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A NOTE ON DOMAINS OF ATTRACTION
FOR ¢g-TRANSFORMED RANDOM VARIABLES

BY

DANIEL NEUENSCHWANDER (LAUSANNE) AND RENE SCHOTT (Nancy)

Abstract. We show that a random variable X lies in the strict
domain of attraction of a non-degenerate strictly stable random var-
iable Z with exponent ae]0, 2[ iff the g-transform of X lies in the
strict domain of attraction of mZ for some constant m depending on
q and a with the same norming sequence.

1. Introduction. g-algebra and g-analysis (0 < g < 1) on the real line may
be interpreted as a generalization of ordinary addition, which (roughly speak-
ing) corresponds to the case q = 1. However, it is not possible to define
g-addition directly on the real line itself, but rather indirectly on the space of
measures on R in the sense that the g-convolution of two Dirac measures is in
general not a Dirac measure (in the ordinary sense). So the whole theory is
somewhat similar to hypergroups (cf. Bloom and Heyer [1]), but it does not fit
exactly into this context.

Feinsilver [3] began a probabilistic study on g-added random variables.
In the last part of his paper, he initiated an investigation of limit theorems for
g-sums of random variables. The purpose of this note is to give a further
contribution to this subject. We will show that a random variable X lies in the
strict domain of attraction of a non-degenerate strictly stable random variable
Z with exponent «e]0, 2[ iff the g-transform of X lies in the strict domain of
attraction of mZ for some constant m depending on ¢ and a« with the same
norming sequence. The proof consists essentially of getting rid of the centering
constants appearing in the case of ordinary addition and of a desintegration
procedure for the “only if” direction.

2. g-addition. Let 0 <'q < 1. We first give some definitions on g-algebra
(see e.g. Feinsilver and Schott [4] and Koornwinder [7]). The g-natural num-
bers g, are given as
k-l g gk
9= .ZO q=
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Consequently, one defines the g-factorial as

k
(k)= H qi
i=1
and the g-exponential function e(x) is defined as
o0 xk
e(x)= ) —,
%= 2 w1
whereas the g-derivative is given by
_ S x)—f(gx)
D, f(x)= T

Now one defines g-addition (indirectly) by defining a Dirac measure g, by

Sxoy(f) 1= (0:%8,)(f) 1= e(—(1—q) yDy) f (x)

(cf. Feinsilver [3], IV). The g-convolution of measures ue M?(R) is then ex-
tended from the g-convolution of Dirac probability measures as indicated
above also in the natural way by linearity and weak continuity.

The g-characteristic function of % (X) for the random variable X is de-
fined by .
Yx(u) := E(e(iuX)) (ueR).

The symbol ¢y (1) will be used for the ordinary characteristic function. It has
been shown by Feinsilver [3] (Theorem 3) that % (X) is uniquely determined
by its g-characteristic function y. Furthermore, if X; and X, are independent
random variables, then the g-convolution of X; and X, is a random variable
Z whose g-characteristic function is the product of the g-characteristic func-
“tions of X; and X;: ¥z = Yx, ¥y, (cf. [3]). Define the random variable Y by

RO Y- ¥ T
k=0

where the T, are independent random variables, T obeying to an exponential
law with mean ¢*. Assume X is any random variable on R, independent of Y.
Then the g-characteristic function of X is the ordinary characteristic function
of XY: yx = @oyxy (cf. Feinsilver [3], Proposition 4). We will call XY the
g-transform of X. If F (x) = P(X < x) is the law of the random variable X, then
the law of the g-transform is given by the mixture

@) G() = P(XY <x) = | F(x/y) Z(Y)@).
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So what we have to study are sums of the type

Z-Xleu

k=1
where X, X, ... are any independent random vanables and Y,, Y,, ... are
iid., as in (1), and independent of X, X,, ... :

3. Domains of attraction. First, we recall some facts on stable laws with
respect to ordinary addition. As references, see e.g. Gnedenko and Kolmogorov
[6] or Breiman [2]. A random variable Z is called stable if for every n > 1 and
iid. copies Z,,Z,, ..., Z, of Z there are c, >0, d,eR such that

zZ,, }: (Zi+d,).
k=1
Equivalently, Z is stable iff there are ii.d. random variables X,, X,, ... and
a, >0, b,eR such that
3) a, Z X +b)SZ (> o0) i
k=1

