Abstract. For a real p ($1 < p < 2$) and its conjugate p' we characterize Banach spaces E for which an operator $T : L_{p'} \to E$ is θ_p-Radonifying iff T^* is p-absolutely summing. In case $p = 2$ these are exactly spaces of type 2 as was proved by Chobanjan and Tarieladze [1]. For $p < 2$ the condition is much stronger because these are spaces of stable type p isomorphic to a subspace of some L_p.

Let E be a real Banach space. For a real number p ($1 < p < 2$) let L_p be a separable Banach space of measurable functions having p-integrable absolute value. Let $1/p + 1/p' = 1$. An operator T from $L_{p'}$ into E is said to be θ_p-Radonifying if $\exp(-\|T'a\|^p)$ is the characteristic function of a Radon measure μ on E. Here θ_p is a cylindrical measure on $L_{p'}$ with the characteristic function of the form $\exp(-\|g\|^p)$, $g \in L_p$. Thus T is θ_p-Radonifying iff $T(\theta_p)$ extends to a Radon measure on E. In this case the Radon extension is a p-stable symmetric measure on E. It turns out that the set $\Sigma_p(L_{p'}, E)$ of all θ_p-Radonifying operators becomes a Banach space under the equivalent norms

$$\sigma_p(T) = \left(\int_E \|x\|^r \, d\mu \right)^{1/r}, \quad 1 \leq r < p < 2.$$
for each \(r \) with \(0 < r < p \), where \(\xi_1, \xi_2, \ldots, \xi_n \) is a sequence of i.i.d.
random variables with characteristic function \(\exp(-|t|^p) \).

If \(E \) and \(F \) are Banach spaces, then the operator \(T : E \to F \) is called
\(p \)-\textit{absolutely summing} \((T \in \Pi_p(E,F))\) if for some constant \(M \) and for each
\(x_1, x_2, \ldots, x_n \in E \) the inequality

\[
\sum_{i=1}^{n} \|Tx_i\|^p \leq M^p \sup_{x' \in E', \|x\| \leq 1} \sum_{i=1}^{n} |\langle x_i, x' \rangle|^p
\]

holds. Denote by \(\pi_p(T) \) the least such constant \(M \).

The following relation between the \(\theta_p \)-\textit{Radonifying operators} and the
\(p \)-\textit{absolutely summing operators} is known in a more general version as
the celebrated L. Schwartz's duality theorem (cf. [2] and references therein):

\textbf{Proposition.} If \(T \in \Sigma_p(L_p', E) \), then \(T' \in \Pi_p(E', L_p) \).

The converse implication does not hold in general. In the following
theorem we characterize Banach spaces for which it holds.

\textbf{Theorem.} Let \(1 < p < 2 \). Then the following two conditions on a Banach
space \(E \) are equivalent:

\begin{enumerate}
 \item \(T \in \Sigma_p(L_p', E) \) if \(T' \in \Pi_p(E', L_p) \) for each space \(L_p' \).
 \item \(E \) is of \textit{stable type} \(p \) and isomorphic to a subspace of some \(L_p \).
\end{enumerate}

\textbf{Proof.} (1) \(\Rightarrow \) (2). Let \(x_1, x_2, \ldots, x_n \in E \). We define an operator \(T \) from
\(L_p' \) into \(E \) by

\[
\| T'a \|^p = \sum_{i=1}^{n} |\langle x_i, a \rangle|^p.
\]

Condition (1) implies the existence of a constant \(c > 0 \) such that
\(\sigma_{p'}(T) \leq c \pi_p(T') \). In addition, let us observe that the characteristic function
of the \(p \)-\textit{stable measure} \(\mu \) defined by \(T \) is equal to the characteristic
function of the distribution of the \(E \)-valued random vector \(\sum_{i=1}^{n} x_i \xi_i \). Namely,

\[
\tilde{\mu}(a) = \exp(-\| T'a \|^p) = \exp(-\sum_{i=1}^{n} |\langle x_i, a \rangle|^p).
\]

Thus we have

\[
(E \| \sum_{i=1}^{n} x_i \xi_i \|^r)^{1/r} = (\int_E \| x \|^r d\mu)^{1/r} = \sigma_{p'}(T) \leq c \pi_p(T') \leq c \big(\sum_{i=1}^{n} \| x_i \|^p \big)^{1/p},
\]

which shows that \(E \) is of \textit{stable type} \(p \).

