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Abstract. We show that a random variable X lies in the strict 
domain of attraction of a non-degenerate strictly stable random var- 
iable Z with exponent ~a]O,2 [  iff the q-transform of X lies in the 
strict domain of attraction of m Z  for some constant m depending on 
q and a with the same norming sequence. 

1. Itrodastioo. q-algebra and q-analysis (0 < q < 1) on the real line may 
be interpreted as a generalization of ordinary addition, which (roughly speak- 
ing) corresponds to the case q = 1. However, it is not possible to define 
q-addition directly on the real line itself, but rather indirectly on the space of 
measures on R in the sense that the q-convolution of two Dirac measures is in 
general not a Dirac measure (in the ordinary sense). So the whole theory is 
somewhat similar t o  hypergroups (cf. Bloom and Heyer [I]), but it does not fit 
exactly into this context. 

Feinsilver [3] began a probabilistic study on q-added random variables. 
In the last part of his paper, he initiated an investigation of limit theorems for 
q-sums of random variables. The purpose of this note is to give a lurther 
contribution to this subject. We will show that a random variable X lies in the 
strict domain of attraction of a non-degenerate strictly stable random variable 
Z with exponent ~ ~ 1 0 ,  2[ iff the q-transform of X lies in the strict domain of 
attraction of mZ for some constant m depending on q and ol with the same 
norming sequence. The proof consists essentially of getting rid of the centering 
constants appearing in the case of ordinary addition and of a desintegration 
procedure for the "only if' direction. 

2. q-addition. Let 0 c'q < 1. We first give some definitions on q-algebra 
(see e.g. Feinsilver and Schott [4] and Koornwinder [7]). The q-natural num- 
bers qk are given as 
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Consequently, one defines the q-factorial as 

k 

jk)! : = qi 
i =  1 

and the q-exponential function e(x) is defined as 

whereas the" q-derivative is given by 

Now one defines q-addition (indirectly) by defining a Dirm measure a,,, by 

(cf. Feinsilver 131, IV). The q-convolution of measures p~ kfb (R)  is then ex- 
tended from the q-convolution of Dirac probability measures as indicated 
above also in the natural way by linearity and weak continuity. 

The q-characteristic function of 9 ( X )  for the random variable X is de- 
fined by 

Jlx(u):=E(e(iux)) (uER). 

The symbol qx(u) will be used for the ordinary characteristic function. It has 
been shown by Feinsilver [3] (Theorem 3) that 9 (X) is uniquely determined 
by its q-characteristic function $x. Furthermore, if XI and X, are independent 
random variables, then the q-convolution of XI and X, is a random variable 
Z whose q-characteristic function is the product of the q-characteristic func- 
tions of XI and X2: t,bz = $X1 t,hX2 (cf. [3]). Define the random variable Y by 

where the are independent random variables, & obeying to an exponential 
law with mean @. Assume X is any random variable on R, independent of Z 
Then the q-characteristic function of X is the ordinary characteristic function 
of XY'. $, = qx, (cf. Feinsilver [3], Proposition 4). We will call XY the 
q-transform of X. If F(x)  = P (X d x)  is the law of the random variable X, then 
the law of the q-transform is given by the mixture 



So what we have to study are sums of the type 

where XI, X2, . . . are any independent random variables and Yl , , . . . are 
i.i.d., as in (I), and independent of XI, X,, .. . 

3. Damaim of attraction. First, we recall some facts on stable laws with 
respect to ordinary addition. As references, see e.g. Gnedenko and Kolmogorov 
[6] or Breiman [2]. A random variable Z is called stable if for every n  2 1 and 
i.i.d. copies Z , ,  Z, ,  . . .,-2!,, of Z there are cn > 0, d n f R  such that 

Equivalently, Z is stable iff there are i.i.d. random variables XI, XZ , . . . and 
a, > 0, b, E R such that 

(where 5 denotes weak convergence). If XZ XI, then X is said to lie in the 
domain of attractwn of 2. The sequence {(a,,, bn))nB1 is called a norming se- 
quence. We will use the term strictly stable if d,, = 0 and the term strict domain 
of attraction if b, = 0. It can be shown that there exists aE]O, 21 such that 

The number a is called the exponent of stability. The case a = 2 corresponds to 
the case where Z obeys to a normal distribution. Z is non-degenerate and 
stable with exponent a~ 10, 21 iff its characteristic function takes the form 

For short, we write Z f (a, y ,  v ,  w). It follows that for k E N, we have 

(a, k y ,  kv, kw) kllaZ. 

For the following lemma see Le Page et al. [8],  Remark 3 on p. 628. 

LEMMA 1. In the case 0 < a < l we have 

na,bn+b ( n j o o )  for some ~ E R .  

The next lemma follows also from Le Page et al. [8], Remark 3 on p. 628 
(see also Gnedenko and Kolmogorov [6], Theorem 35.3). 
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LEMMA 2. In the case 1 < a < 2 we have 

b + o ( l )  b, = - E ( X l ) + -  (n-,oo) for some b ~ & .  - 
nun 

What remains, is the case a = 1. This situation is somewhat special in the 
following sense. If U E ] ~ ,  1 [u] 1, 2[ and if Z is a-stable, then it is always 
possible to center Z so that it becomes strictly stable (see e.g. Sharpe [I l l ,  
Theorem 6). However, the following property follows at once by considering 
the characteristic function for a = 1 in the "explicit form" 

U - W  
( f l ~ R , q > O ,  0=-); 

u+w 

the centering statement then follows from Feller [ 5 ] ,  Theorem XVII.5.3. 

