LIMITS OF TRUNCATION EXPERIMENTS

Frank Marohn

Abstract: Given \(n \) i.i.d. copies \(X_1, \ldots, X_n \) of a random variable \(X \) with distribution \(P_{\vartheta} \), \(\vartheta \in \Theta \subset \mathbb{R}^k \), we are only interested in those observations that fall into some set \(D = D(n) \subset \mathbb{R}^d \) having but a small probability of occurrence. The truncation set \(D \) is assumed to be known and non-random. Denoting the distribution of the truncated random variable \(X D(\vartheta) \) by \(P_{n\vartheta} \) we consider the triangular array of experiments \((\mathbb{R}^d, \mathcal{B}^d, (P_{n\vartheta})_{\vartheta \in \Theta})\), \(n \in \mathbb{N} \), and investigate the asymptotic behavior of the \(n \)-fold products \(((\mathbb{R}^d)^n, (\mathcal{B}^d)^n, (P_{n\vartheta})_{\vartheta \in \Theta}) \). Under a suitable density expansion, Gaussian shifts as well as Poisson experiments occur in the limit, where the latter case typically occurs when the number of expected observations falling in \(D \) is bounded. Finally, we investigate invariance properties of the occurring Poisson limits.

1991 AMS Mathematics Subject Classification: 62B15.

Key words and phrases: Statistical experiment, truncation model, Gaussian experiment, local asymptotic normality, Poisson experiment, Poisson process, translation invariance, scale invariance, independent increments.

The full text is available HERE