INDEPENDENT MARGINALS OF OPERATOR-SEMISTABLE AND OPERATOR-STABLE PROBABILITY MEASURES*

BY

ANDRZEJ ŁUCZAK (Łódź)

Abstract. We investigate independent marginals of full operator-semistable and operator-stable probability measures on finite-dimensional vector spaces. In particular, it is shown that for purely Poissonian operator-semistable and operator-stable distributions their independent marginals have decomposability properties of the same kind. Operator-semistability and operator-stability of independent marginals of Gaussian measures are studied in detail, and a description of independent marginals of an arbitrary operator-semistable or operator-stable distribution is obtained.

Introduction. Let \(\mu \) be a probability measure on a finite-dimensional real vector space \(V \) with \(\sigma \)-algebra \(\mathcal{B}(V) \) of its Borel subsets. A projection \(T \) on \(V \) will be called an independent marginal of \(\mu \) if

\[
\mu = T\mu*(I-T)\mu \quad (I \text{ – the identity operator}),
\]

i.e. if \(T \) and \(I-T \) are independent random variables from probability space \((V, \mathcal{B}(V), \mu) \) into \(V \) (the same name will be sometimes applied also to the measure \(T\mu \)). The aim of the paper is to investigate properties of measure \(T\mu \) for \(T \) being an independent marginal of \(\mu \), and \(\mu \) being a full operator-semistable or operator-stable probability distribution on \(V \). Problems of this type have been considered in [2], [6], and [9], and in this work we generalize and complete some of the earlier results. In particular, we show that for purely Poissonian operator-semistable and operator-stable distributions their independent marginals follow, in principle, the same pattern of decomposability. Operator-semistability and operator-stability of independent marginals of Gaussian measures are studied in detail, and, finally, a description of independent marginals of an arbitrary operator-semistable or operator-stable distribution is obtained.

* Work supported by KBN grant 2 1020 91 01.
1. Preliminaries and notation. Throughout the paper, \(V \) will stand for an \(r \)-dimensional real vector space with an inner product \((\cdot, \cdot)\) yielding a norm \(\| \cdot \| \), and the algebra \(\mathcal{B}(V) \) of its Borel subsets.

An infinitely divisible measure \(\mu \) on \(V \) has the unique representation \([m, D, M]\), where \(m \in V, D \) is a non-negative linear operator on \(V \), and \(M \) is the Lévy spectral measure of \(\mu \), i.e. a Borel measure defined on \(V - \{0\} \) such that

\[
\int_{V - \{0\}} \|u\|^2/(1 + \|u\|^2) \, M(du) < \infty.
\]

The characteristic function \(\hat{\mu} \) of \(\mu \) takes then the form

\[
\hat{\mu}(v) = \exp \left\{ i(m, v) - \frac{1}{2} (Dv, v) + \int_{V - \{0\}} \left[e^{i(v, u)} - 1 - \frac{i(v, u)}{1 + \|u\|^2} \right] \, M(du) \right\}
\]
(see e.g. [7]). The measure \([m, D, 0]\) is called the Gaussian part of \(\mu \), the measure \([0, 0, M]\) is called its Poissonian part; \(\mu \) is called purely Gaussian if \(M = 0 \), and purely Poissonian if \(D = 0 \).

A probability measure on \(V \) is called full if it is not concentrated on any proper hyperplane of \(V \).

The main objects of our considerations will be full operator-semistable and operator-stable probability measures on \(V \) and their independent marginals as defined in the Introduction. For a more detailed description of these measures, the reader is referred to [3] and [5] (operator-semistable) and [1], [4] and [8] (operator-stable). Here we only recall that if \(\mu \) is a full operator-semistable measure, then it is infinitely divisible and

\[
\mu^a = A \mu \ast \delta(h)
\]
for some \(0 < a < 1, \ h \in V \), and a non-singular linear operator \(A \) in \(V \). Measures satisfying (1) will be called \((a, A)\)-quasi-decomposable, and for full measures quasi-decomposability is equivalent to operator-semistability. Furthermore, there are decompositions

\[
\mu = \mu_1 \ast \mu_2, \quad V = V_1 \oplus V_2
\]

such that \(V_1 \) and \(V_2 \) are \(A \)-invariant subspaces of \(V \), \(\mu_1 \) is a purely Poissonian \((a, A)\)-quasi-decomposable measure concentrated (and full) on \(V_1 \), and \(\mu_2 \) is a Gaussian \((a, A)\)-quasi-decomposable measure concentrated (and full) on \(V_2 \).

