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SLOW CONVERGENCE TO NORMALITY:
AN EDGEWORTH EXPANSION WITHOUT THIRD MOMENT

BY

L. oE HAAN* anp L, PENG (ROTTERDAM)

Abstract. Let F be a non-lattice distribution function which lies in
the domain of attraction of a normal distribution. Exact uniform conver-
gence rates are obtained for the convergence of the normalized partial
sums of i.i.d. random variables with distribution F. The assumptions are

1—F(x)+F(—x)eRV,—.; (~1<¢<0)
and
(1—=F(x)(1—F(x)+F(-x) - pe[0,1] (as x — oo).

For ¢ = —1 somewhat weaker conditions are sufficient.

1. Introduction. Let X,, X,, ... be independent and identically distrib-
uted random variables with common distribution function F which lies in the
domain of attraction of a normal law, ie., the function j’ix y2dF (y) (x > 0) is
slowly varying at infinity. An equivalent condition is: the function

x

H(x):= [(1—FW+F(—uw)udu

0
is slowly varying at infinity, that is,
Ht
1.1) : lim H((:;)= 1 for all x> 0.

Then there exist constants a, > 0 and b,eR such that

(1.2) P((_i X;—b,)/a, < x) > & (x):= (2m)~1/2 j exp { —u?/2} du
= 7 for all xeR.

If the third moment is finite and F is non-lattice, the difference of the two terms
in (1.2), multiplied by \/ﬁ, converges (n — oo) uniformly in x (see Petrov [9]).
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Assume now that the third moment does not exist. We are going to relate the
uniform rate of convergence in (1.2) to the (pointwise) rate of convergence
in (L.1).

A natural rate of convergence condition for (1.1) is the following. Suppose
that there is a positive function A*(t) (A*(t) >0 as t — oo) such that

lim H(tx)/H (t)—1

=0 A*(@)
exists for every x > 0. Then the limit function must be of the form

,x0—1
c
e

for constants ¢ < 0 and ¢’ e R (see Theorem 1.9 of Geluk and de Haan [3] or
Lemma 3.2.1 of Bingham et al. [1]; (x®—1)/0 is defined as log x). Without loss
of generality we can assume ¢’ = —1, 0, or 1. The case ¢’ = 0 is somewhat less

informative, so we shall henceforth assume ¢’ = 1 1. So suppose there is a func-
tion A with lim,, A (f) =0 and not changing sign near infinity, such that

. Hex)H@®)—1 x*—1
I S R

for all x> 0.

The function |A4]| is then regularly varying with index ¢ (|4]e RV,). It can be
proved (see the Appendix) that (1.3) is equivalent to the regular variation of
1—F(x)+ F (—x) at infinity with index ¢ —2. We shall prove that if this is the
case and if the balance condition

. 1—F(x)
(1.4 ,}L“}o 1—F(x)+F(—x)

is satisfied, then for a suitable choice of the sequences a, and b, the limit

lim 4,/{n(1~F(a)+F(~a,)}

=pe[0, 1]

exists, where B
ay:=sup [P((3 X,—b)/a, < %) ()]
. i=1

xeR

This will follow from the uniform convergence of

P((Z?=1 Xi_bn)/an < X)—Q(x)
n(1—F(a,)+F(—a,)
a first order expansion of Edgeworth type.
In fact, in the case ¢ = — 1, somewhat weaker conditions are sufficient (see

Theorem 2). These conditions are implied by the condition E |X|® < oo, so that
the classical result is a special case of ours.

as n— oo,
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Our results are closest in spirit to the results of Hall [ 5] (cf. also [6] and [7]). We
require three conditions: non-lattice distribution, regular variation of the combined
tails, and the balance condition. Hall [ 5] only requires regular variation of both tails.
The conclusions of Hall [5] are somewhat weaker: he proves upper and lower
bounds whereas we have an actual limit. The balance condition and the non-lattice
condition are necessary for our results. For further references see Hall [6].

It may be emphasized that the case ¢ = 0 allows for extremely low conver-
gence rates (whether or not the variance exists, is immaterial).

The well-known inequalities of Berry and Esséen (cf. Feller [2]) are . of
a different type: they hold for any x but also for any n.

2. Results and proofs. Throughout most of this paper we assume
1-F(x)+F(—x)eRV,-, (—1<¢<0).

Note that 1—F(x)+F(—x)eRV,_, (—1< ¢ <0) implies that |~ _y>dF(y)
(x > 0) is a slowly varying function at infinity, so that F is in the domain of
attraction of the normal distribution (see p. 83 of Ibragimov and Linnik [8]).
An equivalent condition is: the function H (x) is slowly varying at infinity. This
implies E|X| < o0, and so there is no loss of generality in supposing that
EX = 0. We make this assumption throughout.

