A NOTE ON DOMAINS OF ATTRACTION FOR q-TRANSFORMED RANDOM VARIABLES

BY

DANIEL NEUENSCHWANDER (LAUSANNE) AND RENE SCHOTT (NANCY)

Abstract

We show that a random variable X lies in the strict domain of attraction of a non-degenerate strictly stable random variable Z with exponent $\alpha \in] 0,2[$ iff the q-transform of X lies in the strict domain of attraction of $m Z$ for some constant m depending on q and α with the same norming sequence.

1. Introduction. q-algebra and q-analysis $(0<q<1)$ on the real line may be interpreted as a generalization of ordinary addition, which (roughly speaking) corresponds to the case $q=1$. However, it is not possible to define q-addition directly on the real line itself, but rather indirectly on the space of measures on \mathbb{R} in the sense that the q-convolution of two Dirac measures is in general not a Dirac measure (in the ordinary sense). So the whole theory is somewhat similar to hypergroups (cf. Bloom and Heyer [1]), but it does not fit exactly into this context.

Feinsilver [3] began a probabilistic study on q-added random yariables. In the last part of his paper, he initiated an investigation of limit theorems for q-sums of random variables. The purpose of this note is to give a further contribution to this subject. We will show that a random variable X lies in the strict domain of attraction of a non-degenerate strictly stable random variable Z with exponent $\alpha \in] 0,2[$ iff the q-transform of X lies in the strict domain of attraction of $m Z$ for some constant m depending on q and α with the same norming sequence. The proof consists essentially of getting rid of the centering constants appearing in the case of ordinary addition and of a desintegration procedure for the "only if" direction.
2. q-addition. Let $0<q<1$. We first give some definitions on q-algebra (see e.g. Feinsilver and Schott [4] and Koornwinder [7]). The q-natural numbers q_{k} are given as

$$
q_{k}:=\sum_{i=0}^{k-1} q^{i}=\frac{1-q^{k}}{1-q}
$$

Consequently, one defines the q-factorial as

$$
(k)!:=\prod_{i=1}^{k} q_{i}
$$

and the q-exponential function $e(x)$ is defined as

$$
e(x)=\sum_{k=0}^{\infty} \frac{x^{k}}{(k)!},
$$

whereas the q-derivative is given by

$$
D_{q} f(x)=\frac{f(x)-f(q x)}{1-q x} .
$$

Now one defines q-addition (indirectly) by defining a Dirac measure $\delta_{x \oplus y}$ by

$$
\delta_{x \oplus y}(f):=\left(\delta_{x} * \delta_{y}\right)(f):=e\left(-(1-q) y D_{q}\right) f(x)
$$

(cf. Feinsilver [3], IV). The q-convolution of measures $\mu \in M^{b}(\mathbb{R})$ is then extended from the q-convolution of Dirac probability measures as indicated above also in the natural way by linearity and weak continuity.

The q-characteristic function of $\mathscr{L}(X)$ for the random variable X is defined by

$$
\psi_{X}(u):=E(e(i u X)) \quad(u \in \mathbb{R}) .
$$

The symbol $\varphi_{X}(u)$ will be used for the ordinary characteristic function. It has been shown by Feinsilver [3] (Theorem 3) that $\mathscr{L}(X)$ is uniquely determined by its q-characteristic function ψ_{X}. Furthermore, if X_{1} and X_{2} are independent random variables, then the q-convolution of X_{1} and X_{2} is a random variable Z whose q-characteristic function is the product of the q-characteristic functions of X_{1} and $X_{2}: \psi_{z}=\psi_{x_{1}} \psi_{x_{2}}$ (cf. [3]). Define the random variable Y by

$$
\begin{equation*}
Y:=\sum_{k=0}^{\infty} T_{k}, \tag{1}
\end{equation*}
$$

where the T_{k} are independent random variables, T_{k} obeying to an exponential law with mean q^{k}. Assume X is any random variable on R, independent of Y. Then the q-characteristic function of X is the ordinary characteristic function of $X Y: \psi_{X}=\varphi_{X Y}$ (cf. Feinsilver [3], Proposition 4). We will call $X Y$ the q-transform of X. If $F(x)=P(X \leqslant x)$ is the law of the random variable X, then the law of the q-transform is given by the mixture

$$
\begin{equation*}
G(x)=P(X Y \leqslant x)=\int_{0}^{\infty} F(x / y) \mathscr{L}(Y)(d y) . \tag{2}
\end{equation*}
$$