We let \(G_a(\mu) \) denote the set of the operators \(A \)'s which can occur in equation (1).

Full operator-stable measures are characterized by the following condition:

There exists a non-singular operator \(B \) in \(V \), called an exponent of \(\mu \), such that for each \(t > 0 \)

\[
t^B \in G_a(\mu), \quad \text{where} \ t^B = e^{(\log t)B}.
\]
Moreover, decompositions (2) also hold with μ_1 and μ_2 being B-invariant, μ_1 — purely Poissonian concentrated on V_1, μ_2 — Gaussian concentrated (and full) on V_2, and for $i = 1, 2$

$$\mu_i^t = t^B \mu_i \circ \delta(h^{(i)}_t), \quad t > 0,$$

with some $h^{(i)}_t \in V_i$.

2. Marginals of operator-semistable measures. We begin with the following generalization of Theorem 6 of [6].

Theorem 1. Let $\mu = [m, 0, \mathcal{M}]$ be a full (a, A)-quasi-decomposable probability measure on V, and let T be an independent marginal of μ. Then there exists a positive integer n such that $TA^n = A^n T$, and, consequently, $T\mu$ is (a^n, A^n)-quasi-decomposable.

Proof. Put

$$U = T(V), \quad W = (I - T')(V),$$

and let S_M be the support of the Lévy measure M. By virtue of [6] and [9] we have

$$S_M \subset U \cap W.$$

From the fullness of μ, and thus M, it follows that $\text{Lin} S_M = V$ and, consequently,

$$\text{Lin}(S_M \cap U) = U, \quad \text{Lin}(S_M \cap W) = W.$$

Equality (1) implies that $aM = AM$, which in turn yields the A-invariance of S_M.

Let $\{v_1, \ldots, v_k\} \subset S_M \cap U$ be a basis in U, and let $\{v_{k+1}, \ldots, v_r\} \subset S_M \cap W$ be a basis in W (we have assumed that $\dim U = k$ and $\dim W = r - k$). According to (3) and the A-invariance of S_M, for each $m = 0, 1, \ldots$ and each $i = 1, \ldots, r$, $A^m v_i$ is either in $S_M \cap U$ or in $S_M \cap W$. Let us represent the sequence

$${A^m v_1, \ldots, A^m v_k, A^m v_{k+1}, \ldots, A^m v_r}$$

as a sequence of 0's and 1's, where 0 at the i-th place means that $A^m v_i \in S_M \cap U$ and 1 at the i-th place means that $A^m v_i \in S_M \cap W$ (for instance, if $m = 0$, we have the sequence $\{0, \ldots, 0, 1, \ldots, 1\}$). Condition (3) together with the fullness of M implies that exactly k elements of

$${A^m v_1, \ldots, A^m v_j}$$

are in $S_M \cap U$, and $r - k$ elements are in $S_M \cap W$; in other words, in our representing sequences there will be exactly k zeros and $r - k$ ones. Since there are only \(r \choose k\) such different sequences, we can find elements v_{i_1}, \ldots, v_{i_k} and two positive integers m_1, m_2,

$$m_1 < m_2, \quad m_2 - m_1 \leq \binom{r}{k},$$

such that

$$A^{m_1} v_{i_1}, \ldots, A^{m_1} v_{i_k} \in U \quad \text{(the zeros)},$$

$$A^{m_1} v_j \in W \text{ for } j \notin \{i_1, \ldots, i_k\} \quad \text{(the ones)}$$

and

$$A^{m_2} v_{i_1}, \ldots, A^{m_2} v_{i_k} \in U, \quad A^{m_2} v_j \in W \text{ for } j \notin \{i_1, \ldots, i_k\}.$$
Putting
\[u_1 = A^{m_1} v_{i_1}, \ldots, u_k = A^{m_1} v_{i_k}, \quad w_j = A^{m_1} v_j \text{ for } j \notin \{i_1, \ldots, i_k\} \]
and \(n = m_2 - m_1 \), we get
\[u_1, \ldots, u_k \in U, \quad A^n u_1, \ldots, A^n u_k \in U \]
and
\[w_j \in W, \quad A^n w_j \in W \text{ for } j \notin \{i_1, \ldots, i_k\}. \]
Since \(\{u_1, \ldots, u_k\} \) form a basis in \(U \) and \(\{w_j\} \) form a basis in \(W \), we obtain
\[A^n(U) = U, \quad A^n(W) = W, \]
showing that \(TA^n = A^n T \).