LEMMA 3, The only nnn-degenerate strictly stable laws p with exponent 
E = 1 are tke shgted (with shft bbR)  symmetric (Cauchy) ones (i.e. those with 
v = w). In this case, we have 

b+o(l) 
a, b, = - E (sin (a, XI)) f - 

n 

where ~ E R  is the aforementioned shift of 

The domains of attraction of stable laws with exponent 0 < u < 2 may be 
characterized as follows (cf. Meerschaert [lo], p. 344): 

PRo~os~no~ 1 .  For a non-degenerate stable random variable Z with ex- 
ponent 0 < a < 2 the relation (3) holds if 

Let X and Z be random variables. The q-transform of X lies in the strict 
domain of attraction of Z with norming sequence (a,) if for i.i.d. copies 
XI, Xz . . . of X and i.i.d. random variables Yl, Y,, . . . as in (1) and independent 
of XI, X2, ... there exist an > 0 such that 

n 

(4) xkyk:zm 
k = l  

LEMMA 4. ?he characteristic function of log Y is analytic in a neighborhood 
of the real axis. 



Proof .  By Feinsilver [3], the density of Y is given by 

hence the density of l o g y  is 

where 

Clearly, 

Since 

(7) - [ ! - j  e x +.u < -c."+.u < K (xER) ,  

i t  follows from (6) and (7) that the series in (5) converges uniformly for .YE R, so 
we get, by (5t(7), 

7. 

PIllog Yl > = h ( t )  dt ,< C ( C f exp ( - e1 + t )  clr 
R\[- x.x] j = 0  R : [ - x . a ]  

Now the assertion follows from Lukacs [9], Theorem 7.2.1. rn 

For fixed x and Y as in (I), define the constant m :=  (EY")'IX 

THEOREM 1 .  Let Z he a non-degenerate strictl~? st~lhle rundom variilhle with 
exponent 0 < a < 2 and ler X be any random r!ar.icrble. Then tile cptr.ii~~.!fiwr?z of' 
X lies in the srricr domain ofattraction qf mZ with norming sequence ~a,,),,s,, (ff 
X lies in the strict domain of attraction of Z with norming sequence [ L I , , ) , , ~  [ .  

Proof .  I .  " I f '  d i r e c t  ion.  Assume X lies in the strict domain of attraction 
of Z with norming sequence {a,)n2 Let Y,, Y,, . . . be as in (4). By Gnedenko 
and Kolmogorov [6j, Theorem 25.1 and the Remark on p. 121, it follows that 
the conditions (iHiii) mentioned before Proposition 8 in Feinsilver [3] are 
indeed fulfilled. Hence, by [3], Proposition 8, the condition of our Proposi- 
tion 1 carries over to the q-transforms (2) of X , ,  X2, . . . in the sense that X Y 
lies in the domain of attraction of mZ with some norming sequence tun, h,,) ,> 
for certain b, E R. 

1.1. C a s e  0 < r < 1 .  By Lemma 1 it follows that X Y lies in the strict 
domain of attraction of m Z - b  for some ~ E R .  By the convergence of types 
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theorem (see e.g. Breiman [2], Theorem 8.32) it follows that mZ- b is also 
strictly a-stable; hence b = 0. 

1.2. Case 1 < a < 2. By Lemma 2 it follows that 

for some ~ E R .  Hence also 

nu, E (XY) + bE (Y) (n + a). 

So it follows'from Lemma 2 that XY lies in the strict domain of attraction of 
mZ - b'+ bE (Y) for some b, b ' ~  R and the rest of the proof is as under 1.1. 

1.3. Case a = 1. By Lemma 3 it follows that 

nE (sin (a, X))  + b (n + a), 

where ~ E R  is the shift of Z as in Lemma 3. Hence, by the dominated conver- 
gence theorem, Proposition 1, and the stability property, we get 

m 

Iim nE (sin (a, x Y)) = lim j nE (sin ((a,, y) X)) Y ( Y) (dy) 
n-m n-m 0 

= bE(Y)  = mb.  

So by Lemma 3 it follows that XY lies in the strict domain of attraction of mZ. 

"Only i f '  direction. By Proposition 1 it follows that 

and thus 
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where J is an interval of the form ] - m, x] (x < 0) or [x, cot Qx > 0). Let 
q and q, denote the finite measures on 30, m[ g~ven by 

and 

for Bore1 subsets c 10, a[. Define A and A, to be the finite measures on 
R given by - 

and 

for bounded real-valued continuous functions on B. Let H be the distribution 
function of log E: By the "basic estimate" in FeinsiIver 131 and (8) it follows (as 
in the proof of [3], Proposition 8) that 

Let c(u), c, (u), and ( (u )  be the characteristic function (in the ordinary sense) of 
A, A,, and H, respectively. Then (9) may be rewritten as 

By Lemma 4,5 is analytic in a neighborhood of the real axis, and hence it has 
only isolated zeros there. So we may divide (10) by 5 (u) for all real u with the 
exception of isolated points, and of course in a neighborhood of u, = 0. Thus it 
follows from the L6vy continuity theorem and the continuity of [ that 

in(u)+5tu)(n+m) (uER), 
and hence 

&Jn ( n j ~ ) ,  
and thus 

An analogous argument holds also for the negative real axis; hence by Proposi- 
tion 1 it follows that X lies in the domain of attraction of Z with norming 
sequence {a,, bJnal for certain b,€R.  Now the same type of argument as in 
the proof of the "if' direction shows that one may replace b, by 0 by the 
strictness of the domain of attraction. 
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