered in the proof. Thus 

for sdciently large N and almost all w. Replacing a(x) by -a(x) we obtain 
the assertion of Theorem 1. 

P roof  of  Theorem 2. Let us observe that, under assumptions of Theo- 
rem 2, V; = aZn, n 2 1. On the other hand, for every 0 < r < 1, the function 
f (x) = 1x1' satisfies the assumptions of Theorem 1. Thus Theorem 2 is a con- 
sequence of Theorem 1. 
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P r o o f  of  Corol la ry  2. Let us observe that for every S > 0 there exists 
an r such that 0 < r < 1 and (2.9) holds. In fact, for every n >, 1 

Thus it is enough to take 2/(2+ 6) < r < 1, so that Corollary 2 is a consequence 
of Theorem 2. 
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