Iterating equality (1) gives the formula
\[\mu^n = A^n \mu \delta(h_n), \]
and, consequently,
\[(T^e)^n = T\mu^n = TA^n \mu \delta(T h_n) = A^n T \mu = A^n T h^n \delta(T h_n), \]
so \(T \mu \) is \((a^n, A^n)\)-quasi-decomposable.

Our next aim is to investigate \((a, A)\)-quasi-decomposable Gaussian measures. We begin with a simple characterization of operators \(A \)'s for which a full Gaussian distribution can be \((a, A)\)-quasi-decomposable.

Proposition 2. Let \(\mu = [m, D, 0] \) be a full Gaussian measure on \(V \), and let \(a > 0 \). Then
\[G_a(\mu) = \sqrt{aD^{-1/2}} OD^{-1/2}, \]
where \(O \) is the orthogonal group on \(V \).

Proof. It is easy to verify that a Gaussian measure \(\mu = [m, D, 0] \) satisfies equation (1) if and only if
\[aD = ADA^*. \]
It is immediately seen that for any orthogonal \(H \) and the operator \(A \) defined as
\[A = \sqrt{aD^{1/2}} HD^{-1/2} \]
equality (4) holds, which proves the inclusion
\[\sqrt{aD^{1/2}} OD^{-1/2} \subset G_a(\mu). \]

Assume now that (4) holds. The fullness of \(\mu \) implies the invertibility of \(D \), and we have
\[aI = D^{-1/2} ADA^* D^{-1/2} = (D^{1/2} A^* D^{-1/2})^* D^{1/2} A^* D^{-1/2}, \]
which means that the absolute value of the operator \(D^{1/2} A^* D^{-1/2} \) is \(\sqrt{aI} \). The polar decomposition formula gives the equality
\[D^{1/2} A^* D^{-1/2} = H |D^{1/2} A^* D^{-1/2}| = \sqrt{aH} \]
for some orthogonal H, so

$$A = (\sqrt{aD^{-1/2}} HD^{-1/2})^* = \sqrt{aD^{1/2}} H^* D^{-1/2},$$

showing that $A \in \sqrt{aD^{1/2}} OD^{-1/2}$.

\textbf{Remark.} The above proposition can be thought of as an “operator-semi-stable” counterpart of Theorem 4.6.10 from [4], which gives a characterization of the set of exponents of Gaussian measures.

Now we shall analyse conditions of quasi-decomposability of independent marginals of full Gaussian measures.

Proposition 3. Let $\mu = [m, D, 0]$ be a full (a, A)-quasi-decomposable Gaussian measure on V, and let T be an independent marginal of μ. Then $T\mu$ is (a, A)-quasi-decomposable if and only if A and T commute.

Proof. Put $P = I - T$. Then

$$\mu^a = (T\mu \ast P\mu)^a = (T\mu)^a \ast (P\mu)^a = T\mu^a \ast P\mu^a$$

and

$$A\mu = AT\mu \ast AP\mu.$$

From equality (1) we get

$$T\mu^a \ast P\mu^a = AT\mu \ast AP\mu \ast \delta(h);$$

thus

$$T\mu^a = TAT\mu \ast TAP\mu \ast \delta(Th).$$

(5)

If A and T commute, we have $TAP = 0$, so (5) becomes

$$T\mu^a = AT\mu \ast \delta(Th),$$

which means that $T\mu$ is (a, A)-quasi-decomposable.

