SLOW CONVERGENCE TO NORMALITY: AN EDGEWORTH EXPANSION WITHOUT THIRD MOMENT

BY

L. de HAAN* and L. PENG (Rotierdam)

Abstract

Let F be a non-lattice distribution function which lies in the domain of attraction of a normal distribution. Exact uniform convergence rates are obtained for the convergence of the normalized partial sums of i.i.d. random variables with distribution F. The assumptions are

$$
1-F(x)+F(-x) \in R V_{\varrho-2} \quad(-1 \leqslant \varrho \leqslant 0)
$$

and

$$
(1-F(x)) /(1-F(x)+F(-x)) \rightarrow p \in[0,1] \quad \text { (as } x \rightarrow \infty)
$$

For $\varrho=-1$ somewhat weaker conditions are sufficient.

1. Introduction. Let X_{1}, X_{2}, \ldots be independent and identically distributed random variables with common distribution function F which lies in the domain of attraction of a normal law, i.e., the function $\int_{-x}^{x} y^{2} d F(y)(x>0)$ is slowly varying at infinity. An equivalent condition is: the function

$$
H(x):=\int_{0}^{x}(1-F(u)+F(-u)) u d u
$$

is slowly varying at infinity, that is,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{H(t x)}{H(t)}=1 \quad \text { for all } x>0 \tag{1.1}
\end{equation*}
$$

Then there exist constants $a_{n}>0$ and $b_{n} \in R$ such that

$$
\begin{equation*}
P\left(\left(\sum_{i=1}^{n} X_{i}-b_{n}\right) / a_{n} \leqslant x\right) \rightarrow \Phi(x):=(2 \pi)^{-1 / 2} \int_{-\infty}^{x} \exp \left\{-u^{2} / 2\right\} d u \tag{1.2}
\end{equation*}
$$ for all $x \in R$.

If the third moment is finite and F is non-lattice, the difference of the two terms in (1.2), multiplied by \sqrt{n}, converges $(n \rightarrow \infty)$ uniformly in x (see Petrov [9]).

[^0]Assume now that the third moment does not exist. We are going to relate the uniform rate of convergence in (1.2) to the (pointwise) rate of convergence in (1.1).

A natural rate of convergence condition for (1.1) is the following. Suppose that there is a positive function $A^{*}(t)\left(A^{*}(t) \rightarrow 0\right.$ as $\left.t \rightarrow \infty\right)$ such that

$$
\lim _{t \rightarrow \infty} \frac{H(t x) / H(t)-1}{A^{*}(t)}
$$

exists for every $x>0$. Then the limit function must be of the form

$$
c^{\prime} \frac{x^{\varrho}-1}{\varrho}
$$

for constants $\varrho \leqslant 0$ and $c^{\prime} \in R$ (see Theorem 1.9 of Geluk and de Haan [3] or Lemma 3.2.1 of Bingham et al. [1]; $\left(x^{0}-1\right) / 0$ is defined as $\left.\log x\right)$. Without loss of generality we can assume $c^{\prime}=-1,0$, or 1 . The case $c^{\prime}=0$ is somewhat less informative, so we shall henceforth assume $c^{\prime}= \pm 1$. So suppose there is a function A with $\lim _{t \rightarrow \infty} A(t)=0$ and not changing sign near infinity, such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{H(t x) H(t)-1}{A(t)}=\frac{x^{\varrho}-1}{\varrho} \quad \text { for all } x>0 \tag{1.3}
\end{equation*}
$$

The function $|A|$ is then regularly varying with index $\varrho\left(|A| \in R V_{Q}\right)$. It can be proved (see the Appendix) that (1.3) is equivalent to the regular variation of $1-F(x)+F(-x)$ at infinity with index $\varrho-2$. We shall prove that if this is the case and if the balance condition

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1-F(x)}{1-F(x)+F(-x)}=p \in[0,1] \tag{1.4}
\end{equation*}
$$

is satisfied, then for a suitable choice of the sequences a_{n} and b_{n} the limit

$$
\lim _{n \rightarrow \infty} \Delta_{n} /\left\{n\left(1-F\left(a_{n}\right)+F\left(-a_{n}\right)\right)\right\}
$$

exists, where

$$
\Delta_{n}:=\sup _{x \in \mathbb{R}}\left|P\left(\left(\sum_{i=1}^{n} X_{i}-b_{n}\right) / a_{n} \leqslant x\right)-\Phi(x)\right| .
$$

This will follow from the uniform convergence of

$$
\frac{P\left(\left(\sum_{i=1}^{n} X_{i}-b_{n}\right) / a_{n} \leqslant x\right)-\Phi(x)}{n\left(1-F\left(a_{n}\right)+F\left(-a_{n}\right)\right)} \quad \text { as } n \rightarrow \infty
$$

a first order expansion of Edgeworth type.
In fact, in the case $\varrho=-1$, somewhat weaker conditions are sufficient (see Theorem 2). These conditions are implied by the condition $E|X|^{3}<\infty$, so that the classical result is a special case of ours.

