ÉVALUATIONS DE CERTAINES FONCTIONNELLES ASSOCIÉES À DES FONCTIONS ALÉATOIRES GAUSSIENNES

X. Fernique

Abstract: Let \(X = \{ X(\omega, t), \omega \in \Omega, t \in T \} \) be a random function on \((\Omega, a, P)\), let \(T \) be a finite set, and \(\mu \) a probability on \(T \). We assume that the components of \(X \) are \(P \)-integrable. We denote by \(M(\mu) \) the set of the random probabilities \(m = \{ m(\omega), \omega \in \Omega \} \) on \(T \) whose expectation is \(\mu \). We put

\[
\phi(X, \mu) = \sup_{m \in M(\mu)} E\left[\int_T X(\omega, t)m(\omega, dt) \right].
\]

In this paper, we extend and study this quantity when \(T \) is in fact a Polish space (Section 1); then we show (Section 2) that if \(X \) is Gaussian and rather regular, then \(\phi(X, \mu) \) is monotonic in terms of the metric defined by \(X \) (Theorem 2.1), finally (Section 3), we majorize (Theorem 3.1) or minorize (3.2) the function \(\phi(X, \mu) \) in some cases.

2000 AMS Mathematics Subject Classification: Primary: -; Secondary: -;
Key words and phrases: -

The full text is available here