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Abstract. We study the Green function G,(x, y) of symmetric 
w-stable processes in for an open set D (0 < a < 2, d 3 3). Our main 
result gives the upper and the lower bound estimates of G,(x, y )  for 
a bounded open set D with a C'sl boundary. We also get a more direct 
formula for the Green function for a ball. As a simple conclusion we 
obtain "3G Theorem" and estimates of EX(7,), where T, is the exit time 
of D. 

1. Introdaction. The aim of this work is to study the Green function of 
symmetric a-stable processes in P (or of Riesz potentials of order a), where 
0 c a < 2 and d 2 3. The main result of this paper may be stated as follows: 

THEOREM. Let a E (0,2) and d 2 3. Let D c Rd be a bounded open set with 
a C1ll boundary and k t  GD(x, y) be the Green finction of symmetric a-stable 
processes for D. Then there exist constants C,, C, > 0 depending only on 
D, d ,  a such that for any x,  ED 

C1 min 
Ad,. 

< min 
1 Ja/' (x) 6'1' ( y )) 

Ix-Yld 
Y 

where 6 (x) = dist (x, aD) and A,,, = 2-a n-di2 r ((d - a)/2) (r (@I) - I. 

As an immediate application of these estimates one can get the so-called 
"3G Theorem" (cf. [5 ]  or [6]) .  We also use our main result to obtain estimates of 
Ex (z,), where z, is the exit time of D, z, = inf { t  > 0: X, 4 Dl (Proposition 4.9). 

These results extend the classical theory, related to Brownian motion, to 
the case of symmetric a-stable processes, a ~ ( 0 ~ 2 ) .  The class of a-harmonic 
functions, a~(O ,2 ) ,  has simple homogeneity properties analogous to those of 
the classical harmonic functions (a = 2). Also, the potential theory for 0 < a < 2 
in Wd (d 2 2) enjoys the explicit formulation in terms of M. Riesz kernels 
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]X - yla-d similar to the classical theory based on Newtonian kernel I X  - y12-d 
(see [8]). The main difference and difficulty in the theory of u-harmonic func- 
tions is that the support of the harmonic measure for an open set is not 
contained in its boundary, as in the classical case, but in its complement. This 
exhibits the fact that paths of symmetric or-stable process fail to be continuous. 

Estimates of the classical Green function attracted attention for a long 
time because of important consequences in potential theory, harmonic analysis 
and differential equations. They are important tools in studying the 
Schrodinger equation and Feynman-Kac gauge theory. Our work follows sa- 
ther recent papers by Chung and Zhao (see [5] and [B]). Nevertheless, some 
similar estimates in the classical case were obtained e.g. by K.-0 .  Widman in 
the sixties and by M. V. Keldyi and M. A. Lavrent'ev in the thirties. 

Section 2 sets up notation and collects together some standard facts for 
further use. We introduce the Green function of symmetric a-stable processes 
and state its basic properties. The idea of studying properties of Green function 
using methods of stochastic processes can be traced to the work of Hunt [7]. 

Section 3 is devoted to the study of the Green function of symmetric 
a-stable processes for a ball. In our investigations we were inspired by the 
paper by Chung [ 5 ] ,  concerning the classical Green function for a ball. By 
arguments from [8] we express the potential of harmonic measure for a ball by 
the potential I, of the equilibrium measure for a ball. Thus we obtain a more 
direct formula for the Green function. It may be interesting that for a = 1 and 
d = 4 this function can be expressed by elementary functions. Using estimates 
of I ,  and some ideas from [5] we prove the main inequalities for the Green 
function. 

In Section 4 we extend the results obtained in Section 3 to an arbitrary 
bounded open set with a C1gl boundary. These results are analogous to the 
ones proved in 191 for the classical Green function. The proof of the lower 
bound estimate follows [9]. The main difference is caused by the fact that in 
our case the support of the Poisson kernel P,(x, .) is not contained in the 
boundary of a ball but in its complement. In the proof of the upper bound 
estimate we exploit direct estimates of the kernel P , ( x ,  .). At the end of this 
section we obtain some applications of our main results. We also point out 
some counterexamples. 

2. Preliminaries. The notation C = C (x, y ,  z), frequent in this paper, 
means that the constant C depends only on x, y,  z. "Constants" are always 
numbers in (0, m), so that we can freely multiply and divide them to get other 
constants. 

For x € R d ,  r > 0 we put 

B ( x ,  r )  = { y € R d :  ly-xl < r )  and S(x, r)  = { Y E P :  ly-xl = r ) .  

The surface area of the (d - 1)-dimensional sphere S(0, 1) c Eld will be denoted 
by wd = 27~~/~/I'(d/2). Let E~ be a unit mass at x .  For any subset A c Rd, we 
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denote - its - complement by A' = Wd\A, its closure by A, and its boundary by 
aA = AnAc. Furthermore, we put 

for A, B c Rd. We write m(A) for the d-dimensional Lebesgue measure of the 
set A c Rd. Let B(Rd) denote the Borel c-field of P. 

For the rest of the paper let a E (0, 2) and d >, 3. By (X,, P")e denote the 
standard rotation invariant (%ymmetric") a-stable, P-valued Levy process (i.e. 
homogeneous, with independent increments), with index of stability o! and the 
characteristic. function of the form 

E' exp (it X,) = exp ( - E )t)"), < E Rd, t 2 0- 

As usual, Ex denotes the expectation with respect to the distribution P" of the 
process starting from x ER'. We always assume that sample paths of X, are 
right-continuous and have left-hand Iirnits almost surely. (X,, P") is a Markov 
process with transition probabilities given by P,(x, A) = PX(X,€ A) and is 
strong Markov with respect to the so-called "standard filtration" and quasi- 
-left-continuous on [ O ,  a) (see e.g. [3]). Fox the sake of brevity we will refer to 
this process as to "symmetric u-stable". 