So what we have to study are sums of the type

$$
\sum_{k=1}^{n} X_{k} Y_{k}
$$

where X_{1}, X_{2}, \ldots are any independent random variables and Y_{1}, Y_{2}, \ldots are i.i.d., as in (1), and independent of X_{1}, X_{2}, \ldots
3. Domains of attraction. First, we recall some facts on stable laws with respect to ordinary addition. As references, see e.g. Gnedenko and Kolmogorov [6] or Breiman [2]. A random variable Z is called stable if for every $n \geqslant 1$ and i.i.d. copies $Z_{1}, Z_{2}, \ldots, Z_{n}$ of Z there are $c_{n}>0, d_{n} \in R$ such that

$$
Z \stackrel{\mathscr{L}}{=} c_{n} \sum_{k=1}^{n}\left(Z_{k}+d_{n}\right)
$$

Equivalently, Z is stable iff there are i.i.d. random variables X_{1}, X_{2}, \ldots and $a_{n}>0, b_{n} \in \mathbb{R}$ such that

$$
\begin{equation*}
a_{n} \sum_{k=1}^{n}\left(X_{k}+b_{n}\right) \xrightarrow{\mathbf{w}} Z \quad(n \rightarrow \infty) \tag{3}
\end{equation*}
$$

(where $\xrightarrow{\mathbf{W}}$ denotes weak convergence). If $X \stackrel{\mathscr{\mathscr { L }}}{=} X_{1}$, then X is said to lie in the domain of attraction of Z. The sequence $\left\{\left(a_{n}, b_{n}\right)\right\}_{n \geqslant 1}$ is called a norming sequence. We will use the term strictly stable if $d_{n}=0$ and the term strict domain of attraction if $b_{n}=0$. It can be shown that there exists $\left.\left.\alpha \in\right] 0,2\right]$ such that

$$
c_{n}=n^{-1 / \alpha} .
$$

The number α is called the exponent of stability. The case $\alpha=2$ corresponds to the case where Z obeys to a normal distribution. Z is non-degenerate and stable with exponent $\alpha \in] 0,2[$ iff its characteristic function takes the form

$$
\begin{array}{r}
\varphi_{Z}(u)=\exp \left\{i \gamma u+\left(v \int_{-\infty}^{0}+w \int_{0}^{\infty}\right)\left(e^{i u x}-1-\frac{i u x}{1+x^{2}}\right) \frac{d x}{|x|^{1+\alpha}}\right\} \\
(\gamma \in \boldsymbol{R}, v, w \geqslant 0, v+w>0)
\end{array}
$$

For short, we write $Z \stackrel{\mathscr{Q}}{=}(\alpha, \gamma, v, w)$. It follows that for $k \in N$, we have

$$
(\alpha, k \gamma, k v, k w) \stackrel{\mathscr{D}}{=} k^{1 / \alpha} Z .
$$

For the following lemma see Le Page et al. [8], Remark 3 on p. 628.
Lemma 1. In the case $0<\alpha<1$ we have

$$
n a_{n} b_{n} \rightarrow b(n \rightarrow \infty) \quad \text { for some } b \in \mathbb{R}
$$

The next lemma follows also from Le Page et al. [8], Remark 3 on p. 628 (see also Gnedenko and Kolmogorov [6], Theorem 35.3).

Lemma 2. In the case $1<\alpha<2$ we have

$$
b_{n}=-E\left(X_{1}\right)+\frac{b+o(1)}{n a_{n}}(n \rightarrow \infty) \quad \text { for some } b \in \mathbb{R}
$$

What remains, is the case $\alpha=1$. This situation is somewhat special in the following sense. If $\alpha \in] 0,1[\cup] 1,2[$ and if Z is α-stable, then it is always possible to center Z so that it becomes strictly stable (see e.g. Sharpe [11], Theorem 6). However, the following property follows at once by considering the characteristic function for $\alpha=1$ in the "explicit form"

$$
\varphi_{Z}(u)=\exp \left\{i \beta u-\varrho|u|\left(1+i \theta \frac{u}{|u|} \frac{2}{\pi} \log |u|\right)\right\} \quad\left(\beta \in \mathbb{R}, \varrho>0, \theta=\frac{v-w}{v+w}\right)
$$

the centering statement then follows from Feller [5], Theorem XVII.5.3.
Lemma 3. The only non-degenerate strictly stable laws μ with exponent $\alpha=1$ are the shifted (with shift $b \in \mathbb{R}$) symmetric (Cauchy) ones (i.e. those with $v=w$). In this case, we have

$$
a_{n} b_{n}=-E\left(\sin \left(a_{n} X_{1}\right)\right)+\frac{b+o(1)}{n} \quad(n \rightarrow \infty)
$$

where $b \in \mathbb{R}$ is the aforementioned shift of μ.
The domains of attraction of stable laws with exponent $0<\alpha<2$ may be characterized as follows (cf. Meerschaert [10], p. 344):