Our results are closest in spirit to the results of Hall [5] (cf. also [6] and [7]). We require three conditions: non-lattice distribution, regular variation of the combined tails, and the balance condition. Hall [5] only requires regular variation of both tails. The conclusions of Hall [5] are somewhat weaker: he proves upper and lower bounds whereas we have an actual limit. The balance condition and the non-lattice condition are necessary for our results. For further references see Hall [6].

It may be emphasized that the case $\varrho=0$ allows for extremely low convergence rates (whether or not the variance exists, is immaterial).

The well-known inequalities of Berry and Esséen (cf. Feller [2]) are of a different type: they hold for any x but also for any n.
2. Results and proofs. Throughout most of this paper we assume

$$
1-F(x)+F(-x) \in R V_{\varrho-2} \quad(-1 \leqslant \varrho \leqslant 0)
$$

Note that $1-F(x)+F(-x) \in R V_{Q-2}(-1 \leqslant \varrho \leqslant 0)$ implies that $\int_{-x}^{x} y^{2} d F(y)$ $(x>0)$ is a slowly varying function at infinity, so that F is in the domain of attraction of the normal distribution (see p. 83 of Ibragimov and Linnik [8]). An equivalent condition is: the function $H(x)$ is slowly varying at infinity. This implies $E|X|<\infty$, and so there is no loss of generality in supposing that $E X=0$. We make this assumption throughout.

Since $x^{-2} H(x) \rightarrow 0$ as $x \rightarrow \infty$, the function

$$
a(x):=\sup \left\{a: 2 a^{-2} H(a) \geqslant x^{-1}\right\}
$$

is well defined for all large x. For such values of x we have

$$
\begin{equation*}
2 x(a(x))^{-2} H(a(x))=1 . \tag{2.1}
\end{equation*}
$$

For large n define

$$
\begin{equation*}
a_{n}:=a(n) \tag{2.2}
\end{equation*}
$$

and $b_{n}=0$. Relation (1.2) holds for such choices of a_{n} and b_{n}.
Theorem 1. Assume

$$
\begin{gathered}
1-F(x)+F(-x) \in R V_{\varrho-2} \quad(-1<\varrho \leqslant 0) \\
(1-F(x)) /(1-F(x)+F(-x)) \rightarrow p \in[0,1] \quad(\text { as } x \rightarrow \infty)
\end{gathered}
$$

$E X=0$ and F is a non-lattice distribution function. Let a_{n} be defined by (2.2). Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{P\left(\sum_{i=1}^{n} X_{i} / a_{n} \leqslant x\right)-\Phi(x)}{n\left(1-F\left(a_{n}\right)+F\left(-a_{n}\right)\right)}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{e^{-i t x}}{-i t} C_{e}(t) \exp \left\{-t^{2} / 2\right\} d t \tag{2.3}
\end{equation*}
$$

uniformly for all $x \in R$, where

$$
\begin{gathered}
C_{\varrho}(t)=\operatorname{sgn}(t)|t|^{2-\varrho} A_{\varrho} i+|t|^{2-\varrho} B_{\varrho}+t^{2} \frac{1-|t|^{-\varrho}}{\varrho} \\
A_{\varrho}=\frac{2 p-1}{\varrho(\varrho-1)} \Gamma(1+\varrho) \sin \frac{\varrho \pi}{2}, \quad B_{\varrho}=\frac{1}{\varrho(\varrho-1)} \Gamma(1+\varrho) \cos \frac{\varrho \pi}{2}+\frac{1}{\varrho}
\end{gathered}
$$

(define $A_{0}:=\lim _{\varrho \rightarrow 0} A_{\varrho}=(1-2 p) \pi / 2$ and $B_{0}:=\lim _{\varrho \rightarrow 0} B_{\varrho}=\gamma-1, \gamma$ is the Euler constant), and

$$
\operatorname{sgn}(t)= \begin{cases}1 & \text { for } t \geqslant 0 \\ -1 & \text { for } t<0\end{cases}
$$

Theorem 2. Let

$$
\begin{gathered}
K(y):=\int_{0}^{y}(1-F(x)+F(-x)) x^{2} d x, \\
K_{1}(y):=\int_{0}^{y}(1-F(x)) x^{2} d x \quad \text { and } \quad K_{2}(y):=\int_{0}^{y} F(-x) x^{2} d x .
\end{gathered}
$$

Assume $\int_{-y}^{y}|x|^{3} d F(x) \in R V_{0}, K_{1}(x) / K(x) \rightarrow q \in[0,1] \quad$ (as $\left.x \rightarrow \infty\right), E X=0$, $\dot{E} X^{2}=1$, and F is a non-lattice distribution function. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{P\left(\sum_{i=1}^{n} X_{i} / \sqrt{n} \leqslant x\right)-\Phi(x)}{n^{-1 / 2} K(\sqrt{n})}=\frac{2 q-1}{2 \sqrt{2 \pi}}\left(1-x^{2}\right) \exp \left\{-x^{2} / 2\right\} \tag{2.4}
\end{equation*}
$$

uniformly for all $x \in R$.
Corollary 1. It follows that the supremum of the norm of the left-hand sides of (2.3) and (2.4) for $x \in R$ converges to the corresponding supremum of the norm of the right-hand sides, hence the uniform convergence rate.

Remark 1. Note that $B_{e}<0$ for $-1<\varrho \leqslant 0$ in Theorem 1 so that the limit in (2.3) is not identically zero.