Since x >H(x) >0 as x — o, the function

a(x):=sup{a: 2a 2 H(a) > x~'}

is well defined for all large x. For such values of x we have

2.1 2x(a(x)) "2 H(a(x)) =1.
For large n define
22) | ay:= a(n)

and b, = 0. Relation (1.2) holds for such choices of a, and b,.
THEOREM 1. Assume
 1-F(X)+F(—x)eRV,—., (—-1<g<0),
(1-Fx)/(1—F(x)+F(—x))->pe[0,1] (as x > o),
EX = 0 and F is a non-lattice distribution function. Let a, be defined by (2.2). Then

; P(Z?: XJﬂnSx)—cb(x)_ 1 ® g-itx
3) ,}E?o n(l—lF(an)+F(_an)) _2—n_jw — C,(®)exp{—1?/2}dt

uniformly for all xeR, where

—|Itl—e
C, () = sgn (O1H2 =0 A, 1+ |2 B, +12 - lf' ,

1
I'(1+p) cos g—+a

2p—1
4 F(1+Q)sing B 3

1
A , =
¢ a(e—-1) 2 ¢ ele-1)
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(define Ay:=1lim,o A, =(1—-2p)n/2 and B,:=lim,.o B, =7—1, y is the
Euler constant), and

for t =0,

1
sgn () = {—~1 Jor t <0,

THEOREM 2. Let

K(y = f(l—F(x)+F(—x))x2 dx,
0

Kl(y):=j(1—F(x))x2dx and Kz(y):=fF(—x)x2dx.

Assume j |x|*dF (x)eRV,, K,(x)/K(x)—>qe[0,1] (as x— o), EX =0,
EX? =1, and F is a non-lattice distribution function. Then
. m PEi XV <9=20) 21
y (2.4) lim
‘ . - n—lfzK(\/-) 2 /2

uniformly for all xeR.

—x%)exp{ —lx2/2}

COROLLARY 1. It follows that the supremum of the norm of the left-hand
sides of (2.3) and (2.4) for xe R converges to the corresponding supremum of the
norm of the right-hand sides, hence the uniform convergence rate.

Remark 1. Note that B, < 0 for —1 < ¢ < 0 in Theorem 1 so that the
limit in (2.3) is not identically zero.

Remark 2. 1—F(x)+ F(—x)eRV_; implies j'y_y|x|3 dF (x)e RY,,.

Remark 3. Theorem 1 implies that the sequence 4, is regularly varying
with index g/2. Theorem 2 implies that the sequence 4, is regularly varying
with index —1/2. So the range of the index is [—1/2, 0].

Remark 4. If F is non-lattice and E|X|?® < oo, the conditions of Theo-
rem 2 are fulfilled and the classical result ensues.

Remark 5. The conditions of Theorem 1 for ¢ = —1 imply those of
Theorem 2. But (2.3) does not hold for ¢ = —1.

THEOREM 3. Assume
1-F(x)+F(—x)eRV,-, (—1<¢<0),
! (1—F()/(1—F(x)+F(—x))—pe[0,1] (as x - o),
| EX =0, and |pJ* is integrable for some k > 1, where u denotes the characteristic

i function. of F. Then

9 P(Y X/a,<x) exists for n>k
i=1.
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and

9/0x) P(Y;_, Xi/a, < x)—(0/0x) @ T e '
nam(/x) iz(i__lF(iaHF)?—:); : (x)_1 J e C exp{—r*f23dt

uniformly for all xe R, where C,(t) is defined in Theorem 1.
THEOREM 4. Assume that jy Ix]?dF (x)eRV,, K, (x)/K(x)—qe[0, 1]
(as x> ), EX=0, EX*>=1, and |ul* is integrable for some k > 1, where
i denotes the characteristic function of F. Then
0

g P(Z X,/\/n < x) exists for n> k

and

(0/8%) P (3 L Xi/n/n < x)— (a/ax)d5(X) —2q_1(3x—x3)exp{—x2/2}

o
= w PR 2/

uniformly for all xeR.