The distribution of X, with respect: to PO has the continuous and bounded . 

density h, (t > 0). According to [lo] we have 

h,(x) = t-dia hl (t-'lax) and h,(x) < ct Ix~-~-", X E R ~ ,  

where c = c (d, a). 
For A€9I(Rd), we define TA = i d ( t  > 0: X , E A } ,  the first hitting time 

of A. The first hitting time of A' is called the exit time from A and denoted by 
z, = inf {t > 0: X,E A'). 

Let f 3 0 be a Borel measurable function on Rd. We say that f is a-har- 
monic in an open set D c IZd if 

f(x)=Exf(x,,), XEA, 

for every bounded open set A with the closure 2 contained in D. 
We define the harmonic measure cogfor D, in x, with respect to X) by the 

formula cog (A) = P" (X,, E A), where x E Rd; A, D E 9 (Rd). It is clear that 
supp (w5) ;)c D'. 

If A E (Rd), then, for each x E Rd, PX (TA = 0) is either zero or one accord- 
ing to the Blumenthal zero-one law. A point x€Rd is called regular for 
A E B (Rd) if PX (TA = 0) = 1, and x is called irregular for A if Px (T, = 0) = 0. 
We denote by A' the set of all points which are regular for the set A. 

Now, we will give a condition concerning regularity (the outer cone con- 
dition). Let BE B(Rd). Suppose there exists a cone V with vertex y E i3B such 
that V n B ( y ,  r) c B" for some r >O. Then y is regular for Bc. 

10 - PAMS 172 



For f 2 0 and Bore1 measurable we define the potential operator of X, by 
4, 

Uf (x) = Ex J f (XJ dt . 
According to [3] we have 0 

Uf(x) = j A d , a  I x - ~ l ~ - ~  f (Y) d~ I 

where A, ,  = 2 -" n-di2 r ((d - 4/2) (r (a/2))-'. 

U is called the Riesz potential and A,,, l ~ - y l * - ~  is called the Riesz kernel of 
order a. We will write u(x, y) = Ad,.I~-yIIZ-d. 

- Rewriting Theorem 1.16 in Chapter VI in [3] for symmetric u-stable pro- 
cesses we get the important technical fact: 

PROPOSITION 2.1, Let 3 E &I (Rd). Then 

j u (z , Y) do; (2) = 1 u (X , Z) dm& (z). 

We point out that in this work we consider only non-negative o-finite 
measures. We define the potential Up of a measure p by 

 UP(^) = ju(x, Y )  ~ C I [ Y ) .  

According to Proposition 2.1 and [3] we have the following fact: 

PRowsrrro~ 2.2. Let p be a measure on P1" and BE W (Wd). We have 

(i) Up (x) 2 1 Up (z) d&(z), x E Rd; 

(ii) if supp (p) c (Bc)', then 

Up(x)=JUp(z)da;(~), x€Rd. 

The crucial fact of the potential theory of symmetric a-stable processes is 
that the density of the harmonic measure for a ball is given by an explicit 
formula (see e.g. [2] or [8]). Let x E B(0, r). The harmonic measure o&,,,, for 
B (0, r) has the density function P, (x, .) (with respect to the Lebesgue measure) 
given by the formula - 

/ ~ ~ ~ ) @ l X - y d  for lyl>r, 
(2.1) PrIx, Y) = 

Io for lyl < r, 

where e: = T(d/2) x sin (na/2). 
Now we will introduce the Green function. 

DEFINITXON 2.3. If 3 E (Rd), define 

GB(xy Y) = u(x, y)-Exu(X(7,), y) for x, y€Rd, x # y. 
We put 

GB(x,x)=Ofor x€(BCy and G,(x,x)=co for x$(E)'. 

GB(xY y) is called the Green function for B. 
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It follows easily from the definition that if XE(BCY, then G,(x, y) = 0 for 
all y ER'. Using Proposition 2.2 for p = E, we get 0 6 G,(x, i) G u ( x ,  y).  By 
Proposition 2.1 we have GB (x, y) = GB (y , x) for all x, y E Bd. Notice also that if 
D is an open set and x ED, then G,(x, x) = oc equals u(x, x)- Exu(X(z,),x). 

According to [3], if B E & ~ ( R ~ ) ,  then B\Br is polar. Using this and the 
strong Markov property we can obtain the following technical lemma: 

LEMMA 2.4. Let f be a Borel measurable function on p, f 2 0 and let 
D l ,  D,. c-P be open sets such that Dl c D,. Then for every x E Rd we haue 

By Proposition 2.2 and Lemma 2.4 we get the following fact: 

PROP~SITION 2.5. Let D be an open set in Rd, B(xl, r)  c D, x E B (xI, I ) ,  

and Y E  w~. Then 

GI %[xl Y )  2 1 %(u, y)P,(x-x1, u-x,)du; 
B(x~ , r )~  

(ii) if in addition y $3 (x, , r), we haue 

Of course, this proposition remains valid if we replace B (x, , r)  by an open 
set A (A c D) and Pr (x -x,, u - x,) du by d w 3 4 ) .  In particular, C;n (., y) is 
a-harmonic in D\(y). 

Let Dl c D, be open sets in Rd. As a simple conclusion of Lemma 2.4 we 
get GI (x, y) d G2 (x, Y )  for every x, y E Rd. 

Let D c Rd be an open set. We will present some facts concerning con- 
tinuity of % (x, y). The proofs of these properties are almost the same as in the 
classical case, taking into account properties of h,, so the reader is referred to 
[I] and [6]. 

% (-, .) is continuous in the extended sense as a mapping from D x D into 
[0, GO]. This follows from the proof in [6], Theorems 2.4 and 2.6. By similar 
arguments to those in [6], Theorem f .23, we can obtain lim,,, % (x, y) = 0 for 
each y E D and z €aDn(DC)'. If in addition D is bounded and i3D c (Dcr, we 
have 

hG(x,y)=G(x, ,yO)  for X O , Y , E R ~ , X ~ # Y O .  
x-XO 

This follows from the proof in [l] (Chapter 11, Proposition 4.7) and analogous 
arguments to those in [6], Theorem 2.6. 