Now, assume that $T\mu$ is (a, A)-quasi-decomposable. Then

$$T\mu^a = AT\mu \ast \delta(h'),$$

so

$$T\mu^a = TAT\mu \ast \delta(Th'),$$

which together with (5) leads to the equality

$$TAT\mu \ast \delta(Th') = TAT\mu \ast TAP\mu \ast \delta(Th).$$

Since all the measures involved are Gaussian, the above equality shows that $TAP\mu$ is a degenerate measure and, consequently,

$$\text{Note.}$$

(6)

$$(TAP)D(TAP)^* = 0.$$

By Proposition 2, A takes the form $A = \sqrt{aD^{1/2}} HD^{-1/2}$ for some orthogonal H, so (6) leads to the equality

$$aTD^{1/2} HD^{-1/2} PDP^* D^{-1/2} H^* D^{1/2} T^* = 0,$$
and multiplying on the left by $D^{-1/2}$ and on the right by $D^{1/2}$, we get

\[D^{-1/2} T D^{1/2} H D^{-1/2} P D^{1/2} P^* D^{-1/2} H^* T D^{1/2} = 0. \]

Put

\[D^{-1/2} T D^{1/2} = R. \]

Then $R = R^2$; moreover,

\[R^* = D^{1/2} T^* D^{-1/2} = D^{-1/2} D T^* D^{-1/2}. \]

Since T is an independent marginal, we have, according to [6] and [9],

\[D = T D T^* + P D P^*, \]

so

\[T D = T D T^* = D T^*. \]

Thus (8) leads to the equality

\[R^* = D^{-1/2} T D D^{-1/2} = D^{-1/2} T D^{1/2} = R, \]

showing that R is an orthogonal projection. Furthermore,

\[R^\perp = I - R = D^{-1/2} (I - T) D^{1/2} = D^{-1/2} P D^{1/2}. \]

Consequently, equality (7) takes the form $R H R^\perp R = 0$, so

\[R H R^\perp (R H R^\perp)^* = 0, \]

which means that

\[R H R^\perp = 0, \quad \text{i.e.} \quad R H = R H R. \]

Since H is orthogonal and R is an orthogonal projection, the last equality means that H and R commute. Thus we have

\[D^{-1/2} T D^{1/2} H = H D^{-1/2} T D^{1/2}, \]

which, in turn, gives

\[T D^{1/2} H D^{-1/2} = D^{1/2} H D^{-1/2} T. \]

Multiplying both sides by \sqrt{a}, we finally obtain $T A = A T$, which completes the proof. \(\Box \)

The last two results lead us to an example of a full (a, A)-quasi-decomposable Gaussian measure having r independent one-dimensional marginals which are not (a^n, A^n)-quasi-decomposable for any n.

Example. Let T_1, \ldots, T_r be one-dimensional orthogonal projections, and let $0 < \lambda_1 < \ldots < \lambda_r$. Put

\[D = \sum_{i=1}^r \lambda_i T_i, \]
and let $\mu = [0, D, 0]$. We have

$$D = \sum_{i=1}^{r} T_i D T_i = \sum_{i=1}^{r} T_i D^2 T_i^*;$$

thus T_1, \ldots, T_r are independent marginals of μ. Let H be an orthogonal operator, and put

$$A = \sqrt{aD^{1/2} HD^{-1/2}}$$

for some $a > 0$.

By Proposition 2, μ is (a, A)-quasi-decomposable. Now, for any integer n,

$$A^n = a^{n/2} D^{1/2} H^n D^{-1/2},$$

so A^n commutes with T_i if and only if H^n does. Hence, if we have chosen H in such a way that

$$H^n T_i \neq T_i H^n, \quad i = 1, \ldots, r, \text{ all } n,$$

then by Proposition 3 none of the marginals T_i's will be (a^n, A^n)-quasi-decomposable for any n.

Our final goal in this chapter is to give a description of independent marginals of an arbitrary full (a^n, A^n)-quasi-decomposable measure. We have

Theorem 4. Let $\mu = [m, D, M]$ be a full (a, A)-quasi-decomposable measure on V, and let T be an independent marginal of μ with $T(V) = U$. Then there are decompositions

$$U = U_1 \oplus U_2, \quad T\mu = v_1 * v_2$$

such that v_1 is a purely Poissonian (a^n, A^n)-quasi-decomposable (for some n) measure concentrated on U_1, and v_2 is a Gaussian measure concentrated on U_2.

