A CHARACTERIZATION OF SIGN-SYMMETRIC LIOUVILLE-TYPE DISTRIBUTIONS

BY

WOJCIECH MATYSIAK (WARSZAWA)

Abstract. Sign-symmetric Liouville-type distributions on n-dimensional space are characterized by certain $(n-1)$-dimensional distribution of quotients in a special form.

1. Introduction. In 1996 Gupta et al. [1] introduced a family of multivariate distributions which is an important generalization of many classes of distributions. It may be obtained by the following construction. For $\alpha, \beta > 0$ let $\mathcal{I}(\alpha, \beta)$ denote a distribution with probability density function

$$f(z) := \frac{\alpha}{2^{\beta/(\alpha)}} |z|^{\beta-1} \exp(-|z|^\alpha), \quad z \in \mathbb{R}.$$

When Z_1, \ldots, Z_n are mutually independent, real-valued random variables and $Z_i \sim \mathcal{I}(\alpha_i, \beta_i)$ for some positive parameters α_i and β_i ($i = 1, \ldots, n$), then the distribution of the vector

$$(1.1) \quad (X_1, \ldots, X_n) := \left(\frac{Z_1 \cdot \Theta^{1/\alpha_1}}{\left(\sum_{j=1}^{n} |Z_j|^\alpha_j\right)^{1/\alpha_1}}, \ldots, \frac{Z_n \cdot \Theta^{1/\alpha_n}}{\left(\sum_{j=1}^{n} |Z_j|^\alpha_j\right)^{1/\alpha_n}}\right),$$

where Θ is a positive random variable independent of

$$(1.2) \quad (U_1, \ldots, U_n) := \left(\frac{Z_1}{\left(\sum_{j=1}^{n} |Z_j|^\alpha_j\right)^{1/\alpha_1}}, \ldots, \frac{Z_n}{\left(\sum_{j=1}^{n} |Z_j|^\alpha_j\right)^{1/\alpha_n}}\right).$$

is called the sign-symmetric Liouville-type distribution and denoted by $\mathcal{IL}(\alpha_1, \ldots, \alpha_n; \beta_1, \ldots, \beta_n; \Theta)$. (Besides, the distribution of the vector (1.2) is called the sign-symmetric Dirichlet-type distribution and denoted by $\mathcal{ID}(\alpha_1, \ldots, \alpha_n; \beta_1, \ldots, \beta_n).$)

The problem of explaining relations between distributions of random vectors $X = (X_1, \ldots, X_n)$ and quotients $(X_1/X_n, \ldots, X_{n-1}/X_n)$ has a long history. In one of the recent investigations in this field Wesołowski [3] proved a theorem characterizing symmetrically invariant two-dimensional distributions by the Cauchy distribution of quotients. This result was generalized to finite-dimensional α-symmetrically invariant distributions by Szabłowski [2], who con-
sidered a certain Cauchy-like (so-called α-Cauchy) distribution of the quotients. On the other hand, Wesolowski [4] proved that a distribution of an α-spherical random vector is uniquely determined by a distribution of quotients. In this paper, methods adapted from [2] and [4] are applied to obtain a characterization of the sign-symmetric Liouville-type distribution that generalizes previous results.

We will use the following notation: If \(x = (x_1, \ldots, x_n)^T \in \mathbb{R}^n \), then

\[
\|x\|_\alpha := \left(\sum_{i=1}^{n} |x_i|^\alpha \right)^{1/\alpha}.
\]

For \(x \in \mathbb{R} \) and \(q > 0 \), \(x^{(q)} := \text{sign}(x) \cdot |x|^q \). Throughout the paper \(\alpha, \ldots, \alpha \) and \(\beta_1, \ldots, \beta_n \) are positive parameters and \(p_i := \sum_{j=1}^{n} \beta_j / \alpha_j \) for \(i = 1, \ldots, n \).

