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SLOW CONVERGENCE TO NORmLHTY: 
AN EDGEWORTH EXPANSION WITHOUT THIRD MOMENT 

E DE H A A N *  m Is PENG ( R O ~ R D A M )  

Abstract. Let F be a non-lattice distribution function which lies in 
the domain of attraction of a normal distribution. Exact uniform conver- 
gence rates are obtained for the convergence of the normalized partial 
sums of i.i.d. random variables with distribution F. The assumptions are 

I - F ( ~ ) + F ( - ~ ) E R V , - ,  ( - 1 6 ~ 6 0 )  
and 

( l -F(x)) / ( l -F(xj+F-xj)p[O, l ]  (as x+coj .  

For p = - 1  somewhat weaker con&tions are sufiicient. 

1. Introductian. Let XI, X,, . . . be independent and identically distrib- 
uted random variables with common distribution function F which lies in the 
domain of attraction of a normal law, i.e., the function cxy"F(y) (x > 0) is 
slowly varying at infinity. An equivalent condition is: the function 

X 

H ( x ) : =  j (1-F(u)+F(-U))U~U 
0 

is slowly varying at infinity, that is, 

(1.1) 
H (tx) lim - - 1  - for all x > 0 .  

f+m H(t) 

Then there exist constants an > 0 and b, E R such that 
n x 

(1.2) P (( C xi - b,,)/an < x) -t @ (x) : = (2x1- ' I 2  j exp ( - u2/2) du 
i =  1 -a, 

for all XER.  

If the third moment is finite and F is non-lattice, the difference of the two terms 
in (1.21, multiplied by &, converges (n + ao) uniformly in x (see Petrov [9]). 
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Assume now that the third moment does not exist. We are going to relate the 
uniform rate of convergence in (1.2) to the (pointwise) rate of convergence 
in (1.1). 

A natural rate of convergence condition for (1.1) is the following. Suppose 
that there is a positive function A*(t) (A*(t) 4 0 as t + m) such that 

lim 
H (tx)/H (t)  - 1 

f d g ,  A*(t) 

exists for every x > 0. Then the limit function must be of the form 

for constants Q < 0 and C'ER (see Theorem 1.9 of Geluk and de Haan [3] or 
Lemma 3.2.1 of Bingham et al. [I] ; (xO - 1)/0 is defined as log x). Without loss 
of generality we can assume cf = - 1, 0, or 1. The case c' = 0 is somewhat less 
informative, so we shall henceforth assume c' = f 1. So suppose there is a func- 
tion A with lim,,, A( t )  = 0 and not changing sign near infinity, such that 

H(tx)H(t)-1 9-1  
lim =- for all x > 0 .  
t - t m  A(t)  ' e 

The function ]A1 is then regularly varying with index Q (IAIE RK) .  It can be 
proved (see the Appendix) that (1.3) is equivalent to the regular variation of 
1 - F (x) + F (- x) at infinity with index Q - 2. We shall prove that if this is the 
case and if the balance condition 

is satisfied, then for a suitable choice of the sequences a, and b, the limit 

lim d,/{n (1 - F (a,,) + F ( - an))) 
n-+ m 

exists, where 
n 

A,:=  sup I P ( ( ~  xi-bn)/% < XI-@(x)l. 
XER j =  1 

This will follow from the uniform convergence of 

a first order expansion of Edgeworth type. 
In fact, in the case g = - 1, somewhat weaker conditions are sufficient (see 

Theorem 2). These conditions are implied by the condition E IXI3 c c ~ ,  SO that 
the classical result is a special case of ours. 
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Our results are closest in spirit to the results of Hall 151 (cf. also [6] and [q). We 
require three conditions: non-lattice distribution, regular variation of the combined 
tails, and the balance condition. Hall [5 ]  only requires regular variation of both tails. 
The mnclusions of Hall [a are somewhat weaker: he proves upper and lower 
bounds whereas we have an actual limit. The balance condition and the non-lattice 
condition are necessary for our results. For hrther references see Hall [6]. 

It may be emphasized that the case Q = 0 allows for extremely low conver- 
gence rates (whether or not the variance exists, is immaterial). 

The well-known inequalities of Berry and Essten (cf. Feller 121) are of 
a different type: they hold for any x but also for any n. 

2. Results and proofs. Throughout most of this paper we assume 

Note that 1-F(x)+F(-x)fR%-, (-1 6 g 6 0) implies that S " _ * ~ ' d ~ t y )  
( x  > 0) is a slowly varying function at infinity, so that F is in the domain of 
attraction of the normal distribution (see p. 83 of Ibragimov and Linnik [a]). 
An equivalent condition is: the function H ( x )  is slowly varying at infinity. This 
implies E(XI < ao, and so there is no loss of generality in supposing that 
EX = 0. We make this assumption throughout. 