(where 5 denotes weak convergence). If X Zx 1> then X is said to lie in the
domain of attraction of Z. The sequence {(a,, b,)},>, is called a norming se-
quence. We will use the term strictly stable if d, = 0 and the term strict domain

of attraction if b, = 0. It can be shown that there exists a€]0, 2] such that
¢, =n"1",

The number « is called the exponent of stability. The case o = 2 corresponds to
the case where Z obeys to a normal distribution. Z is non-degenerate and
stable with exponent o]0, 2[ iff its characteristic function takes the form

Qz(u) = eXp{iyu+(u i,-l_w:f)(em_l_%);%}
(yeR,v,w =0, v+w > 0).
For short, we write Z = (05 v, v, w). It follows that for keN we have
(e, ky, ko, kw) Z piez

For the followmg lemma see Le Page et al. [8], Remark 3 on p 628.
LEMMA 1. In the case 0 < o <1 we have

na,b,—»b (n—- o) for some beR.

The next lemma follows also from Le Page et al. [8], Remark 3 on p. 628
(see also- Gnedenko and Kolmogorov [6], Theorem 35.3).

13 — PAMS 172
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LEMMA 2. In the case 1 < o <2 we have

b+o(1)
n

n

b,= —E(X{)+ (n—> o) for some beR. -

What remains, is the case o = 1. This situation is somewhat special in the
following sense. If a€]0, 1[U]1, 2[ and if Z is a-stable, then it is always
possible to center Z so that it becomes strictly stable (see e.g. Sharpe [11],
Theorem 6). However, the following property follows at once by con51der1ng
the characteristic function for a« = 1 in the “explicit form”

. Lu2 _v—w
pz(u) = exp{nﬁu—g|u|(1+19|ul nloglul)} (PeR,0>0, 0= v+w)’

the centering statement then follows from Feller [5], Theorem XVIL5.3.

LEMMA 3. The only non-degenerate strictly stable laws u with exponent
a =1 are the shifted (with shift be R) symmetric (Cauchy) ones (i.e. those with
v=w). In this case, we have

b+o(1)
n

@y b, = —E(sin(a, X))+ (n— o0),

where beR is the aforementioned shift of p.

The domains of attraction of stable laws with exponent 0 < « < 2 may be
characterized as follows (cf. Meerschaert [10], p. 344):

PROPOSITION 1. For a non-degenerate stable random variable Z with ex-
ponent 0 < a < 2 the relation (3) holds iff

nP(a,,X1<x)—>v_[ I{i“ n—>o) (x<0)

and

nP(a, X, >x)—>wj;:1—fé n—> ) (x>0).

Let X and Z be random variables. The g-transform of X lies in the strict
domain of attraction of Z with norming sequence {a,} if for iid. copies
Xy, X, ...of X and ii.d. random variables Y;, Y;, ... as in (1) and independent
of X,, X,, ... there exist a, > 0 such that

@ o Y X, L5352
k=1

LeEMMA 4. The characteristic function of logY is analytic in a neighborhood
of the real axis.
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Proof. By Feinsilver [3], the density of Y is given by

(—1
!

900 =C 3 " expi—gix} (x> 0)
=0

hence the density of logY is

(5) h(x)=e"g(e")=Cz g;jexpi—q fev+x},
j=0
where
— (— ])j )
o)
Clearly,
(6) Z lojl < oo.
j=0
Since .
N —g i +x < —e*+x< K (xeR),

it follows from (6) and (7) that the series in (5) converges uniformly for xeR, so
we get, by (5}(7),

P(log¥|>x)= | hdi<C(Ylef) | expi—e+ilde
j=0

R\[— x.x] R\[— x.x]

=0(1—exp{—e *}+exp{—e*})=0(e™") (x— x).

Now the assertion follows from Lukacs [9], Theorem 7.2.1. m
For fixed « and Y as in (1), define the constant m := (EY*)!/*,

THEOREM 1. Let Z be a non-degenerate strictly stable random variable with
exponent 0 < o < 2 and let X be any random variable. Then the g-transform of
X lies in the strict domain of attraction of mZ with norming sequence {a,},>, iff
X lies in the strict domain of attraction of Z with norming sequence {d,},s.