For the proofs we need four lemmas.
LemMA 1. Assume

1-F(x)+F(—x)eRV,., (—1<p¢<x0),
(1=F())/(1—F(x)+F(-x)—>pe[0,1] (as x— o),
and EX = 0. Let u denote the characteristic function of F. Then

IOg H(t/y)‘l’(f/Y)zH(J?) —_ |t|2—QC (sgn(t))+t2 1'—|t|_g
¢ e

& T I F()+F ()

where C,(t) is defined in Theorem 1.
Proof. Note

u(1/y)—1+y~2H(y)

= C, (1),

[+2}

= | (" —1—ix/y)dF (x)+y~>

— a0

(1—F(x)+ F(—x))xdx

= [ —1-ix)d(1=F(xy)—

0

Qlammy 8 © temm '

(e —1+ix)dF (—xy)
+}(1—F(xy)+F(—xy))xdx

=zgfo(1 —F(xy))(e™—1)dx—i _[F( xy) (e *—1)dx -
0

+f (1—=F (xy)+ F(—xy)) x dx
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=if(1— F(xy))(ei"—l)dx+lj(1 F (xy))(e™—1—ix)dx
1
—if F(—xy)(e’""—l)dx——ij'F(—xy)(e“"“—l+ix)dx
1 [v]
and
1 <2, | —1—itx] < |tx
Combining

" 1-F(x)+F(—x)eRV,_;, (1—F®)(1—F(x)+F(—x)—p
and Theorem 1.8 of Geluk and de Haan [3] (with k(f) = (e*"—1Fit)/t* for
part (i) and k(t) = (e**—1)/t for part (ij)), we get

. u(/y)—=1+y"2H(y)
@9 TITFG+F(y)

(e*—1)pxe~ 2dx—zj(e‘"‘ (1—p)xe~2dx

H'—-—aS

+ij'(el'x_]_-iX) px2_2 dx—i_f(e_ix—1+ix)(1—p)x‘?‘zdx
0 0
= o] 0 1
= i(2p—1) | (cosx—1)x#~2 dx— [ x¢~ sinxdx— | x¢~2 (sinx—x)dx
0 1 :

| ;
|

:=C,().
We now work out the value of C,(1) for —1<¢<0. If ¢ = 0 then
©1— cosx 11—cosx
c,()=i(1— 2p)j' dx—sin 1—_[ —dx+s1n1 1+j' dx
[} 1
—1(1 2p)j 1-— cosx .‘.1 cosxdx J.cosxdx_1
0

=i(l1-2p)n/2+y—1

(the last equation comes from 3.782 of Gradshtein and Ryzhik [4]), where 7 is
Euler constant.
If o <_0, then

2p—

‘ 1
: C,()=i——- = LT j'x'? lsinxdx+——sinl+— j' x¢~1 cos xdx

0 e—1 e—

1
———(sin1—1)+—— | x¢~ ! (cos x—1)dx
g—l( ) g—1£ ( )
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1 = cos 1 1 @
x2cosxdx— + x? sin x dx
(e—De (j) ele—1) ele-1) “1[

COSI_I+ 1 i‘x‘-’sinxdx+—1
e(e—1) ele—1Dy -1
(1+0)mw 1 1+o)mn

1-2p .
=1 I'(14p9)cos + I'(1+p)sin
ge—p Qs g T +e)sin—

(the last equation comes from 3.761 of Gradshtein and Ryzhik [4]).
Note that (2.6) implies

. 2p—
= —i

1
4-
0

. u(l/y)—1

—aa=b
y+o Yy 2H(y)

hence

C RU-1 L w)-1F GTHGE
T FO+F(—y) 2B GZHQG)F I=FO)+F(—y)

Since log(1+x) = x+0(x?) as x -0, we thus find
lim 108 #(/))+y > H(y)
oo 1-F(y)+F(-y)
where A, and B, are defined in Theorem 1. Similarly we can prove
i OBEC YD)+ 2 H()
2.8 lim
@Y TR+
More generally, for t # 0 we have

log u(t/y)+(t/y)* H(y)
1—F(y)+F(-y)
_ logu(/y)+(t/y)* H(y/ltl) 1—F (y/lth) + F (= y/It])
1—F(y/ith+F(=y/lt)  1-F()+F(~y)

L' 1—F(yx)+F(—yx)
2 d ’
A TTFOrEy <
hence, by (2.7), (2.8) and 1—F(x)+F(—x)€RV,_,, (2.5) is proved. =

LEMMA 2. Assume that [°__|x|*dF(x)eRV,, K, (x)/K(x)—q<[0, 1] (as
x— 0),EX =0,and EX* = I.Lyetpdenote the characteristic function of F. Then

log p(t/y)+1%/(2y*) _ —1¢? sgn (5) (g—1/2)i.