Since x-2 H (x) + 0 as x + a, the function 

is well defined for all large x. For such values of x we have 

(2.1) 2x (a(x))- H (a (x)) = 1. 

For large n define 

(2.2) a,:= a(n) 

and b, = 0. Relation (1.2) holds for such choices of a, and b,. 

EX = 0 and F is a mn-lattice distribution function. Let a, be defined by (2.2). Then 

uniformly for all x E R, where 

2p-1 
A, = ---- ex 1 r (1 + q)  sin -, B, = - ex 1 

2 
r ( i  +el  cos -+- 

~ ( a - 1 )  eIe-1) 2 e 
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(define A, : = lim,,, A, = (1 - 2p) n/2 and B, : = lim,,, 3, = y - 1, y is the 
Euler constant), and 

1 for t 2 0 ,  

- 1  for t < 0 .  

THEOREM 2. Let 

Y 3' 

K,(y):= 1 (1-F(x) )xZdx  and K,(y):= ~ F ( - x ) x ~ ~ x .  
0 0 

Assume j ~ y l x 1 3 d F ( x ) ~ R V o ,  K,(x) /K(x)  - t q ~ [ O ,  11 (as x -r m), EX = 0, 
E X 2  = 1 ,  and F is a non-lattice distribution function. Then 

p ( x : = = , ~ ~ / & ~ x ) - @ ( x )  28-1 
(2.4) lim =- ( 1 - x 2, exp { - xZ/2) 

n+m n- ' 1 2  K (J;;) 2 f i  

tsniJormIy for all X E  R. 

COROLLARY 1. It faIIows that the supremum of the norm of the Iefi-hand 
sides of (2.3) and (2.4) for X E R  converges to the corresponding supremum of the 
norm of the right-hand sides, hence the ungorm convergence rate. 

Remark  1. Note that B, < 0 for - 1  < Q < 0 in Theorem 1 so that the 
limit in (2.3) is not identically zero. 

Remark  2. l - F ( x ) + F ( - x ) ~ R v - ~  implies j ' _ y ( x 1 3 d ~ ( x ) ~ ~ ~ , .  

Re m a r k  3. Theorem 1 implies that the sequence A, is regularly varying 
with index ~ / 2 .  Theorem 2 implies that the sequence A, is regularly varying 
with index -1/2. So the range of the index is [-1/2, 01. 

Remark  4. If F is non-lattice and E IXI3 < co, the conditions of Theo- 
rem 2 are fulfilled and the classical result ensues. 

Remark  5. The conditions of Theorem 1 for Q = - 1 imply those of 
Theorem 2. But (2.3) does not hold for g = -1. 

THEOREM 3. Assume 

EX = 0, and I p l k  is integrable for some k 2 1 ,  where p denotes the characteristic 
function of F. Then 

a 
- P ( x  Xi/an < x)  exists for n 2 k 
ax i = 1  
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and 
( a / a ~ )  P (x;=, G X )  -@/ax)  @ ( X I  1 

lim -- - J e-"" C, ( t )  exp (- t 2 / 2 )  d t  
n+ a, n( l  -F(a,)+F(-a,,))  2n: -, 
uniformly for all x E R ,  where C ,  ( t )  is defined in Theorem 1 .  

THWREM 4. Assume that lx13 dF (x) E RVo, K, (x)/K ( x )  -t q E [O, 11 
(as x 4 m), EX = 0, EX2 = 1 ,  and l y t k  is integrable f i r  some k 2 1, where 
p denotes the characteristic function of F.  Then 

a 
. . - ax P (-z i = l  xi/& < 3 exists for n 2 k 

(a/ax) P (C , xi/& 9 XI - (alax) m ( X I  2q - 1 
lim - -- - (3x - x3) exp { - 2 / 2 1  
n+ m n- ' j 2  K (4) 2Jr;c 
un$'rmly for all X E R .  

For the proofs we need four lemmas. 

LEMMA 1 .  Assume 

and EX = 0. Let p denote the characteristic function of F .  Then 

where C, ( t )  is deJined in Theorem 1 .  

Proof. Note 
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and 

Combining 

and Theorem 1.8 of Gel& and de Haan [3] (with k (t) = (e'i' - 1 T it)/t2 for 
part (i) and k{ t )  = (ef "- l)/t for part (ij)), we get 

(2.6) Iim k ( l / ~ ) - l + Y - ~ H l ~ )  
y 4 w  1 -F(y)+F(-y) 
m 41 

= i J (eix- 1)pxQ-* dx-i j (e-'"- 1)(1 -p)xe-2 dx 
1 1 

1 1 

+ij(eix-1-ix) pe-' dx-i~(e- ir-1+ix)( l -p)xQ-2d~ 
0 0 

m m 1 

= i(2p-1) j ( c o s x - l ) ~ e - ~ d x - j  x @ - ~  ~ i n x d x - ~ X 4 - ~  (sinx-x)dx 
0 1 0 

:= C@ (I). 