Proposition 1. For a non-degenerate stable random variable Z with exponent $0<\alpha<2$ the relation (3) holds iff

$$
n P\left(a_{n} X_{1}<x\right) \rightarrow v \int_{-\infty}^{x} \frac{d t}{|t|^{1+\alpha}}(n \rightarrow \infty) \quad(x<0)
$$

and

$$
n P\left(a_{n} X_{1}>x\right) \rightarrow w \int_{x}^{\infty} \frac{d t}{t^{1+\alpha}}(n \rightarrow \infty) \quad(x>0)
$$

Let X and Z be random variables. The q-transform of X lies in the strict domain of attraction of Z with norming sequence $\left\{a_{n}\right\}$ if for i.i.d. copies $X_{1}, X_{2} \ldots$ of X and i.i.d. random variables Y_{1}, Y_{2}, \ldots as in (1) and independent of X_{1}, X_{2}, \ldots there exist $a_{n}>0$ such that

$$
\begin{equation*}
a_{n} \sum_{k=1}^{n} X_{k} Y_{k} \xrightarrow{\mathbf{W}} Z \tag{4}
\end{equation*}
$$

Lemma 4. The characteristic function of $\log Y$ is analytic in a neighborhood of the real axis.

Proof. By Feinsilver [3], the density of Y is given by

$$
g(x)=C \sum_{j=0}^{x} \frac{(-1)^{j}}{(j)!} q^{(j)} \exp \left\{-q^{-j} x\right\} \quad(x \geqslant 0) ;
$$

hence the density of $\log Y$ is

$$
\begin{equation*}
h(x)=e^{x} g\left(e^{x}\right)=C \sum_{j=0}^{x} g_{j} \exp \left\{-q^{-j} e^{x}+x_{j},\right. \tag{5}
\end{equation*}
$$

where

$$
\varrho_{j}=\frac{(-1)^{j}}{(j)!} q^{\left(\frac{j}{2}\right)} .
$$

Clearly,

$$
\begin{equation*}
\sum_{j=0}^{x}\left|\varrho_{j}\right|<\infty . \tag{6}
\end{equation*}
$$

Since

$$
\begin{equation*}
-q^{-j} e^{x}+x \leqslant-e^{x}+x \leqslant K \quad(x \in \boldsymbol{R}) \tag{7}
\end{equation*}
$$

it follows from (6) and (7) that the series in (5) converges uniformly for $x \in \boldsymbol{R}$, so we get, by (5)-(7),

$$
\begin{aligned}
& P(|\log Y|>x)=\int_{R} h(t-x . x] \\
&=O\left(1-\exp \left\{-e^{-x}\right\}+\exp \left\{-e^{x}\right\}\right)=O\left(e^{-x}\right) \quad\left(\varrho_{j} \mid\right) \int_{R \backslash \infty} \exp \left\{-e^{t}+t\right\} d t \\
&
\end{aligned}
$$

Now the assertion follows from Lukacs [9], Theorem 7.2.1.
For fixed α and Y as in (1), define the constant $m:=\left(E Y^{x}\right)^{1 / x}$.
TheOrem 1. Let Z be a non-degenerate strictly stable random variable with exponent $0<\alpha<2$ and let X be any random variable. Then the q-transform of X lies in the strict domain of attraction of $m Z$ with norming sequence $\left\{a_{n}\right\}_{n \geqslant 1}$ iff X lies in the strict domain of attraction of Z with norming sequence $\left\{a_{n}\right\}_{n \geqslant 1}$.