By Proposition 2.5 (ii) and the extended continuity of GC, a) it is easy to 
notice that if D c Rd is an open set, then G(x, y) > 0 for each x,  ED. 

3. Green functian for a ball. In this section we abbreviate B (0, r)  to B, and 
GBr to G,. By Definition 2.3 we have Gr (x, y) = u (x, y)- Uwir (y). The density 
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of the measure  OX^, is given by (2.1). However, we will not use this formula but 
the equivalent characterization given by the following proposition: 

PROPOSITION 3.1. Let X E  B,. Suppose v is a measure on Rd satisfying the 
following conditions: 

(9 SUPP (v)  E; 
(ii) Uv (y )  = u ( x  , y) for y E B: . 
Then v = o;~.  

Proof. Of course, supp (ogJ c I$. By Proposition 2.1 it follows that 
cogr satisfies (ii). On-the other hand, if p satisfies (i) and (ii), then by Proposition 
2.2 (ii) and again Proposition 2.1 we get U p b )  = UwB(y) for a1 y €Rd. Then 
p = mir by Theorem 1.12 in 181. 

We will adapt some arguments and methods from [8] to get the expres- 
sion for Uwk which will be convenient for our purposes. 

Let r > 0 and x $aB, .  Define a mapping z 4 z* by 

I f  x€(B)",  we call this mapping inversion with center at x and radius 
R = (IxI2 -r2)lIZ; i f  x E B,, we call it imaginary inversion with center at x and 
radius R = (r2 - I X ~ ~ ) ' / ~ .  

In the sequel we collect some well-known properties of these mappings for 
further reference (see the Appendix in [8]). 

PROPOSITION 3.2. If z + Z* is de$ned as above, we have 

(iii) 

(iv) the inversion maps B, onto itseIf; S(0,  r)  onto itseZf, and (F)" onto itself; 
the imaginary inversion maps B, onto (K): S(0,  r) onto itseZJ and (E)' 
onto B,; 

(v) 
dz* dz -=- 

Iz* - xld IZ  - xld ' 

Let z + z* be an imaginary inversion with center at x EB,  and radius 
R = ( r 2 - ) ~ ( Z ) 1 / 2 .  With each measure v which does not have an atom at the 
point x we associate another measure v* by the formula 

z-XI a - d  * z * )  = ( )  dv (z). 

v* is called the Kelvin transform of v. 
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By Proposition 3.2 (ii) we have 

( z - x ( = - ~  
(3.2) Uv* O*) = u (Y*, z*) Ra-d dv (2) 

ly -x Id-& ( z - x ( ~ - ~  ) Z - - X ~ ~ - ~  d - a  
= l y  - z l d - m ~ z d - 2 a  p - d  ~ v ( z ) = ( ? )  LJv(y)- 

Now, let us introduce the measure 1 having a density 1 ( x )  given by the 
formula 

Denote the potential of the measure A by I, = UI. According to the Appendix 
in [8] we have I , (y )  = C:: for ]y( g r, where 

Adorad 1. A X(d/2)+ 1 
cii = - db = 

2 ba12 (1 + b) T ( 4 2 )  sin (na/2) ' 

Let 112 be the Kelvin transform of the measure 1 with respect to imaginary 
inversion* with center at XE B, and radius R = (r2-1xI2)li2. By (3.2) we have 

m: (y*) = (y>l-aIr(y). 

It foflows that UA,* (y*) = C i i  RUPd (y-xJd-a for (y( < r. By Proposition 3.2 
(i) and (iv) we get 

U L , * ~ * )  = C Z , ~  R ~ - ~ ~ ~ * - X Y - ~  for (y*j 2 r. 

Since supp(l) = B, it follows from Proposition 3.2 (iv) that supp(Lf) = B:. 
Thus p = A&, Cd,,Ra-dl,* satisfies conditions (i) and (ii) in Proposition 3.1. 
Hence ogr = p. Consequently, 

Finally, 

Furthermore, if lyl < r, then ly*l > r. 
We are interested in deriving a more direct expression for UW&(J), Y E  Br. 

Having (3.4), we ' can see that it remains to compute I ,  (y) for lyl > r. 
After the inversion x +x*  with center at ~ E B :  and radius 

R = ((yJ2 - r2)1/2, for the integral Ir(y) we obtain the expression 
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We introduce spherical coordinates (x: ,  . . ., xi) 4 (Q, 41, . . . , $ d -  with origin 
0 and principal axis Oy. Then 

Ix* - yld = (a2 - 21yI e cos + - 
Hence 

d - 3  rr 

I, (y) = Ad,, ((yI2 - r2)a12 2n fl 1 sink 0 dB 
k = 1 0  

We will put 

For a > 1 we have 

This relation is verified in the Appendix in [S]. Consequently, 

Finally, we obtain 

where JyJ  > r. 
Now, set a = ly12-r2 and put b = (r2-$)/a in (3.5). Hence 

where Iyl > r.  
By the definition of I ,  we easily get I ,  (z/r) = I ,  ( z ) ,  z E Rd. This permits us 

to concentrate on the case r = 1. Now we are able to prove some technical 
estimates of the integral I,. 

LEMMA 3.3. Let us put I ( y )  = I ,  0) and a = lylZ-1. For JyJ  2 1 we have 
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if in addition a < 1 ,  then 

where C, = C, (d, u) and C, = C, (d ,  cw) are the constants. 

Proof. From (3.6) we have 

Notice that J,, J , ,  J ,  are positive, Inequality (3.7) follows immediately from 
(3.3) and (3.9). 