We now work out the value of Ce(l) for -1 < e < 0. If Q = 0, then 

w 1-CQsx COSX l l - cosx  
P x2 dx-sin1-j - dx f s i n l - l + j  dx 

1 X o x  

1-cosxdx+j 1-cosx COSX 
= ill-2p) 1 dx- J -dx-1 

0 x2 O X  1 X 

(the last equation comes from 3.782 of Gradshtein and Ryzhik [4]), where y is 
EuIer constant. 

If Q < 0, then 
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- 2p-1 " 
+ -i- cos 1 J x p c o S X a x - - + ~  j xrsinxdx 

I P - 1 ) ~  a, e(e-1) e(e-1) I 

1 - 2 p  
= i- ( l + e ) ~  1 ~~I+Q)cos-----+- ( I + @ ) R  1 r(1 +Q) sin- +- 

e(e-1) 2 d l - e )  2 e 
(the last equation comes from 3.761 of Gradshtein and Ryzhik [4]). 

Note that (2.6) implies 

hence 

lim IP(~/Y)- 112 = lim l -  I (Y -' H ( Y ) ) ~  = 0. 
Y- f-F(y)+FI-y) ( Y - ~ H ( ~ ) ) ~  I-F(~)+F(-y) 

Since log (1 + x) = x + O (x2) as x + 0, we thus find 

where A, and B, are defined in Theorem 1. Similarly we can prove 

More generally, for t # 0 we have 

1-F(yx)+F(-yx) 
+t2  I x dx; 

l , , f ,  1 - F (Y) +F(  -Y) 

hence, by (2.7), (2.8) and 1 -F(X)+P(-X)ER&-,, (2.5) is proved. 

L e m  2. Assume that ~ ' _ y l x ( 3 d ~ ( x ) ~ ~ ~ o ,  K,(x)/K(x)+qe[O, 11 (as 
x -, co), EX = 0, and EX2 = 1. Let pdenote the characteristic function ofF. Then 

lim log P (t/y) + t2/(2yZ) = -1tl3 sgn(t)(q-1/2)i. 
y+m Y - ~ K ( Y )  

Proof. From the proof of Theorem 2 of Feller VIII.9 (cf. [2]) and 
j ~ y ~ x 1 3 d ~ ( x ) ~ ~ ~ , ,  we have 



402 L. de Haan and L. Peng 

(2.11) 

Since 

lim Y ~ ( ~ - F ( Y ) + F ( - Y ) )  = 0. 
m JLYIxl3dF(x) 

we have 

lim K ( Y )  1 = - 
JLy 1 x 1 ~  d~ ( x )  3 .  

.. . 
Therefore 

(2.12) K ( y ) € R V 0  and lim ~ " 1  - F t y ) + F ( - y ) )  = 0 ,  
y-m K ( Y )  

which implies 

Note that 

and 

y 3 ( 1 - ~ ( y ) + ~ ( - y ) ) < 3 ~ ( y )  for all y > 0 .  

Using (2.12) and (2.13), similar to the proof of Lemma 1, we can prove 
k m m a  2. 

LEMMA 3. Assume 

~ - F ( x ) + F ( - x ) E R V , - ,  ( - 1  < e < 0),  

( 1 - F ( x ) ) / ( ~ - F ( x ) + F ( - ~ ) ) + ~ E [ o , ~ ]  (as x -+m) ,  

and EX = 0. Let Re (2) a d  Im (z)  denote the real part and the imaginary part of 
a complex variable z ,  respectively. Then 
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(i) for any 0 < E < E, : = (- B,) A 1,  there exists yo > 0 such that for 
Y 3 Y o ,  Y / I ~  3 Y O  

(ii) for ' a n y  
for p = 1/2, 

for p f 1/2, 

there exists yo > 0 such that for y 2 yo, y/ltl 2 yo 

G (sgn It) A, + &) (1 + E sgn (t)  sgn (A,)) ltI2 exp {sgn (t)  sgn (A,) & 11% 141) . 
Proof. Using (2.7)-(2.9), 1 - F (x )  + F (- x)  E R Q - ,  and Potter bounds 

(see Bingham et al. [I]), we easily obtain the lemma. H 

LEMMA 4. Assume that 1: 1x1 dF (x )  E RV,, K, (x)/K (x )  4 q E [0, l] (as 
x 4 ao), EX = 0,  and E X 2  = 1 .  Let Re (z) and Im (z)  denote the real part and the 
imaginary part of a complex variable z,  respectively. Then 

(i) for any 0 < E < 1 ,  there exists yo > 0 such that for y 2 yo, y/ltl 3 yo 

- & ( ~ + E ) I ~ I ~ ~ X P ( & I ~ ~ ~ I ~ I I I  

(ii) for any 

O < E < E ~ : =  
for q = 1/2, 

there exists yo > 0 such that for y 2 yo, y/ltl 2 yo 



404 L. de Haan and L. Peng 

The proof is similar to the proof of Lemma 3 by using Lemma 2. 