@7

= C,(1) = 4,i+B,,

=C,(~1)= —A,i+B,.

29)

2.10 lim =
210 T yK()

Proof From the proof of Theorem 2 of Feller VIIL9 (cf. [2]) and
_fy_ylxl:"dF(x)eRVo, we have '
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3
11 P (-FW+F(—y) _
- B TR
Since

A

T x> dF (x) =3[ (1—F(x)+F (—x)) x*dx—y*(1—F () + F (=),

-y

<

we have
K(y) 1
1]11 # = ,.3_,_
y— o _[_ylx| dF (x)
Therefore
3
_F _
(2.12) K()eRV, and lim 2UZFOHFEN) o
y=roo K(y)
which implies
3 3
y*(1=F(») V3 F(—y)
2.13 22,0 and F— 0.
1) K() K ()
Note that

(1Y) =14 gt s (K (0) =K (9)

2y 23
= —]'O(e""—l—ix+x2/2)d(1—F(xy))—of(e”""—l+ix+x2/2)dF(—xy)
0 o

+ (l—F(xy))xzdx—%}F(—xy)xzdx
0

N~
© oy =

= ioj? (e*—1—ix)(1—F (xy))dx+i } (6™ —1—ix+x%/2){1 — F (xy))dx

© 1 :
—i[(e"™—1+ix) F(—xy)dx—i[(e”™—1+ix+x*/2) F(—xy)dx
0

1
and

y¥(1—F()+F(—y)<3K(y) for all y>0.

Using (2.12) and (2.13), similar to the proof of Lemma 1, we can prove
Lemma 2. =

LemMMA 3. Assume
1-F(x)+F(—x)eRV,—, (—1<¢<x<0),
(1—F®)/(1-F(x)+F(-=x)->pe[0,1] (as x - 0),

and EX = 0. Let Re(z) and Im(z) denote the real part and the imaginary part of
a complex variable z, respectively. Then
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(i) for any 0 <e<egy:=(—B,) A1, there exists y,>0 such that for
Y 2 Yo, Y/Itl 2 yo
1—[¢7e~*

(B,—&)(1+¢&) |t~ exp {e [log|tl|} + > (1 —¢) Py

<Re (log n(t/y)+@/yy? H (y))
1-F(y)+F(—y)
|t| ote

(B +e)(1— e)t*%exp {— e|log|t||}+t2(1+e)—mg—8;

(i) for any
1 for p=1/2,
|[4,lA1  for p #1/2,
there exists y, >0 such that for y = y,, y/itl = yo
(sgn(t) 4,—¢) (1 —esgn (sgn () 4, —¢)) [t1> 72 exp{—sgn (sgn () 4, —¢) e [log |¢l]}
: 2
| <im (logﬂ(t/y)+(t/y) H(y))
? 1-F(y)+F(-y)
< (sgn(2)4, +¢)(1+&sgn(z) sgn(4,))[t)> ¢ exp{sgn () sgn(4,) e [log [}
Proof. Using (2.742.9), 1—F(x)+F(—x)eRV,-, and Potter bounds
(see Bingham et al. [1]), we easily obtain the lemma. =
LEMMA 4. Assume that jy |x|* dF (x)e RV,, K, (x)/K(x)—q€[0, 1] (as
x— ), EX =0,and EX? =1, Let Re (2) and Im (2) denote the real part and the
imaginary part of a complex variable z, respectively. Then
(i) for any 0 < & < 1, there exists y, > O such that for y = y,, y/lt| = y,

—e(1+¢) |t exp {e|log l[}
Re (log 1 (t/y)+12/2y%)

0<£<£1:={

<

7 KG) ) < e(1+¢)t)* exp {|logld|};

(i) for any
' lg—1/2  for g #1/2,
1 for g=1)2,
there exists y, > 0 such that for y = y,, y/It| = y,

(sgn (8)(1/2—q)—e&) (1—¢ sgn((1/2—q) sgn (t)—e)) |t]?

x exp { —sgn((1/2—q)sgn (£)—e) e |log t][}

<Im (log”;tff); (ty)/(zy )> < (sgn () (1/2—-a)+5)(1 +esgn () sgn (12— )

x exp {sgn (1) sgn (1/2—g) & |log ||} .

0<z—:<sl:={
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The proof is similar to the proof of Lemma 3 by using Lemma 2.
Proof of Theorem 1. Define

A,:=n(1—F(a)+F(—a,), m,:=(4,) 1+Ie"ets,
and

w e—lfx

R(x):= % C, (t) exp {—t%/2} du.