Let a < 1. We have 

Ad,. Wd "O 1 1 Ad,a Wd aal2 
I ( Y )  L J1-J2 < J1-- l jp~i db = 

2 l ~ l ~ - ~  l/o cd,a l ~ l " '  2~ lyld-2 
On the other hand, 

It is easy to check that 

(1 - ab)(d-2)j2 2 1 - ( d -  1) ab/2 for b E 10, l/a]. 
Hence 

Ad,= cod d - 1 '1' ab 
j <-- db 6 Ad,. Wd ( d -  1) l r  a- db 

3?2jy ld-2  2 bv2(b+1) 4 (yld-' D bat2 

Consequently, using (3.9) we obtain the left-hand inequality in (3.8). 
Let us write 

2 112 Llx, Y )  = ( r21~-~12+~~2-1~123(~2- I~t  1) 
and 

where x ,  y €9. 
The function Ir(y): Rd + R depends only on lyl. To simplify the notation, 

we will use the same letter Ir to denote the function I,,: [0, oo j  + R, defined by 
1, (lull = U Y )  for Y €Rd .  
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By the definition of the Green function and (3.4) we have 

where ly*I = g,(x, y) by Proposition 3.2 (iii). Hence 

which with (3.3), (3.6) and (3.10) gives a more direct formula for the Green 
function for a ball. 

In particular, from (3.11) it follows directly that G, is symmetric. 
We can now formulate our main theorem for the Green function for a ball. 

The analogous theorem for the classical Green function is proved in [ 5 ] .  Also 
the proof of our theorem follows that in [ 5 ] .  

THEOREM 3.4. Let us put 6 ( x )  = r - 1x1 for x €3,. There exist constants 
A ,  = A, (d ,  a) and A, = A, ( d ,  ol) such that 

( 1 

A, B' (x) BIZ ( y ) )  < min 
Ix-yld-Qy Ix-Yld 

for all x, ~EB,. 

P r o  of. It is a simple matter to check that g ,  (x/r, y/r) = r-l g, (x, y). 
Since I, (z/r) = I, (z), z E Rd, it follows that G,(x, y) = ra-d G, (x/r, y/r). Hence it 
is not difficult to observe that it is sufficient to prove our theorem for r = 1. 

Let r = 1. w e  Put G(x, Y) = Y), I(Y) = I,OI), f(x, y) =f, (x, y), 
g  = g1 (x, y).and la = g2-1. 

Let us first prove the right-hand inequality. The inequality with the first 
term under the min is obvious. So, to get the right-hand inequality it is suffi- 
cient to consider the case: 

A, 6"12 (x) JaJ2 (y) < 1. 
Ix-Yl" - -. 

Set A, 2 4"/'. Consequently, we have 

Hence 

By (3.11) and Lemma 3.3 we obtain 
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We have 

1 f (x, Y)d-Z-I~-Yld-2 I--- 
Isfd-2 - f ( x ,  Y ) ~ - ~  

Since f (x, y) 2 [x - yl, the numerator in (3.13) is less than 

(d-2)f(x, ~ ) ~ - ~ ( f  (x, yl-Ix-ul) G ( d - 2 ) f  (x, ~ ) ~ - ~ ( f  b - 3  Y)~-IX-,YI~) 

< 4(d-2) f ( x ,  ~ ) ~ - ~ 6 ( x ) S ( y ) .  

Substituting this into (3.13) and using f (x, y) 2 lx-yl again we obtain 

I " 4 (d - 2) 6 (x) 6 (y) 4 (d - 2) 6"'' (x) PI2 (y) S1 -'I2 (x) 6 -a/2 (y) - 
I-- lgld-2 - - 

Ix-Y12 Ix.- Y I" [x-ylZ-" 

It remains to estimate the third term in the brackets in (3.12). We have 

liKJ2 (x) PI2 (y) < Cd,a C1 &I2 < Cd,a Cl 2'" 

By (3.12) we get 

keeping in mind that we assumed at the beginning that A, 2 4"J2. 
We now turn to the left-hand inequality. We will consider two cases: a > 1 

and a < 1. 
Let a > 1. Then, since a = g2-1, we get g 2 Ji. By Lemma 3.3 we have 

I (g) < C;: [g12 -d. Therefore 

Let a < 1. Then, since o = g2 - 1, we get g b J?. From Lemma 3.3 we 
have 

1 
1(9) < Cd,a lgld-' - C2 - 

Consequently, 
191d-2 ' 
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Since 1 - 1x1' 3 1 - 1x1 = S (x), we finally obtain 

4. Green function for CIJ open sets. In this section we will use the fol- 
lowing notation. D denotes a bounded open set with a C1el boundary, G(x, y) 
the Green function for Dl and 6(x) = dist(x, dD). 

A function F: Rd 3 R is called C1q1 if it has a first derivative F' and there 
exists a constant 1 such that for all x, y ER' we have IF' (x)- F' b)l 4 1 Ix - yl. 

We say that a bounded open set D c Bd has a C1al boundary if for each 
X;~D there are: a C1?l function F,: Ed-' R (with a constant 1 = A(D)), an 
orthonormal coordinate system CS, and a constant tj = q(D) such that if 
y = (yl, ..., y,,) in CS, coordinates, then 

We point out that the set D is not necessarily connected. However, it follows by 
the definition above that if Dl and D, are two different connected components 
of D, then dist(D,, D,) 2 q .  

Now we will present some important properties of a bounded open set 
D with a C1p' boundary. They may be found in [9]. 

A normal internal vector n, exists at each point z E ~ D .  It is also known 
that there exist positive constants so = so(D) and r, = r,(D) such that for any 
z, w ~ a D ,  In,-~a,l < s,Iz-wl and for any z ~ a D ,  0 < r < r,, there exist two 
balls Bi and B",f radius r such that 

B+D, B+td\B,  and ( z ) = a B ~ n a B ~ .  

In particular, by the outer cone condition, all points of aD are regular 
for Dc. 

The main results of this section are Theorems 4.3 and 4.5 - the lower and 
the upper bound estimates of the Green function for D. 

At first we prove the lower bound estimate. We follow the approach 
designed in [9] for the classical Green function. However, there are major 
changes in proofs. 

For the sake of brevity we set a constant A' = A, A,,,, where A, is such as 
in Theorem 3.4. 