Proof. 1. "If" direction. Assume X lies in the strict domain of attraction of Z with norming sequence $\left\{a_{n}\right\}_{n \geqslant 1}$. Let Y_{1}, Y_{2}, \ldots be as in (4). By Gnedenko and Kolmogorov [6], Theorem 25.1 and the Remark on p. 121, it follows that the conditions (i)-(iii) mentioned before Proposition 8 in Feinsilver [3] are indeed fulfilled. Hence, by [3], Proposition 8, the condition of our Proposition 1 carries over to the q-transforms (2) of X_{1}, X_{2}, \ldots in the sense that $X Y$ lies in the domain of attraction of $m Z$ with some norming sequence $\left\{a_{n}, b_{n}\right\}_{n \geqslant 1}$ for certain $b_{n} \in \boldsymbol{R}$.
1.1. Case $0<\alpha<1$. By Lemma 1 it follows that $X Y$ lies in the strict domain of attraction of $m Z-b$ for some $b \in \boldsymbol{R}$. By the convergence of types
theorem (see e.g. Breiman [2], Theorem 8.32) it follows that $m Z-b$ is also strictly α-stable; hence $b=0$.
1.2. Case $1<\alpha<2$. By Lemma 2 it follows that

$$
n a_{n} E(X) \rightarrow b \quad(n \rightarrow \infty)
$$

for some $b \in \boldsymbol{R}$. Hence also

$$
n a_{n} E(X Y) \rightarrow b E(Y) \quad(n \rightarrow \infty)
$$

So it follows from Lemma 2 that $X Y$ lies in the strict domain of attraction of $m Z-b^{\prime}+b E(Y)$ for some $b, b^{\prime} \in \mathbb{R}$ and the rest of the proof is as under 1.1.
1.3. Case $\alpha=1$. By Lemma 3 it follows that

$$
n E\left(\sin \left(a_{n} X\right)\right) \rightarrow b \quad(n \rightarrow \infty)
$$

where $b \in \mathbb{R}$ is the shift of Z as in Lemma 3. Hence, by the dominated convergence theorem, Proposition 1, and the stability property, we get

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n E\left(\sin \left(a_{n} X Y\right)\right) & =\lim _{n \rightarrow \infty} \int_{0}^{\infty} n E\left(\sin \left(\left(a_{n} y\right) X\right)\right) \mathscr{L}(Y)(d y) \\
& =\lim _{n \rightarrow \infty} \int_{0}^{\infty} y \frac{n}{y} E\left(\sin \left(a_{\lfloor n / y\rfloor} X\right)\right) \mathscr{L}(Y)(d y) \\
& =b E(Y)=m b .
\end{aligned}
$$

So by Lemma 3 it follows that $X Y$ lies in the strict domain of attraction of $m Z$.
"Only if" direction. By Proposition 1 it follows that

$$
\begin{aligned}
& n \int_{0}^{\infty} \int_{J} \mathscr{L}\left(a_{n} y X\right)(d t) \mathscr{L}(Y)(d y) \\
& \rightarrow m^{\alpha} \int_{0}^{\infty} \int_{J}(v \cdot \mathbb{1}\{t<0\}+w \cdot \mathbb{1}\{t>0\}) \frac{d t}{|t|^{1+\alpha}} \\
&=\int_{0}^{\infty} \int_{J}(v \cdot \mathbb{1}\{t<0\}+w \cdot \mathbb{1}\{t>0\}) \frac{d t}{|t / y|^{1+\alpha}} \mathscr{L}(Y)(d y) \quad(n \rightarrow \infty)
\end{aligned}
$$

and thus

$$
\begin{align*}
& n \int_{0}^{\infty} \int_{J} \frac{(t / y)^{2}}{1+(t / y)^{2}} \mathscr{L}\left(a_{n} y X\right)(d t) \mathscr{L}(Y)(d y) \tag{8}\\
\rightarrow & \int_{0}^{\infty} \int_{J} \frac{(t / y)^{2}}{1+(t / y)^{2}}(v \cdot \mathbb{1}\{t<0\}+w \cdot \mathbb{1}\{t>0\}) \frac{d t}{|t / y|^{1+\alpha}} \mathscr{L}(Y)(d y) \quad(n \rightarrow \infty),
\end{align*}
$$

where J is an interval of the form $]-\infty, x](x<0)$ or $[x, \infty[(x>0)$. Let η and η_{n} denote the finite measures on $] 0, \infty[$ given by

$$
\eta(B):=w \int_{B} \frac{x^{2}}{1+x^{2}} \frac{d x}{x^{1 / \alpha}}
$$

and

$$
\eta_{n}(B):=n \int_{B} \frac{x^{2}}{1+x^{2}} \mathscr{L}\left(a_{n} X\right)(d x)
$$