Remark 2. $1-F(x)+F(-x) \in R V_{-3}$ implies $\int_{-y}^{y}|x|^{3} d F(x) \in R V_{0}$.
Remark 3. Theorem 1 implies that the sequence Δ_{n} is regularly varying with index $\varrho / 2$. Theorem 2 implies that the sequence Δ_{n} is regularly varying with index $-1 / 2$. So the range of the index is $[-1 / 2,0]$.

Remark 4. If F is non-lattice and $E|X|^{3}<\infty$, the conditions of Theorem 2 are fulfilled and the classical result ensues.

Remark 5. The conditions of Theorem 1 for $\varrho=-1$ imply those of Theorem 2. But (2.3) does not hold for $\varrho=-1$.

Theorem 3. Assume

$$
\begin{gathered}
1-F(x)+F(-x) \in R V_{\varrho-2} \quad(-1<\varrho \leqslant 0), \\
(1-F(x)) /(1-F(x)+F(-x)) \rightarrow p \in[0,1] \quad(\text { as } x \rightarrow \infty),
\end{gathered}
$$

$E X=0$, and $|\mu|^{k}$ is integrable for some $k \geqslant 1$, where μ denotes the characteristic function of F. Then

$$
\frac{\partial}{\partial x} P\left(\sum_{i=1}^{n} X_{i} / a_{n} \leqslant x\right) \text { exists for } n \geqslant k
$$

and
$\lim _{n \rightarrow \infty} \frac{(\partial / \partial x) P\left(\sum_{i=1}^{n} X_{i} / a_{n} \leqslant x\right)-(\partial / \partial x) \Phi(x)}{n\left(1-F\left(a_{n}\right)+F\left(-a_{n}\right)\right)}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i t x} C_{e}(t) \exp \left\{-t^{2} / 2\right\} d t$ uniformly for all $x \in R$, where $C_{e}(t)$ is defined in Theorem 1 .

Theorem 4. Assume that $\int_{-y}^{y}|x|^{3} d F(x) \in R V_{0}, K_{1}(x) / K(x) \rightarrow q \in[0,1]$ (as $x \rightarrow \infty$), $E X=0, E X^{2}=1$, and $|\mu|^{k}$ is integrable for some $k \geqslant 1$, where μ denotes the characteristic function of F. Then

$$
\frac{\partial}{\partial x} P\left(\sum_{i=1}^{n} X_{i} / \sqrt{n} \leqslant x\right) \text { exists for } n \geqslant k
$$

and

$$
\lim _{n \rightarrow \infty} \frac{(\partial / \partial x) P\left(\sum_{i=1}^{n} X_{i} / \sqrt{n} \leqslant x\right)-(\partial / \partial x) \Phi(x)}{n^{-1 / 2} K(\sqrt{n})}=-\frac{2 q-1}{2 \sqrt{2 \pi}}\left(3 x-x^{3}\right) \exp \left\{-x^{2} / 2\right\}
$$

uniformly for all $x \in R$.
For the proofs we need four lemmas.
Lemma 1. Assume

$$
\begin{gathered}
1-F(x)+F(-x) \in R V_{\varrho-2} \quad(-1<\varrho \leqslant 0) \\
(1-F(x)) /(1-F(x)+F(-x)) \rightarrow p \in[0,1] \quad(\text { as } x \rightarrow \infty)
\end{gathered}
$$

and $E X=0$. Let μ denote the characteristic function of F. Then
(2.5) $\lim _{y \rightarrow \infty} \frac{\log \mu(t / y)+(t / y)^{2} H(y)}{1-F(y)+F(-y)}=|t|^{2-\varrho} C_{\varrho}(\operatorname{sgn}(t))+t^{2} \frac{1-|t|^{-\varrho}}{\varrho}=C_{\varrho}(t)$,
where $C_{\varrho}(t)$ is defined in Theorem 1.
Proof. Note

$$
\begin{aligned}
& \mu(1 / y)-1+y^{-2} H(y) \\
& =\int_{-\infty}^{\infty}\left(e^{i x / y}-1-i x / y\right) d F(x)+y^{-2} \int_{0}^{y}(1-F(x)+F(-x)) x d x \\
& =-\int_{0}^{\infty}\left(e^{i x}-1-i x\right) d(1-F(x y))-\int_{0}^{\infty}\left(e^{-i x}-1+i x\right) d F(-x y) \\
& \quad+\int_{0}^{1}(1-F(x y)+F(-x y)) x d x \\
& = \\
& \quad i \int_{0}^{\infty}(1-F(x y))\left(e^{i x}-1\right) d x-i \int_{0}^{\infty} F(-x y)\left(e^{-i x}-1\right) d x \\
& \quad+\int_{0}^{1}(1-F(x y)+F(-x y)) x d x
\end{aligned}
$$

$$
\begin{aligned}
= & i \int_{1}^{\infty}(1-F(x y))\left(e^{i x}-1\right) d x+i \int_{0}^{1}(1-F(x y))\left(e^{i x}-1-i x\right) d x \\
& -i \int_{1}^{\infty} F(-x y)\left(e^{-i x}-1\right) d x-i \int_{0}^{1} F(-x y)\left(e^{-i x}-1+i x\right) d x
\end{aligned}
$$

and

$$
\left|e^{i t x}-1\right| \leqslant 2, \quad\left|e^{i t x}-1-i t x\right| \leqslant|t x|^{2}
$$