Proof. 1.*If" direction. Assume X lies in the strict domain of attraction
of Z with norming sequence {a,},>,. Let Y;, Y,, ... be as in (4). By Gnedenko
and Kolmogorov [6], Theorem 25.1 and the Remark on p. 121, it follows that
the conditions (i)-(iti) mentioned before Proposition 8 in Feinsilver [3] are
indeed fulfilled. Hence, by [3], Proposition 8, the condition of our Proposi-
tion 1 carries over to the g-transforms (2) of X,, X, ... in the sense that XY
lies in the domain of attraction of mZ with some norming sequence {a,, h,},>
for certain b,eR.

1.1. Case 0 <x < 1. By Lemma 1 it follows that XY lies in the strict
domain of attraction of mZ —b for some beR. By the convergence of types
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theorem (see e.g. Breiman [2], Theorem 8.32) it follows that mZ —b is also
strictly a-stable; hence b = 0.

1.2. Case 1 <a <2 By Lemma 2 it follows that
na, E(X)-»b (n— )
for some beR. Hence also
na, E(XY)>bE(Y) (n— o).

So it follows from Lemma 2 that XY lies in the strict domain of attraction of
mZ —b’+bE(Y) for some b, b’eR and the rest of the proof is as under 1.1.

13. Case a = 1. By Lemma 3 it follows that
nE(sin(@, X))»b (n— o),
where beR is the shift of Z as in Lemma 3. Hence, by the dominated conver-

gence theorem, Proposition 1, and the stability property, we get

lim nE (sin(a, X Y)) = lim can (sin (. ) X)) £ (Y) (dy)
n—>w n—~*w 0

= lim _[y E(sin(a ;X)) £ (Y)(dy)

n=a
= bE(Y) = mb.

So by Lemma 3 it follows that XY lies in the strict domain of attraction of mZ.
“Only if” direction. By Proposition 1 it follows that

nzg.sf(anyxxdt);zi(n(dy)

- m* _H(u 1{t<0}+w-1{t>0})—

|t|1+a T

=‘°ff(v 1{t <O} +w 1{t>0) = 2(N@d) (1),
oJ

|t/ Il +a
and thus

/y)?

® 1] [f o @y ) 2 (@)

ST g < 0w 1> 0

1+(t/ )2 ‘1+13(Y)(dy) (n—’ 00)

|t/y
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where J is an interval of the form ]—o0, x] (x < 0) or [x, o[ {(x > 0). Let
n and 7, denote the finite measures on ]0, co[ given by

x%  dx
nB):=wl e
and
x x)d
'In(B)-—"img(an Hdx)

for Borel subsets B — ]0, oo[. Define 4 and A, to be the finite measures on
R given by -

1 rea@:=Jrtorna)

and
T £ An(dx) := [ 1 (logs)na(dy)
— 0

for bounded real-valued continuous functions on R. Let H be the distribution
function of log Y. By the “basic estimate” in Feinsilver [3] and (8) it follows (as
in the proof of [3], Proposition 8) that

) AxHSA«H (n— ).

Let {(u), {,(u), and £ (u) be the characteristic function (in the ordinary sense) of
A, A, and H, respectively. Then (9) may be rewritten as

(10) L) E@) - W) &) (n—> o) (ueR).

By Lemma 4, ¢ is analytic in a neighborhood of the real axis, and hence it has
only isolated zeros there. So we may divide (10) by & (u) for all real u with the
exception of isolated points, and of course in a neighborhood of u, = 0. Thus it
follows from the Lévy continuity theorem and the continuity of ¢ that

. L) =@ (n—>o0) (ueR),
and hence
A (n— ),
and thus
Mo (n— c0).
An analogous argument holds also for the negative real axis; hence by Proposi-
tion 1 it follows that X lies in the domain of attraction of Z with norming
sequence {a,, b,},>; for certain b,e R. Now the same type of argument as in

the proof of the “if” direction shows that one may replace b, by 0 by the
strictness of the domain of attraction. m
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