for Borel subsets $B \subset] 0, \infty\left[\right.$. Define λ and λ_{n} to be the finite measures on \boldsymbol{R} given by

$$
\int_{-\infty}^{\infty} f(x) \lambda(d x):=\int_{0}^{\infty} f(\log y) \eta(d y)
$$

and

$$
\int_{-\infty}^{\infty} f(x) \lambda_{n}(d x):=\int_{0}^{\infty} f(\log y) \eta_{n}(d y)
$$

for bounded real-valued continuous functions on \boldsymbol{R}. Let H be the distribution function of $\log \mathrm{Y}$. By the "basic estimate" in Feinsilver [3] and (8) it follows (as in the proof of [3], Proposition 8) that

$$
\begin{equation*}
\lambda_{n} * H \xrightarrow{w} \lambda * H \quad(n \rightarrow \infty) . \tag{9}
\end{equation*}
$$

Let $\zeta(u), \zeta_{n}(u)$, and $\xi(u)$ be the characteristic function (in the ordinary sense) of λ, λ_{n}, and H, respectively. Then (9) may be rewritten as

$$
\begin{equation*}
\zeta_{n}(u) \cdot \xi(u) \rightarrow \zeta(u) \cdot \xi(u)(n \rightarrow \infty) \quad(u \in \mathbb{R}) . \tag{10}
\end{equation*}
$$

By Lemma 4, ξ is analytic in a neighborhood of the real axis, and hence it has only isolated zeros there. So we may divide (10) by $\xi(u)$ for all real u with the exception of isolated points, and of course in a neighborhood of $u_{0}=0$. Thus it follows from the Lévy continuity theorem and the continuity of ζ that

$$
\zeta_{n}(u) \rightarrow \zeta(u)(n \rightarrow \infty) \quad(u \in \mathbb{R})
$$

and hence

$$
\lambda_{n} \xrightarrow{\mathbb{W}} \lambda \quad(n \rightarrow \infty),
$$

and thus

$$
\eta_{n} \xrightarrow{\mathbf{w}} \eta \quad(n \rightarrow \infty) .
$$

An analogous argument holds also for the negative real axis; hence by Proposition 1 it follows that X lies in the domain of attraction of Z with norming sequence $\left\{a_{n}, b_{n}\right\}_{n \geqslant 1}$ for certain $b_{n} \in \mathbb{R}$. Now the same type of argument as in the proof of the "if" direction shows that one may replace b_{n} by 0 by the strictness of the domain of attraction.

Acknowledgements. The first-named author would like to thank the University Henri Poincaré-Nancy I (CRIN and Institut Elie Cartan) for kind hospitality.

REFERENCES

[1] W. R. Bloom and H. Heyer, Harmonic Analysis of Probability Measures on Hypergroups, De Gruyter, Berlin 1994.
[2] L. Breiman, Probability, Addison-Wesley, Reading, Massachussets, 1968.
[3] Ph. Feinsilver, Generalized convolutions and probability theory based on the q-Heisenberg algebra, Proc. First World Congr. Bernoulli Soc., VNU Science Press, 1987, pp. 729-741.
[4] - and R. Schott, Algebraic Structures and Operator Calculus, Vol. III: Representations of Lie Groups, Kluwer, Dordrecht 1996.
[5] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, 2nd edition, Wiley, New York 1971.
[6] B. V. Gnedenko and A. N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables, Addison-Wesley, Reading, Massachussets, 1954.
[7] T. H. K oornwinder, Special functions and q-commuting variables, preprint, 1995.
[8] R. Le Page, M. Woodroofe and J. Zinn, Convergence to a stable distribution via order statistics, Ann. Probab. 9 (4) (1981), pp. 624-632.
[9] E. Lukacs, Characteristic Functions, 2nd edition, Griffin, London 1970.
[10] M. Meerschaert, Domains of attraction of nonnormal operator-stable laws, J. Multivariate Anal. 19 (1986), pp. 342-347.
[11] M. Sharpe, Operator-stable probability distributions on vector groups, Trans. Amer. Math. Soc. 136 (1969), pp. 51-65.

Daniel Neuenschwander Université de Lausanne Ecole des Hautes Etudes Commerciales Institut de Sciences Actuarielles CH-1015 Lausanne, France

René Schott
Université Henri Poincaré-Nancy I
CRIN, B.P. 239
F-54506 Vandoeuvre-lès-Nancy, France

Received on 17.6.1996;
revised version on 14.2.1997