LEMMA 4.1. There exists a constant C ,  = C, (dl ol, D) such that for any 
x,  ED we have 

Proof. Set r = r,/5. Let x* and y* be the points on t3D such that 
Ix-xhl = 6(x) and ly-y*l = GCy). If S(x) < r, set B(a, r) = K ,  and if 
6(x) 2 r,  set B(a, r) = B(x, r). Ifd(y)  < r, set B(b, r) = B y ,  and if 6(y) 2 r, set 
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B(b, r) = B l y ,  r).Notice that x ~ B ( a ,  r) c D a n d y ~ B ( b ,  r) c D .  We also have 

r2-Ix-a12 r2 rZ-ly-b12 r2 
3 min ( r ,  ) and 

6 (4 diam (D) 6 (Y) (r' diam (D)) ' 

By Proposition 2.5 (i) we get 

Using the symmetry of G(u, y)  and again Proposition 2.5 (i) we get 

For U E D  we have 

Pr(x-a, 16-a) - 
- 

(r2 - I x -  a12)ai2 
SUl2 (x) (lu -aI2 - r2).lz Iu -XI* P/' (x) 

1 ra 
2 min ra/', ( (ciiam(o)plz )==. (&am ( D ) ) ~  + a 

Similarly, if v E D, we have 

Since r = ro/5, it is not dBicult to notice that there exists a ball B(z, r) 
such that 

BIZ, r) c DnB(a, r)'nB(b, r)'. 

Let us write B = 3 (2, r) and 6, (u) = dist (u, Bc). If u, v E B (z, r/2), we have 

d,(u) > Iu- v1/2 and 6, (u) 2 lu-v1/2. 

By Theorem 3.4 we obtain 

G(v, u) 5 GB (v, U) A' min 
A' 

2 
Iv - uld 2"lv-uld-" 

for all v, u E B (z, r/2). Hence 

c2 A' 
G(x'y) 2 c 2 ~ ~ G ( v , ~ ) d v d u 2 -  1 1 1 

dv du. sai2 (x) aaI2 (y) B B 2a B(z,r /2)  B(z,r/2) I" - vI*-' 
The last integral is positive and depends only on d, ol, r. 

LEMMA 4.2. Let x,  ED satisfy the inequalities 

max (6 (x), 6 (y)) < 2 lx - yl and r 0 

I x - ~ I  ' IO(I + r o d .  
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Then the inequality 

holds for a constant C, = C, ( d ,  a, D).  

Proof.  Let x* and y* be the points on aD such that Ix -x*l = 6 (x) and 
Iy-y*I = db) .  Set r = r,, B, = B:* = B(o,, r), B y  = BT = B(o,, r). Thus, 

Since 6(x) < r /5  and ox ,  x,  X* lie on the same line, we have B ( x ,  61~)) c B,. 
Similarly, B (y , 6 Cy)) c By. 

Set h = dist(y, dB,). There are three kinds of situations. 
Case 1. ~ E B , ,  h 2 6Cy)/4. 
Let us write aB,(u) = dist(u, aBJ. By Theorem 3.4 we obtain 

But dB= (XI = 6 (x) and 6BI (y) = h 2 6 (y)/4. We also have Ix - yl 2 6 (x)/2 and 
Ix- yl 2 6 (y)/2. Therefore the right-hand side of (4.1) is greater than or equal to 

A' 2-" 
sa/"(X fy) 

Ix-uld ' 

Case  2. y $ B x ,  h 2 6Cy)/4. 
Set P = {u€Rd: h/2 < lu-yl < h). Of course, P c IF,. By Theorem 2.5 (i) 

for x € B , c D  we get 

Let u E PnB, and write (u) = dist (a, dB,). We have 

By Theorem 3.4 we obtain 
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Notice that r2 - Ix- u,12 >, rJ (x). Since x E B,, it follows that h < Ix - yI < r/10. 
I f  ~ E P ~ B , ,  we also have 

Thus the right-hand side of (4.2) is greater than or equal to 

d 
mi2 (x) - 1 A' dgy (u) hat2 ( Y )  du 

ca S - 6a/2 ra/2 h=,l 
P n B y  2d I X  - yld 72a12 -yld 

It remains to show that there exists a constant c = c ( d ,  E )  such that 

To do this, introduce spherical coordinates (q, q,, . . ., qd-,) with origin y and 
principal axis yo,. Let us consider 

S = {u = (q, cp,, ..., c p d - , ) :  h/2 < p < h, 0 < ql < n/6).  

Obviously, S c P. 
Let b ~ d B ( y ,  h) be the point which lies on the line yo, between y and 0,. 

Since h < r/lO and ly-o,l = r-S(y) 2 r-r/5, such a point exists. If 
u = (e ,  cp ,  , . . . , cpd - E S, we have 

1u-bI2 = ly-biz+ lu-yI2-2 lu-yl Iy-bl cos c p ,  = h2+e2-2hpc0s cp, 

4 h2 + ez - 2he cos (n/6) = h2 +e2 - J j h e .  

It is easy to notice that the function f (Q) = h2 + p2 - J j h p  defined for 
q E [h/2, h] takes its maximum at the point h/2. We have f (h/2) = c, hZ, where - 
c, ='5/4-4312. Notice that 0 < c, < 1. Hence lu-bI2 < c,  h2. Consequently, 

- - 
4 hJc,+r-h = r-h(1-Jc,). 

Therefore 

- 
Hence we infer that S c By and SBy (u) = r-  lu-oyl a h (1 - 4 ~ ~ )  for u E S. Let 
us put i2 = (1-,/c) (c, > 0). We have 
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I 

h x / 6  x x 2x 1 
= c;l2 1 S j . . . 1 S sind-' ql . . . sin qd-2 dqd-  1 . . . d q ,  d ~ .  

h j 2 0 0  O D @  

But 
1 1 -d~=Inh- ln (h /2 )= ln2>0  

h/2 @ 

and (4.3) is proved. 
C a s e  3. h < 6 (y ) / 4  C ~ E B ,  or y 4 B x ) .  
Set 3, = 3 ( y ,  6 (~7)/2). Of course, 3, c By.  By Theorem 2.5 (i) for 

X E B ,  c D we get 

Notice that r2-lx-oxlz  2 r6(x) .  Let u ~ B f , n B ,  and let us write ~ 3 , ~ ( u )  
= dist (u ,  aB,). We have 

and 
6,(u) 2 distCy, 8By)-lu-yl > 6(y)/2 > lu-yl. 