Combining

$$
1-F(x)+F(-x) \in R V_{Q-2}, \quad(1-F(x)) /(1-F(x)+F(-x)) \rightarrow p
$$

and Theorem 1.8 of Geluk and de Haan [3] (with $k(t)=\left(e^{ \pm i t}-1 \mp i t\right) / t^{2}$ for part (i) and $k(t)=\left(e^{ \pm i t}-1\right) / t$ for part (ij)), we get
(2.6) $\lim _{y \rightarrow \infty} \frac{\mu(1 / y)-1+y^{-2} H(y)}{1-F(y)+F(-y)}$

$$
\begin{aligned}
= & i \int_{1}^{\infty}\left(e^{i x}-1\right) p x^{\varrho-2} d x-i \int_{1}^{\infty}\left(e^{-i x}-1\right)(1-p) x^{\varrho-2} d x \\
& +i \int_{0}^{1}\left(e^{i x}-1-i x\right) p x^{\varrho-2} d x-i \int_{0}^{1}\left(e^{-i x}-1+i x\right)(1-p) x^{\varrho-2} d x \\
= & i(2 p-1) \int_{0}^{\infty}(\cos x-1) x^{\varrho-2} d x-\int_{1}^{\infty} x^{\varrho-2} \sin x d x-\int_{0}^{1} x^{\varrho-2}(\sin x-x) d x \\
:= & C_{\varrho}(1)
\end{aligned}
$$

We now work out the value of $C_{\varrho}(1)$ for $-1<\varrho \leqslant 0$. If $\varrho=0$, then

$$
\begin{aligned}
C_{\ell}(1) & =i(1-2 p) \int_{0}^{\infty} \frac{1-\cos x}{x^{2}} d x-\sin 1-\int_{1}^{\infty} \frac{\cos x}{x} d x+\sin 1-1+\int_{0}^{1} \frac{1-\cos x}{x} d x \\
& =i(1-2 p) \int_{0}^{\infty} \frac{1-\cos x}{x^{2}} d x+\int_{0}^{1} \frac{1-\cos x}{x} d x-\int_{1}^{\infty} \frac{\cos x}{x} d x-1 \\
& =i(1-2 p) \pi / 2+\gamma-1
\end{aligned}
$$

(the last equation comes from 3.782 of Gradshtein and Ryzhik [4]), where γ is Euler constant.

If $\varrho<0$, then

$$
\begin{aligned}
C_{\varrho}(1)= & i \frac{2 p-1}{\varrho-1} \int_{0}^{\infty} x^{\varrho-1} \sin x d x+\frac{1}{\varrho-1} \sin 1+\frac{1}{\varrho-1} \int_{1}^{\infty} x^{\varrho-1} \cos x d x \\
& -\frac{1}{\varrho-1}(\sin 1-1)+\frac{1}{\varrho-1} \int_{0}^{1} x^{\varrho-1}(\cos x-1) d x
\end{aligned}
$$

$$
\begin{aligned}
= & -i \frac{2 p-1}{(\varrho-1) \varrho} \int_{0}^{\infty} x^{\varrho} \cos x d x-\frac{\cos 1}{\varrho(\varrho-1)}+\frac{1}{\varrho(\varrho-1)} \int_{1}^{\infty} x^{\varrho} \sin x d x \\
& +\frac{\cos 1-1}{\varrho(\varrho-1)}+\frac{1}{\varrho(\varrho-1)} \int_{0}^{1} x^{\varrho} \sin x d x+\frac{1}{\varrho-1} \\
= & i \frac{1-2 p}{\varrho(\varrho-1)} \Gamma(1+\varrho) \cos \frac{(1+\varrho) \pi}{2}+\frac{1}{\varrho(1-\varrho)} \Gamma(1+\varrho) \sin \frac{(1+\varrho) \pi}{2}+\frac{1}{\varrho}
\end{aligned}
$$

(the last equation comes from 3.761 of Gradshtein and Ryzhik [4]).
Note that (2:6) implies

$$
\lim _{y \rightarrow \infty} \frac{\mu(1 / y)-1}{y^{-2} H(y)}=1
$$

hence

$$
\lim _{y \rightarrow \infty} \frac{|\mu(1 / y)-1|^{2}}{1-F(y)+F(-y)}=\lim _{y \rightarrow \infty} \frac{|\mu(1 / y)-1|^{2}}{\left(y^{-2} H(y)\right)^{2}} \frac{\left(y^{-2} H(y)\right)^{2}}{1-F(y)+F(-y)}=0 .
$$

Since $\log (1+x)=x+O\left(x^{2}\right)$ as $x \rightarrow 0$, we thus find

$$
\begin{equation*}
\lim _{y \rightarrow \infty} \frac{\log \mu(1 / y)+y^{-2} H(y)}{1-F(y)+F(-y)}=C_{Q}(1)=A_{e} i+B_{e}, \tag{2.7}
\end{equation*}
$$

where $A_{\boldsymbol{e}}$ and $B_{\boldsymbol{Q}}$ are defined in Theorem 1. Similarly we can prove

$$
\begin{equation*}
\lim _{y \rightarrow \infty} \frac{\log \mu(-1 / y)+y^{-2} H(y)}{1-F(y)+F(-y)}=C_{\varrho}(-1)=-A_{\varrho} i+B_{\varrho} . \tag{2.8}
\end{equation*}
$$