2. Characterization.

Definition 1. Let \(a_1, \ldots, a_n, b_1, \ldots, b_{n+1} \geq 0 \). We say that a random vector \(X = (X_1, \ldots, X_n) \) has a distribution \(\mathcal{D}(a_1, \ldots, a_n; b_1, \ldots, b_{n+1}) \) if its joint density function is

\[
\frac{\prod_{i=1}^{n} a_i \Gamma \left(\sum_{i=1}^{n+1} b_i \right)}{\sum_{i=1}^{n+1} \Gamma (b_i) \prod_{i=1}^{n} |x|^{a_i b_i - 1} \left(\sum_{i=1}^{n} |x|^a_i + 1 \right)^{-\sum_{i=1}^{n+1} b_i}}.
\]

The distribution \(\mathcal{D} \) is a generalization of α-Cauchy distribution defined by Szabowski [2]. More specifically, we have the following

Remark 1. A random vector \((X_1, \ldots, X_n) \sim \mathcal{D}(\alpha, \ldots, \alpha; 1/\alpha, \ldots, 1/\alpha) \) has the \(n \)-dimensional α-Cauchy distribution (\(\alpha > 0 \)).

On the other hand, the distribution introduced by Definition 1 is a special case of the sign-symmetric Liouville distribution. Applying Proposition 3.2 from [1] we get

Corollary 1. A random vector \((X_1, \ldots, X_n) \sim \mathcal{D}(a_1, \ldots, a_n; b_1, \ldots, b_{n+1}) \) has the distribution \(\mathcal{L}(a_1, \ldots, a_n; b_1, \ldots, b_{n+1}; \Theta) \), where \(\Theta \) has the inverted beta-distribution \(\mathcal{B} \left(\sum_{i=1}^{n} b_i, b_{n+1}, 1 \right) \), i.e. the probability density function of \(\Theta \) is

\[
f(r) = \frac{1}{B \left(\sum_{i=1}^{n} b_i, b_{n+1} \right) \prod_{i=1}^{n} \beta_i + 1 \left(\frac{1}{r + 1} \right)^{\sum_{i=1}^{n} b_i}}, \quad 0 < r < \infty,
\]

\(B \) denoting the Euler beta-function.

The main result of this paper is

Theorem 1. A random vector \(X \) without an atom at 0 has the sign-symmetric Liouville-type distribution \(\mathcal{L}(a_1, \ldots, a_n; \beta_1, \ldots, \beta_n; \Theta) \) if and only if the following three conditions hold:

(i) \(X \sim -X \) (here the symbol \(\sim \) denotes the equidistribution);
(ii) for some \(j \in \{1, \ldots, n \} \) and for some \(\alpha > 0 \) the random vector
\[
Y_j := \left(\frac{X_1^{(x_1/\alpha)}}{X_j^{(x_j/\alpha)}}, \ldots, \frac{X_j^{(x_j-1/\alpha)}}{X_j^{(x_j/\alpha)}}, \frac{X_j^{(x_j+1/\alpha)}}{X_j^{(x_j/\alpha)}}, \ldots, \frac{X_n^{(x_n/\alpha)}}{X_j^{(x_j/\alpha)}} \right)
\]
has the \((n-1)\)-dimensional distribution \(\mathcal{D} (\alpha, \ldots, \alpha; \beta_1/\alpha_1, \ldots, \beta_n/\alpha_n) \);

(iii) \(Y_j \) and \(\sum_{i=1}^{n} |X_i|^{\alpha_i} \) are independent.

It is easily seen that sign-symmetric Liouville distributions contain \(\alpha \)-symmetrically invariant distributions as a subclass. Hence and in view of Remark 1, Theorem 1 is an important generalization of Szablowski's result [2].

3. Auxiliary results and proofs. We begin with three technical lemmas (an easy proof of the first one is left to the reader):

Lemma 1. If \(q > 0 \), then \(Z \sim \mathcal{F} (\alpha, \beta) \) if and only if \(Z^{(q)} \sim \mathcal{F} (\alpha/q, \beta/q) \).