To prove that the space \(E \) is isomorphic to a subspace of some \(L_p \)
we choose \(x_1, x_2, \ldots, x_n \) and \(y_1, y_2, \ldots, y_n \) belonging to \(E \) with the property

\[
\sum_{i=1}^{n} |\langle x_i, a \rangle|^p \leq \sum_{i=1}^{n} |\langle y_i, a \rangle|^p \quad \text{for all} \quad a \in E'.
\]
Radonifying operators

Now we define operators T and S from L_p into E by

$$\| T'a \|^p = \sum_{i=1}^n |\langle x_i, a \rangle|^p \quad \text{and} \quad \| S'a \|^p = \sum_{i=1}^n |\langle y_i, a \rangle|^p \quad \text{for all } a \in E'.$$

The inequality $\| T'a \| \leq \| S'a \|$ for all $a \in E'$ implies $\pi_p(T') \leq \pi_p(S').$ Since each Banach space is of stable cotype p for $p < 2$, we have

$$\left(\sum_{i=1}^n \| x_i \|_p \right)^{-1/\rho} \leq c_1 \| E \| \left(\sum_{i=1}^n \| x_i \|_p \right)^{-1/\rho} = c_1 \sigma_p(T)$$

$$\leq c_2 \pi_p(T') \leq c_2 \pi_p(S') \leq c_2 \left(\sum_{i=1}^n \| y_i \|_p \right)^{-1/\rho}.$$

By Lindenstrauss-Pelczyński's theorem ([4], Theorem 7.3) we claim that E is isomorphic to a subspace of some L_p.

(2) \Rightarrow (1). Consider an operator $T : L_p \rightarrow E$ such that T' is p-absolutely summing. Since E is isomorphic to a subspace of some L_p, by Kwapień's theorem [3] we have $T \in \Pi_p(L_p, E)$. It follows from separability of the space L_p that there exists an isometric imbedding J from L_p into $L_p[0,1]$. Then JT' is p-absolutely summing. By Kwapień's theorem [2] there exists a strongly measurable function φ from $[0,1]$ into E with $E\|\varphi\|_p < \infty$ such that

$$\| T'a \|_p = \| JT'a \|_p = \frac{1}{a} \int |\varphi(t), a \rangle|^p dt.$$

Since E is of stable type p, $\exp(-\| T'a \|_p)$ is (by [5]) the characteristic function of a Radon measure, i.e., $T \in \Sigma_p(L_p, E)$, which completes the proof.

Corollary. Let $1 < p < 2$. Then the following two conditions on a Banach space E are equivalent:

1. $T \in \Sigma_p(L_p, E)$ if and only if $T' \in \Pi_p(E', L_p)$ for each space L_p.
2. E is of stable type p and isomorphic to a subspace of some L_p.

Remark. It is known by Rosenthal's theorem (see [7]) that condition (2) is equivalent to each of the following ones:

3. E is isomorphic to a subspace of some L_p and does not contain an isomorphic copy of l_p.

4. E is isomorphic to a subspace of some L_p and there exists a real r ($0 < r < p$) such that the topologies of L_p and L_r coincide on E.

5. There exists a real q ($p < q \leq 2$) such that E is isomorphic to a subspace of some L_q.

Added in proof. After this note was completed, the authors were made aware of the paper of D. H. Thang and N. D. Tien, *On the extension of stable cylindrical measures*, Acta Math. Vietnam. 5 (1980), p. 169-177, where an equivalent result was established. Methods of proofs are however
different. We also refer the reader to our paper *p*-stable measures and *p*-absolutely summing operators, p. 167-178 in: Lecture Notes in Math. 828 Springer Verlag, 1980, for some additional results on this subject.

REFERENCES

W. Linde
Department of Mathematics
Friedrich Schiller University
69 Jena, G.D.R.

V. Mandrekar
Department of Statistics and Probability
Michigan State University
East Lansing, MI 48824, U.S.A.

A. Weron
Institute of Mathematics
Wrocław Technical University
pl. Grunwaldzki 13a
50-370 Wrocław, Poland

Received on 7. 6. 1980