More generally, for $t \neq 0$ we have

$$
\begin{align*}
& \frac{\log \mu(t / y)+(t / y)^{2} H(y)}{1-F(y)+F(-y)} \tag{2.9}\\
& \qquad \begin{array}{l}
= \\
\frac{\log \mu(t / y)+(t / y)^{2} H(y /|t|)}{1-F(y /|t|)+F(-y /|t|)} \frac{1-F(y /|t|)+F(-y /|t|)}{1-F(y)+F(-y)} \\
\quad+t^{2} \int_{1 /|t|}^{1} \frac{1-F(y x)+F(-y x)}{1-F(y)+F(-y)} x d x ;
\end{array}
\end{align*}
$$

hence, by (2.7), (2.8) and $1-F(x)+F(-x) \in R V_{Q^{-2}}$, (2.5) is proved.
Lemma 2. Assume that $\int_{-y}^{y}|x|^{3} d F(x) \in R V_{0}, K_{1}(x) / K(x) \rightarrow q \in[0,1]$ (as $x \rightarrow \infty), E X=0$, and $E X^{2}=1$. Let μ denote the characteristic function of F. Then

$$
\begin{equation*}
\lim _{y \rightarrow \infty} \frac{\log \mu(t / y)+t^{2} /\left(2 y^{2}\right)}{y^{-3} K(y)}=-|t|^{3} \operatorname{sgn}(t)(q-1 / 2) i . \tag{2.10}
\end{equation*}
$$

Proof. From the proof of Theorem 2 of Feller VIII. 9 (cf. [2]) and $\int_{-y}^{y}|x|^{3} d F(x) \in R V_{0}$, we have

$$
\begin{equation*}
\lim _{y \rightarrow \infty} \frac{y^{3}(1-F(y)+F(-y))}{\int_{-y}^{y}|x|^{3} d F(x)}=0 \tag{2.11}
\end{equation*}
$$

Since

$$
\int_{-y}^{y}|x|^{3} d F(x)=3 \int_{0}^{y}(1-F(x)+F(-x)) x^{2} d x-y^{3}(1-F(y)+F(-y))
$$

we have

$$
\lim _{y \rightarrow \infty} \frac{K(y)}{\int_{-y}^{y}|x|^{3} d F(x)}=\frac{1}{3}
$$

Therefore
(2.12) $K(y) \in R V_{0} \quad$ and $\quad \lim _{y \rightarrow \infty} \frac{y^{3}(1-F(y)+F(-y))}{K(y)}=0$,
which implies

$$
\begin{equation*}
\frac{y^{3}(1-F(y))}{K(y)} \rightarrow 0 \quad \text { and } \quad \frac{y^{3} F(-y)}{K(y)} \rightarrow 0 . \tag{2.13}
\end{equation*}
$$

Note that

$$
\begin{aligned}
& \mu(1 / y)-1+\frac{1}{2 y^{2}}+\frac{i}{2 y^{3}}\left(K_{1}(y)-K_{2}(y)\right) \\
& =-\int_{0}^{\infty}\left(e^{i x}-1-i x+x^{2} / 2\right) d(1-F(x y))-\int_{0}^{\infty}\left(e^{-i x}-1+i x+x^{2} / 2\right) d F(-x y) \\
& \quad+\frac{i}{2} \int_{0}^{1}(1-F(x y)) x^{2} d x-\frac{i}{2} \int_{0}^{1} F(-x y) x^{2} d x \\
& =i \int_{1}^{\infty}\left(e^{i x}-1-i x\right)(1-F(x y)) d x+i \int_{0}^{1}\left(e^{i x}-1-i x+x^{2} / 2\right)(1-F(x y)) d x \\
& \quad-i \int_{1}^{\infty}\left(e^{-i x}-1+i x\right) F(-x y) d x-i \int_{0}^{1}\left(e^{-i x}-1+i x+x^{2} / 2\right) F(-x y) d x
\end{aligned}
$$

and

$$
y^{3}(1-F(y)+F(-y)) \leqslant 3 K(y) \quad \text { for all } y>0
$$

Using (2.12) and (2.13), similar to the proof of Lemma 1, we can prove Lemma 2.