Lemma 2. Let \(Z_1, \ldots, Z_n \) be mutually independent, real-valued random variables and \(Z_i \sim \mathcal{F} (\alpha_i, \beta_i) \) for some positive parameters \(\alpha_i \) and \(\beta_i \) (\(i = 1, \ldots, n \)). Fix \(j \in \{1, \ldots, n \} \) and let \(q_i > 0 \) for \(i \neq j \). Then the joint density function of the random vector
\[
Z = \left(\frac{Z_j^{(q_j/q_1)}}{Z_j^{(q_j/q_1)}}, \ldots, \frac{Z_j^{(q_j-1/q_j)}}{Z_j^{(q_j/q_1)}}, \frac{Z_j^{(q_j+1/q_j)}}{Z_j^{(q_j/q_1)}}, \ldots, \frac{Z_j^{(q_j/q_1)}}{Z_j^{(q_j/q_1)}} \right)
\]
is
\[
(3.1) \quad \prod_{i \neq j} g_i (z_i) \prod_{i \neq j} \frac{\alpha_j}{2 \Gamma (\beta_j/\alpha_j)} \left| z \right|^{\beta_j - 1} \exp (- \left| z \right|^{\beta_j}) \, dz_i,
\]
where \(g_i \) stands for the probability density function of \(Z_i^{(q_j/q_i)} \).

Proof. Let \(f : \mathbb{R}^{n-1} \to \mathbb{R} \) be a bounded function. Since \(Z_i \) are independent, we see that
\[
\mathbb{E} f (\mathbf{Z}) = \int_{\mathbb{R}^{n-1}} \int_{\mathbb{R}^{n-2}} f \left(\frac{z_1}{z_i^{(q_j/q_i)}}, \ldots, \frac{z_j-1}{z_j^{(q_j/q_j)}}, \frac{z_j+1}{z_j^{(q_j/q_j)}}, \ldots, \frac{z_n}{z_j^{(q_j/q_j)}} \right)
\]
\[
\times \prod_{i \neq j} g_i (z_i) \, dz_1 \ldots dz_{j-1} \, dz_{j+1} \ldots dz_n \cdot g (z) \, dz,
\]
where \(g \) is the probability density function of \(Z_j \). Let (with \(z \) fixed)
\[
x_i := z_i^{(q_j/q_i)} \quad \text{for} \ i \neq j.
\]
The Jacobian of this transformation is \(\prod_{i \neq j} z_i^{(q_j/q_i)} \). Formula (3.1) is now easily seen. \(\square \)

Lemma 3. Let \(X = (X_1, \ldots, X_n) \sim \mathcal{F}^\mathcal{D} (\alpha_1, \ldots, \alpha_n; \beta_1, \ldots, \beta_n; \Theta) \). Fix \(j \in \{1, \ldots, n \} \) and let \(q_i > 0 \) for \(i \neq j \). The random vector
\[
\tilde{X} = \left(\frac{X_1^{(q_1/q_1)}}{X_j^{(q_j/q_1)}}, \ldots, \frac{X_j^{(q_j-1/q_j)}}{X_j^{(q_j/q_1)}}, \frac{X_j^{(q_j+1/q_j)}}{X_j^{(q_j/q_1)}}, \ldots, \frac{X_n^{(q_n/q_1)}}{X_j^{(q_j/q_1)}} \right)
\]
has the distribution \(\mathcal{D} (q_1, \ldots, q_j-1, q_j+1, \ldots, q_n; \beta_1/\alpha_1, \ldots, \beta_n/\alpha_n) \).
Proof. Since for every \(k \in \{1, \ldots, j-1, j+1, \ldots, n \} \)
\[
\frac{X_k^{(a_k/q_k)}}{X_j^{(a_j/q_j)}} = \frac{Z_k^{(a_k/q_k)}}{Z_j^{(a_j/q_j)}},
\]
the probability density function of \(X_k \) is defined by (3.1). Consequently,
\[
g(x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_n) = \int \prod_{i \neq j} x_i^{(a_i/q_i)} \left| \prod_{i \neq j} \frac{q_i}{2} \Gamma \left(\beta_i/\alpha_i \right) \right| x_i z^{(a_i/q_i)}(\beta_i/\alpha_i) \gamma_i \alpha_i^{-1} \exp \left(-z x_i^{(a_i/q_i)} \right) \frac{\alpha_j}{2} \Gamma \left(\beta_j/\alpha_j \right) [z]^{\beta_j-1} \exp \left(-[z]^\gamma \right) dz.
\]
Using symmetry and the integral formula \(\mu, \nu > 0 \)
\[
\int_0^{\infty} x^{\nu-1} \exp \left(-\mu x^\nu \right) dx = \frac{1}{|p|} \Gamma \left(\frac{\nu}{\mu} \right),
\]
we get
\[
\int_R |z|^{\alpha_j \gamma_j - 1} \exp \left[-|z|^{\alpha_j} (\sum_{i \neq j} |x_i|^{q_i} + 1) \right] dz = \frac{2}{\alpha_j} (\sum_{i \neq j} |x_i|^{q_i} + 1)^{-\gamma_j} \Gamma \left(\gamma_j \right).
\]
Therefore
\[
g(x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_n)
\]
\[
= \frac{\alpha_j}{2^n} \prod_{i \neq j} q_i \prod_{i \neq j} \Gamma \left(\beta_i/\alpha_i \right) \left(\sum_{i \neq j} |x_i|^{q_i} + 1 \right)^{-\gamma_j} \Gamma \left(\gamma_j \right).
\]
Now we are in a position to prove Theorem 1.

