ON DISTRIBUTIONS OF CONDITIONAL EXPECTATIONS

Adam Paszkiewicz

Abstract: Let F and G be distribution functions on \mathbb{R}. Then there exist a random variable X and a σ-field \mathfrak{U} satisfying $P(X < a) = F(a)$, $P(E(X|\mathfrak{U}) < a) = G(a)$ iff \[\int_{(a,\infty)} (F(t) - G(t)) \, dt \leq 0 \leq \int_{(-\infty,a)} (F(t) - G(t)) \, dt \] for any $a \in \mathbb{R}$. The consideration is kept on a rather elementary level.

1991 AMS Mathematics Subject Classification: 60E05.

Key words and phrases: distribution of random variable, conditional expectation.

THE FULL TEXT IS AVAILABLE HERE