Proof. Put $P = I - T$, $W = P(V)$, and let again S_M stand for the support of M. For S_M relation (3) holds; thus putting

$$U_1 = \text{Lin}(S_M \cap U), \quad W_1 = \text{Lin}(S_M \cap W),$$

we get

$$\text{Lin} S_M = U_1 \oplus W_1.$$

Now, let us take into account decompositions (2). The Poissonian part μ_1 lives on V_1, so we have $V_1 = U_1 \oplus W_1$. Restrict for the moment our attention to the subspace V_1 and the measure μ_1. We have $S_M \subset U_1 \cup W_1$. Thus denoting by T_1 the projection onto U_1 with kernel W_1, and by P_1 the projection onto W_1 with kernel U_1, we infer from [6] and [9] that T_1 and P_1 are independent marginals of μ_1, so by Theorem 1 we have

$$T_1 A^n = A^n T_1, \quad P_1 A^n = A^n P_1$$

for some n,

and $T_1 \mu_1, P_1 \mu_1$ are (a^n, A^n)-quasi-decomposable.
Now we shall analyse the Gaussian part. It is concentrated on V_2, so we have

$$D(V) = D(V_2) = V_2.$$

Since T and P are independent marginals of μ, relation (9) holds. Thus

$$T(V_2) = TD(V_2) = DT^*(V_2) \subset V_2$$

and, similarly,

$$P(V_2) \subset V_2.$$

Putting $T(V_2) = U_2$ and $P(V_2) = W_2$, we obtain the decomposition $V_2 = U_2 \oplus W_2$. Let R be the orthogonal projection onto V_2. We have $D = RD$, so R and D commute. Furthermore,

$$(T \mid V_2)^* = RT^* \mid V_2, \quad (P \mid V_2)^* = RP^* \mid V_2,$$

which together with the equality

$$D = TDRT^* + PDP^*$$

gives

$$D \mid V_2 = TDRT^* \mid V_2 + PDP^* \mid V_2$$

$$= (T \mid V_2)(D \mid V_2)(T \mid V_2)^* + (P \mid V_2)(D \mid V_2)(P \mid V_2)^*.$$

Now restricting our attention to the subspace V_2 and the measure μ_2, and denoting by T_2 the projection onto U_2 with kernel W_2, and by P_2 the projection onto W_2 with kernel U_2, we get

$$D = T_2DT_2^* + P_2DP_2^*,$$

which means that T_2 and P_2 are independent marginals of μ_2. Finally, we have

$$V = V_1 \oplus V_2 = (U_1 \oplus W_1) \oplus (U_2 \oplus W_2) = (U_1 \oplus U_2) \oplus (W_1 \oplus W_2) = U \oplus W,$$

and since

$$U_1 \oplus U_2 \subset U, \quad W_1 \oplus W_2 \subset W,$$

we obtain

$$U = U_1 \oplus U_2, \quad W = W_1 \oplus W_2.$$

Extending the projections T_1, T_2, P_1, P_2 in the natural way to the whole V (i.e. for instance T_1 will be the projection onto U_1 with kernel $U_2 \oplus W_1 \oplus W_2$) we shall get

$$T = T_1 + T_2, \quad P = P_1 + P_2$$

and

$$\mu = \mu_1 \ast \mu_2 = T_1 \mu_1 \ast P_1 \mu_1 \ast T_2 \mu_2 \ast P_2 \mu_2,$$

which gives

$$T_i \mu = T_i \mu_i, \quad P_i \mu = P_i \mu_i, \quad i = 1, 2.$$

Thus we have

$$\mu = T \mu \ast P \mu = T_1 \mu \ast P_1 \mu \ast T_2 \mu \ast P_2 \mu,$$
and applying T to both sides of the above equality we obtain $T\mu = T_1\mu * T_2\mu$. Putting $v_1 = T_1\mu$ and $v_2 = T_2\mu$, we obtain the desired decomposition. ■

Remark. Neither the measure v_2 nor the measure $P_2\mu$ need not be (a^n, A^n)-quasi-decomposable for any m (however, their convolution being the Gaussian part μ_2 of μ is (a, A)-quasi-decomposable). Nevertheless, this fact does not affect operator-semistability of the marginal $T\mu$ as is seen in the following corollary.

COROLLARY. Let T be an independent marginal of a full (a, A)-quasi-decomposable measure μ on V. Then $T\mu$ is operator-semistable.