Proof of Theorem 1. Let \(\tilde{X} := (X_1^{(a_1/q_1)}, \ldots, X_n^{(a_n/q_n)}) \) for some \(\alpha > 0 \). Then \(\tilde{X} = U^{\alpha^2} \cdot \Theta^{1/\alpha} \), where
\[
U^{\alpha} := \left(Z_1^{(a_1/q_1)}, \ldots, Z_n^{(a_n/q_n)} \right) / \left(\sum_{i=1}^n \left| Z_i^{(a_1/q_1)} \right|^{\alpha} \right)^{1/\alpha},
\]
\(U_\alpha \) and \(\Theta \) are independent. From Lemma 1 we get
\[
U_\alpha \sim \mathcal{G} \left(\alpha, \ldots, \frac{\beta_1}{\alpha_1}, \ldots, \frac{\beta_n}{\alpha_n} \right)
\]
and
\[\bar{X} \sim \mathcal{I}(\alpha, \ldots, \alpha; \frac{\beta_1}{\alpha_1}, \ldots, \frac{\beta_n}{\alpha_n}; \Theta). \]

Furthermore,
\[X \sim \mathcal{I}(\alpha_1, \ldots, \alpha_n; \beta_1, \ldots, \beta_n; \Theta) \Leftrightarrow \bar{X} \sim \mathcal{I}(\alpha, \ldots, \alpha; \frac{\beta_1}{\alpha_1}, \ldots, \frac{\beta_n}{\alpha_n}; \Theta). \]

Wesolowski [4] showed the following fact. Let the distributions of random vectors
\[((-1)^{e_1} Y_1, \ldots, (-1)^{e_n} Y_n), \]
which have been constructed from a random vector \(Y = (Y_1, \ldots, Y_n) \) concentrated on the unit \(\alpha \)-sphere \(S_\alpha := \{ x \in \mathbb{R}^n : \| x \|_\alpha = 1 \} \), coincide for any \((e_1, \ldots, e_n) \in \{0, 1\}^n \) and let a random vector \(P = (P_1, \ldots, P_n) \) take the form \(P = R Y \) (for some positive random variable \(R \) independent of \(Y \)). Then the distribution of the vector \(P \) is uniquely determined by the distribution of the quotients \((P_1/P_j, \ldots, P_{j-1}/P_j, P_{j+1}/P_j, \ldots, P_n/P_j), j = 1, \ldots, n \). Since \(\bar{X} \) obviously satisfies the assumptions of the above statement, applying Lemma 3 we obtain the result of Theorem 1.

Acknowledgement. The author is indebted to P. J. Szablowski for valuable suggestions and remarks and to J. Wesolowski for showing the contents of paper [4] prior to publication.

REFERENCES

Faculty of Mathematics and Information Sciences, Warsaw University of Technology, 00-661 Warszawa, Poland
E-mail address: Wojciech.Matysiak@prioris.mini.pw.edu.pl

Received on 4.6.1998; revised version on 10.12.1999