Lemma 3. Assume

$$
\begin{gathered}
1-F(x)+F(-x) \in R V_{\varrho-2} \quad(-1<\varrho \leqslant 0), \\
(1-F(x)) /(1-F(x)+F(-x)) \rightarrow p \in[0,1] \quad(\text { as } x \rightarrow \infty),
\end{gathered}
$$

and $E X=0$. Let $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ denote the real part and the imaginary part of a complex variable z, respectively. Then
(i) for any $0<\varepsilon<\varepsilon_{0}:=\left(-B_{e}\right) \wedge 1$, there exists $y_{0}>0$ such that for $y \geqslant y_{0}, y /|t| \geqslant y_{0}$

$$
\begin{aligned}
&\left(B_{\varrho}-\varepsilon\right)(1+\varepsilon)|t|^{2-\varrho} \exp \{\varepsilon|\log | t \mid\}+t^{2}(1-\varepsilon) \frac{1-|t|^{-\varrho-\varepsilon}}{\varrho+\varepsilon} \\
& \leqslant \operatorname{Re}\left(\frac{\log \mu(t / y)+(t / y)^{2} H(y)}{1-F(y)+F(-y)}\right) \\
& \leqslant\left(B_{\varrho}+\varepsilon\right)(1-\varepsilon)|t|^{2-\varrho} \exp \{-\varepsilon|\log | t| |\}+t^{2}(1+\varepsilon) \frac{1-|t|^{-\varrho+\varepsilon}}{\varrho-\varepsilon}
\end{aligned}
$$

(ii) for any

$$
0<\varepsilon<\varepsilon_{1}:= \begin{cases}1 & \text { for } p=1 / 2 \\ \left|A_{\varrho}\right| \wedge 1 & \text { for } p \neq 1 / 2\end{cases}
$$

there exists $y_{0}>0$ such that for $y \geqslant y_{0}, y /|t| \geqslant y_{0}$ $\left(\operatorname{sgn}(t) A_{\varrho}-\varepsilon\right)\left(1-\varepsilon \operatorname{sgn}\left(\operatorname{sgn}(t) A_{\varrho}-\varepsilon\right)\right)|t|^{2-\varrho} \exp \left\{-\operatorname{sgn}\left(\operatorname{sgn}(t) A_{\varrho}-\varepsilon\right) \varepsilon|\log | t| |\right\}$
$\leqslant \operatorname{Im}\left(\frac{\log \mu(t / y)+(t / y)^{2} H(y)}{1-F(y)+F(-y)}\right)$
$\leqslant\left(\operatorname{sgn}(t) A_{\varrho}+\varepsilon\right)\left(1+\varepsilon \operatorname{sgn}(t) \operatorname{sgn}\left(A_{\varrho}\right)\right)|t|^{2-\varrho} \exp \left\{\operatorname{sgn}(t) \operatorname{sgn}\left(A_{\varrho}\right) \varepsilon|\log | t \mid\right\}$.
Proof. Using (2.7) (2.9), $1-F(x)+F(-x) \in R V_{Q-2}$ and Potter bounds (see Bingham et al. [1]), we easily obtain the lemma.

Lemma 4. Assume that $\int_{-y}^{y}|x|^{3} d F(x) \in R V_{0}, K_{1}(x) / K(x) \rightarrow q \in[0,1]$ (as $x \rightarrow \infty), E X=0$, and $E X^{2}=1$. Let $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ denote the real part and the imaginary part of a complex variable z, respectively. Then
(i) for any $0<\varepsilon<1$, there exists $y_{0}>0$ such that for $y \geqslant y_{0}, y /|t| \geqslant y_{0}$ $-\varepsilon(1+\varepsilon)|t|^{3} \exp \{\varepsilon|\log | t| |\}$

$$
\leqslant \operatorname{Re}\left(\frac{\log \mu(t / y)+t^{2} /\left(2 y^{2}\right)}{y^{-3} K(y)}\right) \leqslant \varepsilon(1+\varepsilon)|t|^{3} \exp \{\varepsilon|\log | t| |\} ;
$$

(ii) for any

$$
0<\varepsilon<\varepsilon_{1}:= \begin{cases}|q-1 / 2| & \text { for } q \neq 1 / 2 \\ 1 & \text { for } q=1 / 2\end{cases}
$$

there exists $y_{0}>0$ such that for $y \geqslant y_{0}, y /|t| \geqslant y_{0}$

$$
\begin{aligned}
& (\operatorname{sgn}(t)(1 / 2-q)-\varepsilon)(1-\varepsilon \operatorname{sgn}((1 / 2-q) \operatorname{sgn}(t)-\varepsilon))|t|^{3} \\
& \times \exp \{-\operatorname{sgn}((1 / 2-q) \operatorname{sgn}(t)-\varepsilon) \varepsilon|\log | t \mid\} \\
\leqslant & \operatorname{Im}\left(\frac{\log \mu(t / y)+t^{2} /\left(2 y^{2}\right)}{y^{-3} K(y)}\right) \leqslant(\operatorname{sgn}(t)(1 / 2-q)+\varepsilon)(1+\varepsilon \operatorname{sgn}(t) \operatorname{sgn}(1 / 2-q))|t|^{3} \\
& \times \exp \{\operatorname{sgn}(t) \operatorname{sgn}(1 / 2-q) \varepsilon|\log | t| |\} .
\end{aligned}
$$

The proof is similar to the proof of Lemma 3 by using Lemma 2.
Proof of Theorem 1. Define

$$
A_{n}:=n\left(1-F\left(a_{n}\right)+F\left(-a_{n}\right)\right), \quad m_{n}:=\left(A_{n}\right)^{(-1+\varepsilon) /(2-e+\varepsilon)},
$$

and

$$
R(x):=\frac{A_{n}}{2 \pi} \int_{-\infty}^{\infty} \frac{e^{-i t x}}{-i t} C_{e}(t) \exp \left\{-t^{2} / 2\right\} d t .
$$