Proof. In the course of the proof of Theorem 4 it was shown that $T\mu = T_1\mu * T_2\mu$ with $T_1 A^n = A^n T_1$ for some n, which means that $A^n(U_1) = U_1$. Define an operator A_n by

$$A_n = \begin{cases} A^n & \text{on } U_1, \\ \sqrt{a^n} I & \text{on } U_2, \\ \text{arbitrary} & \text{on } W. \end{cases}$$

Since $T_2\mu$ is Gaussian, it is $(a^n, \sqrt{a^n} I)$-quasi-decomposable, and we have

$$(T\mu)^{a^n} = (T_1\mu)^{a^n} * (T_2\mu)^{a^n} = A^n T_1\mu * \delta(h_1) * \sqrt{a^n} T_2\mu * \delta(h_2)$$

$$= A_n T_1\mu * A_n T_2\mu * \delta(h_1 + h_2) = A_n (T_1\mu * T_2\mu) * \delta(h_1 + h_2)$$

$$= A_n T\mu * \delta(h_1 + h_2),$$

showing that $T\mu$ is (a^n, A_n)-quasi-decomposable, hence operator-semistable. ■

3. Marginals of operator-stable measures. In general, operator-stability exhibits much more regular behaviour as will be seen in the following counterparts of results about operator-semistability. In particular, we have

THEOREM 5. Let $\mu = [m, 0, M]$ be a full operator-stable probability measure on V with exponent B, and let T be an independent marginal of μ. Then T and B commute, and $T\mu$ is operator-stable with exponent TB.

Proof. Putting $U = T(V)$ and $W = (I - T)(V)$, we have again relation (3), and the equality $\mu' = t^B \mu * \delta(h)$ yields the inclusion $t^B(S_M) \subseteq S_M$. Thus, for an arbitrary $u \in S_M \cap U$, $t^B u \in S_M \cap W$, and the same is true for $w \in W$. From the fullness of M we infer that $t^B(U) \subset U$ and $t^B(W) \subset W$, and differentiation at 1 gives $B(U) \subset U$ and $B(W) \subset W$. Since B is invertible, we get $B(U) = U$ and $B(W) = W$, which means that T and B commute. Accordingly,

$$(T\mu)' = T t^B \mu * \delta(T h) = t^{TB} T \mu * \delta(T h),$$

showing that TB is an exponent of $T\mu$. ■
PROPOSITION 6. Let $\mu = [m, D, 0]$ be a full operator-stable Gaussian measure on V with exponent B, and let T be an independent marginal of μ. Then $T\mu$ is operator-stable with exponent TBT.

Proof. According to Propositions 4.3.2 and 4.3.3 of [4], B is an exponent of μ if and only if

$$D = BD + DB^*.$$

Multiplying the above equality by T on the left and by T^* on the right and taking into account the relations $TD = DT^* = TDT^*$ which follow from (9), we obtain

$$TDT^* = TBDT^* + TDB^*T^* = (TBT)(TDT^*) + (TDT^*)(TBT)^*.$$

Since TDT^* is the covariance operator of the measure $T\mu$, applying again the above-mentioned propositions from [4], we see that TBT is an exponent of $T\mu$. □

By reasoning in a similar fashion to that in the proof of Theorem 4, we obtain the following result:

THEOREM 7. Let μ be a full operator-stable measure on V with exponent B, and let T be an independent marginal of μ with $T(V) = U$. Then there are decompositions

$$U = U_1 \oplus U_2, \quad T\mu = v_1 * v_2$$

such that v_1 is a purely Poissonian operator-stable measure concentrated on U_1 with exponent $T_1B = BT_1$, and v_2 is an operator-stable Gaussian measure concentrated on U_2 with exponent $T_2B^2T_2$, where T_1 and T_2 are projections onto U_1 and U_2, respectively, with kernels $\ker T_1 = U_2 \oplus W$, $\ker T_2 = U_1 \oplus W$, $W = (I - T)(V)$. □

REFERENCES

Independent marginals

Faculty of Mathematics, Łódź University
ul. Stefana Banacha 22, 90-238 Łódź, Poland
E-mail: anluczak@math.uni.lodz.pl

Received on 9.5.1997