By Theorem 3.4 we get 

GBg (u, y) 2 A' min 
A' 

lu- yld-"' 

If u ~ B i n B , ,  we also have -- 

Iu-o,12-r2 = ((lu-oX.+r)(1u-o,I-r) $ 3rS(y).  

Thus the right-hand side of (4.4) is greater than or equal to 

- - ~ ! ~ : 2 - d 3 - a / 2  sai2 ( x )  S 
1 

du. 
Ix-yld 8aJ2 (Y) BgnB1 lu-yld-" 
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It  is enough to show that there exists a constant c = c ( d ,  a)  such that 

To do this, introduce spherica1 coordinates ( Q ,  rp,, . . ., qd- with origin y and 
principal axis yo,. Let us consider 

P = {u = ( p ,  q l ,  . . ., ~ r - ~ ) :  JZh < e < 6 0/2,31r/4 a q, G x). 
Clearly, P c 3,. We will.show that P c Bx. If u = (g, rp,, . . ., qd- E P ,  we 
have . -. 

If y E Ex, then ly -o,l = r-h, and if y #B,, then ly-ox[ = r + h. We also have 
h  < 6 (y)/4 < r. So ly - o,l 2 r - h > 0. Thus, the right-hand side of (4.6) is 
greater than or equal to 

But Q > &h. Hence this is greater than 

( 1 - h ) ~ + 2 h ~ + 2 h ( r - h )  = r2+h2 2- r2 .  

It is obvious that ,/?h < J26 (y)/4, since in the case 3 we have h < 6 (y)/4. Thus 

S ( y ) / 2  n % n 2% 
1 d-lsind-2 1 S L S  1-Q q1 . . . sin qd- d q d - ,  . . . d q ,  d p .  

3x14 0 0 e 
But 

which gives (4.5) and completes the proof. 

We are now in a position to show the lower bound inequality of G ( x ,  y). 

THEOREM 4.3. There exists a  constant C = C ( d ,  a ,  D)  such that for any 
x ,   ED we have 
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P r o of. If Jx - yl < 6 (x)/2, take 3 = 3 (x, S (x)) and write 6, (u) = 
dist (u, Bc). Then y E 3 c D and 

6,(y) 2 dist(x, I F ) - ~ X - ~ ~  3 S ( X ) - 6 ( ~ ) / 2  = 6(x) /2  3 Ix-yl- 

By Theorem 3.4 we obtain 

A' 
G (x, y) 2 G, ( x ,  y) 2 A' min 

Ix-yld-" 

If Ix-yl < d(y)/2, the 
If max (6 ( x ) ,  6 bCy)) 

~ e - m a  4.2. 

proof is the same. 
< 2 Ix-yl and Ix- yl < r, 1OL1(l +ros,)-I, we apply 

When Ix - yl 2 r, 10- ' ( 1  + r, so)-1, then by Lemma 4.1 we have 

GCx, Y) IX-yld 2 
CI ri 

da/2  (x) Bai2 ( y )  10djl +roso)d' 

Now we are going to prove the upper bound estimate of the Green func- 
tion for D. The classical proof of the upper bound estimate in [9] is based on 
the explicit formula for the harmonic function in the ring (say r < 1x1 < 2r), 
which is 0 on aB(O, r) and 1 on ~ B ( 0 , 2 r j ,  and the fact that the support of the 
harmonic measure for an open set coincides with its boundary. We were unable 
to adapt these arguments to our case. Instead, we exploited direct estimates of 
the kernel P, ( x ,  .) , 

LEMMA 4.4. Let us choose n E N such that (n + l)a/(2n) < 1. Let k E N ,  
0 < k < n- 1, and m = 0 or a/2. Assume that for each 1 E N ,  0 < I d k we have 
for all X ,  Y E D  

with constants A, = A,(n, rn, I ,  d ,  a, D) (0 < I < k). Then inequality (4.7) holds 
for 1 = k +  1 with another constant Ak+ = Ak+ (n,  m, k +  1, d ,  a ,  D). 

Notice that for a < 1 we can choose n = 1. Once we prove this key lemma 
we are able to prove the upper bound estimate of G ( x ,  y). 

THEOREM 4.5. There exists a constant C = C(d ,  a ,  D) such that for any 
x ,   ED we have 

A d ,  6aJ2 (x )  daJ2 (y )) 
G ( x ,  y) d min I x - ~ ( ~ - = '  Ix - uld 

Proof of Theorem 4.5. We know that inequality (4.7) holds for 
I = 0 and m = 0. Using Lemma 4.4 n times, we see that the inequality holds 
for I = n and rn = 0. Since G ( x ,  y) = GCy, x), we obtain 
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with a constant A = A(d,  a, D). So, inequality (4.7) holds for E = 0 and 
m = u/2. By using Lemma 4.4 again, the inequality holds for I = n and rn = a/2 
for a constant C = C ( d ,  a, D).  This proves Theorem 4.5. 

Proof of Lemma 4.4. There are three kinds of situations. 
Case  1. 6tx)  2 P,. 
From (4.7) we have 

Case  2."S(x) < r,, Ix-yJ < 46(x). 
From (4.7) we have 

Case 3. 6(x )  < r,, Ix-y( > 46(x). 
Set r = min(r,, Ix-y1/4). We will use in the sequel the following easy 

inequality : 
1 co -<- 
r lx-yl' 

where C, = max(4, diam(D)/ro). Let x, be the point on dD such that 
(x-x,J = 6(x). Set 

Obviously, y $ B(x,, r), since Ix -y (  2 4r. Points x,, x,, x ,  x ,  lie on the same 
line and since 6 (x )  < min (r, , Ix - y 1/4) = r , we have x E B ( x l ,  r), and x lies 
between x,  and x,. Therefore, by Theorem 2.5 (ii), we obtain 

Let us consider four sets: 

It is immediate that B (x,, r)' c B (x,, r ) u P u R u S u T .  We also have 
G ( . ,  y) = 0 on B(x,, r). We will estimate the integral in (4.8) separately on 
P, R ,  S ,  T. Estimate on P is the most difficult. 