Note that $m_{n} \rightarrow \infty$ and $n^{(1+e) / 2} m_{n} / a_{n} \rightarrow \infty$ since both sequences are regularly varying with positive indices. By Lemma 3,

$$
\begin{equation*}
n \log \mu\left(t / a_{n}\right)+t^{2} / 2 \rightarrow 0 \tag{2.14}
\end{equation*}
$$

uniformly for $|t| \leqslant m_{n}$ as $n \rightarrow \infty$.
Now
(2.15) $\quad \mu^{n}\left(t / a_{n}\right)-\exp \left\{-t^{2} / 2\right\}$

$$
=\left(n \log \mu\left(t / a_{n}\right)+t^{2} / 2\right) \exp \left\{-t^{2} / 2\right\} \exp \left\{\theta_{n}\left(n \log \mu\left(t / a_{n}\right)+t^{2} / 2\right)\right\}
$$

for some θ_{n} with $\left|\theta_{n}\right| \in[0,1]$, depending on t.
Since F is a non-lattice distribution, for any $\delta>0$ there exists a sequence $\lambda(n)$ with $\lambda(n) \rightarrow \infty$ as $n \rightarrow \infty$ such that

$$
\begin{equation*}
\int_{\delta}^{\lambda(n)}\left|\mu^{n}(t)\right| t^{-1} d t=o(\exp \{-\sqrt{n} / 2\}) \tag{2.16}
\end{equation*}
$$

(see Lemma 3.3.1 of Ibragimov and Linnik [8]). It is easy to know that $A=\sup \left|\Phi^{\prime}(x)+R^{\prime}(x)\right|<\infty$ and $\exp \left\{-t^{2} / 2\right\}+A_{n} C_{e}(t) \exp \left\{-t^{2} / 2\right\}$ is the Fourier Stieltjes transform of $\Phi-R$. Using the smoothing lemma with $T=\lambda(n) a_{n}$ (see Feller [2], XVI.3, Lemma 2), we get

$$
\begin{aligned}
\sup _{x} \mid & P\left(\sum_{i=1}^{n} X_{i} / a_{n} \leqslant x\right)^{\circ}-\Phi(x)-R(x) \mid \\
\leqslant & \frac{1}{\pi} \int_{|t| \leqslant T}\left|\frac{\mu^{n}\left(t / a_{n}\right)-\exp \left\{-t^{2} / 2\right\}-A_{n} C_{Q}(t) \exp \left\{-t^{2} / 2\right\}}{t}\right| d t+\frac{24 A}{\pi T} \\
\leqslant & \frac{1}{\pi} \int_{|t| \leqslant m_{n}}\left|\frac{\mu^{n}\left(t / a_{n}\right)-\exp \left\{-t^{2} / 2\right\}-A_{n} C_{\underline{e}}(t) \exp \left\{-t^{2} / 2\right\}}{t}\right| d t \\
& +\frac{1}{\pi} \int_{m_{n} \leqslant\{t \mid \leqslant T}\left|\frac{\mu^{n}\left(t / a_{n}\right)}{t}\right| d t \\
& +\frac{1}{\pi} \int_{m_{n} \leqslant\{t \mid \leqslant T}\left|\frac{\exp \left\{-t^{2} / 2\right\}+A_{n} C_{Q}(t) \exp \left\{-t^{2} / 2\right\}}{t}\right| d t+\frac{24 A}{\pi T} .
\end{aligned}
$$

It is obvious that

$$
\frac{1}{A_{n}} \int_{m_{n} \leqslant|t| \leqslant T}\left|\frac{\exp \left\{-t^{2} / 2\right\}+A_{n} C_{e}(t) \exp \left\{-t^{2} / 2\right\}}{t}\right| d t \rightarrow 0
$$

and

$$
\frac{1}{A_{n} T}=\frac{1}{\lambda(n) a_{n} A_{n}} \rightarrow 0
$$

By (2.14), (2.15) and Lemma 3, we have

$$
\frac{1}{A_{n}} \int_{|t| \leqslant m_{n}}\left|\frac{\mu^{n}\left(t / a_{n}\right)-\exp \left\{-t^{2} / 2\right\}-A_{n} C_{e}(t) \exp \left\{-t^{2} / 2\right\}}{t}\right| d t \rightarrow 0
$$

In order to complete the proof of Theorem 1, we only need to prove

$$
\begin{equation*}
\frac{1}{A_{n}} \int_{m_{n} \leqslant|t| \leqslant T}\left|\frac{\mu^{n}\left(t / a_{n}\right)}{t}\right| d t \rightarrow 0 . \tag{2.17}
\end{equation*}
$$

Since there exists $\delta>0$ such that for $|t| \leqslant \delta a_{n}$

$$
|\mu(t)| \leqslant \exp \left\{-\delta|t|^{d_{0}}\right\}, \quad d_{0}=2 /(1+\varepsilon)
$$