Proof  of Theorem 1. Define 

A,:=n( l -F(a , )+F(-a , ) ) ,  m,:=(An)(-1+s)1'2-e+L), 
and 

Note that m, + a, and n(1+e)/2 rnn/a,, + oo since both sequences are regularly 
varying with positive indices. By Lemma 3, 

. I (2.14) n log p (t/a,) + t2/2 + 0 

uniformly for It] G m, as n + a. 
Wow 

(2.15) pn (t/a,) - exp ( - t2/2) 

= (dog  p @/a,) + t2/2) exp { - t2/2) exp {fl, (n log p (t/a,) + t2/2)] 

, for some 0, with 10nl E[O, I], depending on t. 
Since F is a non-lattice distribution, for any 6 > 0 there exists a sequence 

I (n) with R (n) -r w as n + m such that 

(see Lemma 3.3.1 of Tbragimov and Linnik [S]). It is easy to know that 
A = sup I@' (x)  + R' (x)l < GO and exp { - t2/2) +An C, ( t)  exp { - t2/2) is the 
Fourier Stieltjes transform of a - R .  Using the smoothing lemma with 
T= A(n)an (see Feller [2], XVI.3, Lemma 2), we get 

pn (t/a,,) - exp { - t2/2} - A,, C, (0 ~ X P  { - t2/2/2) dt , 24A 
I 

Irj 6 T I t  I rT 

exp { - t2/2) +A,  C, ( t)  exp ( - t2/2) 
t 

It is obvious that 

exp { - t2/2) + A, C ,  ( t)  exp ( - t2/2) 
t  
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and 

By (2.14), (2.15) and Lemma 3, we have 

In order to complete the proof of Theorem 1, we only need to prove 

Since there exists S > 0 such that for It1 < ban 

(see relation (4.2.7) of Ibragimov and Linnik [g]), note that nmn/a, + 0 (n + a). 
As n is large enough, we have 

1 
- 

1 J ]p(t/ca,)(" It(-' dt < - J exp ( - S ~ ( U , ) - ~ O  ItIda) It(-' dt 
An nand 111 dda, An ~t~arn, 

1 
=- 1 ex~(-bttldo)Itl-ldt + 0 ( n +  m) 

~l~0rn,,(on]-l  A" ,*,,n 

since palldOmn(an)-l -+ m (n -+ m). By (2.16) we have 

1 - "'" pn (t) l W 1 d t = L I  I I / d l + O .  
An * t An '5 

Thus (2.17) holds. 

Proof of Theorem 2. Note that (see 3.952.4 of Gradshtein and 
Ryzhik [4]) 

m 

j t2 exp {-t2/2/Z) cos ( t x )  dt = @ (1 -x2) exp {-x2/2/2). 
0 

The proof is-similar to the proof of Theorem 1 by using Lernmab instead of 
Lemma 3. 

Pro of of Theorem 3. By the Fourier inversion theorem of Feller [2], 
XV.3, 

a 
- P (  Xi/an < x) exists for all n 2 k 
ax i = 1  

and 

The proof is similar to the proof of Theorem 1. w 

14 - PAMS 17.2 
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P r o  of of Theorem 4. Note that (see 3.942.5 of Gradshtein and 
Ryzhik [4]) 

m 

I t3 exp ( - t 2 / 2 )  sin(mr)dt = m ( 3 x - x 3 )  exp ( - x 2 / 2 ) .  
0 

The proof is similar to the proof of Theorem 3. H 

Appendix. We now prove that (1.3) is equivalent to the regular variation 
of 1 - F (x) + F (-x) at infinity with index Q - 2. By Theorems 1.9 and 1.10 of 
Geluk and de Baan [3] or Lemma 3.2.1 of Bingham et al. [l], relation (1.3) is 
equivalent to the following: 

For q < 0, iim,,, H ( x )  exists and 
m 

H ( w ) - H ( x )  = J ( 1 - ~ ( u ) + F { - u ) ) u d u ~ R \ .  
x 

For Q = 0 the function W is in the class ti'. Equivalently, 
m 

( l - ~ ( & ) + ~ ( - $ ) ) d u e ~ & , ~  or ELT, 
x 

respectively. An application of the monotone density theorem (Propositions 
1.7.11 and 1.19.5 of Geluk and de Haan 131) completes the proof. 
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