At first we will do this on R, S, T, Now we prove an easy lemma. 

LEMMA 4.6. If u$(PuB(x , ,  r)uB(x,, r)), then (u-xl > r , / j / 2 .  

Proof. Let us consider the triangle ux, x,. The point x lies between x, 
and x,. Since lu-x,l 2 r, lu-x,l 2 r and (xl-x,( = r ,  it is easy to notice that 

11 - PAMS 17.2 



the angle 3: x ,  ux, < 4 3 .  Hence one of the angles 3: x ,  x ,u  and 3: x , x ,  u 
must be 2 n/3. We may and do assume that X x, x, u 2 4 3 .  Now we will 
consider the triangle x x ,  u. Denote angles cp = % xx ,  u 2 x /3  and $J = *xl X U .  

If q 2 n/2, then lu-xJ 2 lu-x,l P r .  If y, < rr/2, then sin q 2 J3/2. We have 

Hence Iu-xl> sincplu-xll 2 r&2. 
Notice that r+Ix-x , !  d 2 r G  2(r+ lu-x , l )  and r-Ix-x,l  = S(x). Hence 

1 1 1 < C1 6"/' (x) 6" b) d - a + m  (Iu -xl I - ryJ2 Iu - X I  , du, 
RvSvT I u - Y I  

where C, = A, c:2"I2. 
Now we will estimate the integral on the right-hand side of (4.9) separately 

on R ,  S ,  i7 
Let I ~ E R .  Then, by Lemma 4.6, J u - x J  2 r J T / ~ .  Recall that r c lx-y1/4, 

We have 

Hence 

We have 

S 
1 1 

du< S 2r 1 
d u =  wd j ed- ld@. ( ~ u - - x , I - ~ Y / ~  B(x1,2r)\B(xl,r) ( I" -~ l I  - r)a12 (e - $ I 2  

After substituting t = 9 - r ,  this is equal to 

Hence 

with the constant C, = C,(m, a, d ,  D ) .  
Now let U E S .  We continue estimating the integral on the right-hand side 

of (4.9). By Lemma 4.6, if u E S ,  then lu - X I  2 r f i / 2 .  We also have 
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I u - x l l - r > r .  Hence 

1 1 1 2d ~ ; + a / 2  
du < 1 

S d - a + m  3diz 1 ~ - ~ l d + J 2  d - a + m  du. 
s ~ - Y I  ( l u - ~ , l - r ) . / ~  lu-xld s !u-Y~ 

We have 

Hence 

with the constant C, = C,(m, a, d ,  D). 
Now let u E ;T: We keep on estimating the integral on the right-hand side 

of (4.9). We have 

lu-xl 2 lzc-yI-ly-XI 3 lu-y1/2 
and 

I U - X ~ ~ - F  3 Iu-yl-ly-XI-Ix-x,l-r 2 lu-yl-Iy-XI-2r 

Thus 
1 1 I 

with the constant C ,  = C,(m,  a ,  d ,  D).  
Finally, by (4.9H4.12), we get 

since in the case 3 we have 46 (x)  < Ix - y [ .  
Now we are going to estimate the integral in (4.8) on the set P. Let us 

recall that 
P = B ( ~ o Y  ~ ) \ ( B ( x ~ Y  r ) u B ( x z Y  r)).  

We have r2-Ix-x1I2 G 2r8(x).  If U E P ,  then 
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We also have 
lu-XI 2 dist(x, aB(x,,r)) = 6(x). 

From (4.7) it follows that 

Sa12 (x) dm (y) 1 
. - < A, cd, 2* 2"12 

lx-yl d -a+ m + k u / ( Z n )  ~ r / 2  -(k + l)a/(2n) (XI 

where C, = Ak~f2d'a1Z. 
We will estimate the integral on the right-hand side of (4.14). To do this, 

introduce spherical coordinates (g, cp,, . . ., qd-,) with origin x, and principal 
axis x , ~ , .  

Consider the triangle ux, x,. We have 
2 2 l u - ~ , 1 ~  = lu-xol +Ixo-x,l -2124-x,l lx,-x,l coscp,. 

Since Ixo-xll = r and lu-x,l = Q, we get 

For 0 < p < r let 8 (q) be the angle satisfying 0 < #7 (q) < 4 2  and 

Let u = (p, ql , . . ., cpd- JE B(xo, r). The angle j?(q) has the following property. 
If n 2 cpl 3 B(p), then u~B(x , ,  r)\B(x,, r), and if P(p) > ql 2 0, then 
U E  3 (XI, I ) .  Indeed, if x 2 rp, 2 fl (e), then cos q,  < cos 8 (Q). From (4.15) and 
(4.16) it follows that 

By similar arguments, if n- /I(@) 2 q1 2 0, then u EB (x,, r)\B (x2, r), and 
if n 2 cp, > R-#7(q), then U E B ( X ~ ,  r). Hence u = (q, cp,, ..., V ~ - , ) E P  if and 
only if 

(4.17) O < q < r  and B(e)<q,<n-B(p). 

From (4.16) it is immediate that 

(4.18) cos B (el = elI2r). 
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Thus, if u E P, we have cos p(p) < 1/2. Hence 

(4.19) 1r/2 2 fi (p) >, n/3 and sin a (e) B 4 3 2 .  
Now, we need the following easy fact: 

(4.20) xs iny22y for y~[O,n/2]. 

Using this and (4.18) we obtain 

(4.21) ~ ~ / ( 2 r )  = x sin (n/2 - (@)) 2 TC - 28 (e). 