(see relation (4.2.7) of Ibragimov and Linnik [8]), note that $m_{n} / a_{n} \rightarrow 0(n \rightarrow \infty)$. As n is large enough, we have

$$
\begin{array}{r}
\frac{1}{A_{n}} \int_{m_{n} \leqslant|t| \leqslant \delta a_{n}}\left|\mu\left(t / a_{n}\right)\right|^{n}|t|^{-1} d t \leqslant \frac{1}{A_{n}} \int_{|t| \geqslant m_{n}} \exp \left\{-\delta n\left(a_{n}\right)^{-d_{0}}|t|^{d_{0}}\right\}|t|^{-1} d t \\
=\frac{1}{A_{n}} \int_{|t| \geqslant n^{1 / d d_{0} m_{n}\left(a_{n}\right)^{-1}}} \exp \left\{-\delta|t|^{d_{0}}\right\}|t|^{-1} d t \rightarrow 0 \quad(n \rightarrow \infty)
\end{array}
$$

since $n^{1 / d} m_{n}\left(a_{n}\right)^{-1} \rightarrow \infty(n \rightarrow \infty)$. By (2.16) we have

$$
\frac{1}{A_{n}} \int_{\delta a_{n} \leqslant|t| \leqslant T}\left|\frac{\mu^{n}\left(t / a_{n}\right)}{t}\right| d t=\frac{2}{A_{n}} \int_{\delta}^{\lambda(n)}\left|\frac{\mu^{n}(t)}{t}\right| d t \rightarrow 0 .
$$

Thus (2.17) holds.
Proof of Theorem 2. Note that (see 3.952 .4 of Gradshtein and Ryzhik [4])

$$
\int_{0}^{\infty} t^{2} \exp \left\{-t^{2} / 2\right\} \cos (t x) d t=\sqrt{\pi / 2}\left(1-x^{2}\right) \exp \left\{-x^{2} / 2\right\}
$$

The proof is similar to the proof of Theorem 1 by using Lemma 4 instead of Lemma 3.

Proof of Theorem 3. By the Fourier inversion theorem of Feller [2], XV.3,
and

$$
\frac{\partial}{\partial x} P\left(\sum_{i=1}^{n} X_{i} / a_{n} \leqslant x\right) \text { exists for all } n \geqslant k
$$

$$
\begin{equation*}
\frac{\partial}{\partial x} P\left(\sum_{i=1}^{n} X_{i} / a_{n} \leqslant x\right)-\frac{\partial}{\partial x} \Phi(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i t x}\left(\mu^{n}\left(t / a_{n}\right)-\exp \left\{-t^{2} / 2\right\}\right) d t \tag{2.18}
\end{equation*}
$$

The proof is similar to the proof of Theorem 1. \square

Proof of Theorem 4. Note that (see 3.942.5 of Gradshtein and Ryzhik [4])

$$
\int_{0}^{\infty} t^{3} \exp \left\{-t^{2} / 2\right\} \sin (t x) d t=\sqrt{\pi / 2}\left(3 x-x^{3}\right) \exp \left\{-x^{2} / 2\right\} .
$$

The proof is similar to the proof of Theorem 3.
Appendix. We now prove that (1.3) is equivalent to the regular variation of $1-F(x)+F(-x)$ at infinity with index $\varrho-2$. By Theorems 1.9 and 1.10 of Geluk and de Haan [3] or Lemma 3.2.1 of Bingham et al. [1], relation (1.3) is equivalent to the following:

For $\varrho<0, \lim _{x \rightarrow \infty} H(x)$ exists and

$$
H(\infty)-H(x)=\int_{x}^{\infty}(1-F(u)+F(-u)) u d u \in R V_{e} .
$$

For $\varrho=0$ the function H is in the class Π. Equivalently,

$$
\int_{x}^{\infty}(1-F(\sqrt{u})+F(-\sqrt{u})) d u \in R V_{e / 2} \text { or } \in \Pi \text {, }
$$

respectively. An application of the monotone density theorem (Propositions 1.7.11 and 1.19.5 of Geluk and de Haan [3]) completes the proof.

REFERENCES

[1] N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University Press, New York 1987.
[2] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, Wiley, 1971.
[3] J. Geluk and L. de Haan, Regular Variation, Extensions and Tauberian Theorems, CWI Tract 40, Amsterdam 1987.
[4] I. S. Gradshtein and I. M. Ryzhik, Table of Integrals, Series and Products, Academic Press, New York 1980.
[5] P. Hall, On the rate of convergence in the central limit theorem for distributions with regularly varying tails, Z. Wahrsch. verw. Gebiete 49 (1979), pp. 1-11.
[6] - Characterizing the rate of convergence in the central limit theorem, Ann. Probab. 8 (6) (1980), pp. 1037-1048.
[7] - Fast rates of convergence in the central limit theorem, Z. Wahrsch. verw. Gebiete 62 (1983), pp. 491-507.
[8] I. A. Ibragimov and Yu. V. Linnik, Independent and Stationary Sequences of Random Variables, Noordhoff, Groningen 1971.
[9] V. V. Petrov, Limit Theorems of Probability Theory, Clarendon Press, Oxford 1995.
Econometric Institute
Erasmus University Rotterdam
P.O. Box 1738, 3000 DR Rotterdam

The Netherlands
Received on 5.8.1996;
revised version on 13.4.1997

[^0]: * Research supported by Navy grant N 00014-93-1-0043.