L
Note that m, - o and n**®2m,_/a, — co since both sequences are regularly
varying with positive indices. By Lemma 3,

Q.14 nlog u(t/a,)+1%/2 >0
uniformly for [t| < m, as n— oo.
Now

2.15) p'(t/a)—exp{—1t?}/2}
= (nlog u(t/a,)+1%/2) exp { —t*/2} exp {0, (nlog p(t/a,)+1*/2)}

for some 6, with |6,|]€[0, 1], depending on t.
Since F is a non-lattice distribution, for any é > O there exists a sequence
A(n) with A(n)— o0 as n— oo such that
A(n)

7 (2.16) J @™ de = ofexp {~/2)

(see Lemma 3.3.1 of Ibragimov and Linnik [8]). It is easy to know that
A=sup|® (x)+R (x)) < oo and exp{—t%/2}+A4,C,(t) exp{—t?/2} is the
Fourier Stieltjes transform of &—R. Using the smoothing lemma with
T= A(n)a, (see Feller [2], XVL3, Lemma 2), we get

sup|P(};., Xi/a, < x).— @ (x)— R (x)|

n _ —12 _ —2
<L [ |Hea)—exp{=t}2—4,C,@ exp{—r?2)| | 244
LTSS ‘ t | =T
L1 |#a)—exp{—r/2}—A,C, () exp{~1}/2}|
Tn [t] < mp t
L1 W)
N mu<jt|<T
1 —t? —t
L1 exp{—t%/2}+A,C,(t) exp{—1t*/2} dt+24A.
T ma<lt<ST t nT
It is obvious that
1 i exp{—1*/2}+4,C, () exp{—t*/2}| . o
An my<|t|<ST t
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and 1 1

A, T ~ A(n)a, A,
By (2.14), (2.15) and Lemma 3, we have

L |W@a)—exp{—t2}—4,C,0 exp {12}
A J t

0.

dt —» 0.

n |t <mp

In order to complete the proof of Theorem 1, we only need to prove

1 ¥ (t/a,)

An m,St|<ST

@2.17) dt 0.

Since there exists § > 0 such that for |t] < da

lp(@) <exp{—d|t*}, dy=2/1+¢)

(see relation (4.2.7) of Ibragimov and Linnik [87]), note that m,/a, — 0 (n - o0).
As n is large enough, we have

T 0 @) td< g | ep{—dn@) oIt} de

An my < |t] <dan n |t]Zmn

-1 } exp{—diti*}|t| tdt >0 (n— )
A" |t|>"1/d°mn("n)_l
since n'/om, (a,)"! = oo (n— ). By (2.16) we have
1 u(t/a,) K (t)
An dan<|t|<T t

Thus (2.17) holds. =

Proof of Theorem 2. Note that (see 3.9524 of Gradshtein and
Ryzhik [4]) _ _

ujo t2exp {—1t?/2} cos(tx)dt = \/ﬁ(l —x?) exp { —x?%/2}.

Aln)
d_ig

dt — 0.

The proof is ; similar to the proof of Theorem 1 by using Lemma 4 instead of
Lemma 3. =

Proof of Theorem 3. By the Fourier inversion theorem of Feller [2],
XV.3,
(Z < x) exists for all n>k

and
0 1 J 1 ° _.
(2.18) aP(ig1 X,/a, < x)——a D(x) = o _J‘m e~ (4" (t/a,) —exp { —12/2)) dt

The proof is similar to the proof of Theorem 1. &

14 — PAMS 172
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Proof of Theorem 4. Note that (see 3.942.5 of Gradshtein and
Ryzhik [4])

{ 3 exp {—1%/2} sin(tx)dt = \/7/2(3x—x>) exp { —x?/2}.
o
The proof is similar to the proof of Theorem 3. &

Appendix. We now prove that (1.3) is equivalent to the regular variation
of 1—F(x)+ F(—x) at infinity with index ¢—2. By Theorems 1.9 and 1.10 of
Geluk and de Haan [3] or Lemma 3.2.1 of Bingham et al. [1], relation (1.3) is
equivalent to the following:

For ¢ <0, lim,.,,, H(x) exists and

H(w)—H(x) = uj?(1—F(1,t)+}’;'(~--u))udueRVe.

x

For ¢ =0 the function H is in the class II. Equivalently,

?(1—F(\/;)+F(—\/ﬁ))dueRVg,2 or ell,

respectively. An application of the monotone density theorem (Propositions
1.7.11 and 1.19.5 of Geluk and de Haan [3]) completes the proof.
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