Now, we are'going fd estimate terms in the integrand on the right-hand 
side of (4.14). Let UEP. We can simply replace d(u) by Q. Indeed, 

(4.22) 6 (u) < dist (u, B (x,, r)) = lu -x,l - r  < Inr -x,l+ Ixo - x,l -r = 4. 

By (4.15), (4.16) and (4.19) we obtain 

(4.23) lu - x, 1' - r2 = e2 -2er cos ((vl -B (el) + B (el) 

= e2 - 2~ cos B Ie> cos (v - B (el) + 2ar sin B (el sin (SD - B (el) 
2 2er sin B (el sin (rp , - B (el) 2 ~r sin (Y, - B (el). 

Let us put t = lx -xol. We have 

(u-xI2 = Ju-x0J2 +Jx-x,J2-2Ju-xoJ Jx-xoJ cosq,  

= e2 + t2 - 2et cos q1 2 e2 + t2 - 2 ~ t  cos /3 (e) 

= e2+t"e2t/r 2 e2+t2-at 3 3e2/4. 

Thus 

Now we estimate the integral on the right-hand side of (4.14). From (4.17) 
and (4.22H4.24) it follows that 

r ' 

x ed-I sind-2 (P, . . . sin qd-, d~),- ,  . . . drp, dq 
rat2 (Q) - B (e)) 

with a constant C, = C,(d). Substitute q = q l  -/I(@), and then use (4.20) 
for (P E [0, TC -2f?(~)] c [0, 421  (see (4.19)). The right-hand side of (4.25) 
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is equal to 

- - ?raja CB (" - 28 (&?))I -"I2 
I p1+u/(2" 2"12 ( 1  - a/2) ,, 

By (4.21), this is less than or equal to 

Using our first assumption in Lemma 4.4 that (n + 1) 4 2 n )  c 1 ,  we see that the 
expression above is equal to 

7G 1 -I[.+ l)rrl(Znll = 7 C 
(2 - u) (1 - [(n + 1) u/(2n)]) r1  -"I2 pi(zn) 1 

with a constant C, = C,(d, a ,  n). Hence b y  (4.14) we have 

This with (4.8) and (4.13) proves Lemma 4.4. 

The following corollary is an easy extension of our main results: 

COROLLARY 4.7. Let a function F be d&ed by the formula 

Sd2 ( x )  Ba/2 ( y )  Sa/' ( x )  
F ( x ,  y) = min 

~ ~ - ~ l d - a '  1 ~ - ~ l d - a / 2 '  1 ~ - ~ l d - a / 2 '  ~ d 2  ( Y ) I ~ - Y ~ ~ - " '  

da12 0 dQl2 ( x )  dQi2 b)) 
dUI2 ( x ) I ~ - y l ~ - ~ '  Ix-vld 

Then there exist constants C, = C,  (d,  a ,  D) and C, = C z ( d ,  a, D) such that for 
all x ,  Y E  D we have 

c, F ( x ,  Y )  < G.(x, y) < C 2 F ( x ,  Y). - - 
The next theorem is known as "3G Theorem". It is an easy consequence of 

Theorems 4.3 and 4.5 and Corollary 4.7. The proof of this theorem is the same 
as in the classical case (see [5]) .  

THEOREM 4.8. There exists a constant C = C ( d ,  a ,  D) such that 

As a simple corollary to Theorem 4.3 and Corollary 4.7 we can obtain 
some estimates of Ex(z,). We will use the following formula (cf. [6]): 
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PROPOSITION 4.9- There exist constants c,  = c ,  (d ,  a ,  D )  and c ,  = 

c ,  ( d ,  a ,  D) such that 

Proof. By (4.26) and Corollary 4.7 we have 

Ex IT,) = j G ( x ,  y) dy < C, Sat' (x) j 
1 

1 ,  - J t l d - N 2  
D 

d y  

1 2C, (diam (D))"lZ 5 C,  8 y 2 ( x )  . j d y  = S N 2  ( x ) .  
. . B(x,diarn(D)) I x  - Y I d  -"IZ 01 

Now we prove the left-hand inequality. Set D, = { Y E  D :  SCV) > a). 
Choose a constant a = a(D)  such that D,, has a positive Lebesgue measure 
rn(D,,). We will consider two cases : d (x) < a and S ( x )  2 a .  

Case 1. S ( x )  < a .  
In this case B ( x ,  6  (x)/2) and D,, are disjoint. If y  ED\B (x, 6  (x)/2), we 

have 
2Ix-yl 2 s(x) and 3Ix-yl 2 6(x)+Ix-y l  2 S(y ) .  

Thus, by Theorem 4.3, there exists a constant c ,  = c , ( d ,  u;D) such that 

PIZ (x) a=/2 (j7) 

G ( x ,  Y )  2 c ,  
Ix-ytd 

for E D\B(X, S (x) /2) .  Hence 

E X ( % ) = J  G ( x , Y ) ~ Y  2 %  1 d y  2 
D z ~  I X - Y ~ ~  (&am ( D ) ) ~  

Case 2. 6 ( x )  2 a. 
By  Theorem 4.3 we have G (x, y) 2 C [x - yla-d for y E B  ( x ,  S  (x) /2) .  Hence 

It is natural to ask whether the estimates of the Green function obtained in 
Theorems 4.3 and 4.5 hold for more general sets than bounded open sets with 
a C1.' boundary. We are not going to give necessary and suEcient conditions 
under which these inequalities hold. However, we point out some counter- 
examples. If we take a ball without its center (say D = B(0,  1)\(0)), the Green 
function for D  equals the Green function for B ( 0 ,  1) and the upper bound 
estimate does not hold near 0.  So, in Theorem 4.5 we must assume some 
regularity conditions on the boundary of a set. What is more, if we take the 
difference of a ball and a cone (with a suficiently narrow opening and with its 
vertex inside the ball), the upper bound estimate does not hold either. On the 
other hand, the lower bound estimate does not hold for a (bounded) sufficiently 
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"narrow" cone. Therefore, Theorems 4.3 and 4.5 are not true if we replace 
bounded open sets with a C1gl boundary by Lipschitz domains. 
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