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Abstract. We prove that under a general condition interpolation 
dimensions of H-sssi process converge in probabiIity to 2 - H .  The 
result can be applied to a wide class of H-sssi processes which includes 
fractional Brownian motions, (a, 81-fractional stable processes or strict- 
ly stable H-sssi processes. Moreover, we prove that for an H-sssi pro- 
cess with continuous sample paths the same general condition impIies 
udorm convergence in probability of sample paths of fractal inter- 
polations to sample paths of the interpolated process. 
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In [I] we proved that, for an H-fractional Brownian motion, sample paths 
of fractal interpolations converge uniformly in probability to sample paths of 
the interpolated process and the respective box dimensions of graphs of sample 
paths converge to 2 -23 with probability 1. In this paper we continue this line 
of research and extend the results to a wider class of self-similar processes with 
stationary increments. This class includes all H-sssi processes which are known 
to have the Hausdorff dimension of sample paths equal with probability 1 to 
2- H (see Final remarks). 

In the sequel we shall need the following definitions. 
Let (52,9, P) be a probability space and X = (X (t): t~ [0, 11) be a pro- 

cess defined on it. A process X is self-similar with index H > 0 if, for any a > 0, 
the finite-dimensional distributions of (X (at): t E LO, 11) are the same as those 
of (a, X (t): t E LO, 11). The process is H-sssi if it is self-similar with index H and 
has stationary increments (cf. [4], p. 309). We shall consider only measurable, 
separable H-sssi processes with P(X = 0) = 0. For every such process X and 
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every n 2 3 a transformation wy): L2 x RZ + R2, i = I , 2,  . . ., n, is defined as 
follows. For every (x, y) in R2 

where 

(1) dl") = 
lx (l/nj - x (G - l)/n)[ 

max ( X  (k/n): 0 < k < n) - min (X (k/n): 0 G k < n)' ' 

and 

Since X(0) = 0 and X( l )  # 0 with probability 1 ([6], Lemma 1.2 and Theo- 
rem 2.4), it follows that scaling factors d y )  are positive with probability 1. Thus, 
for every o E 62 modulo null events, the attractor of the family (wj") (w,  .): 
i = 1, . . ., n) is the graph of a continuous function (F,  I.)) (a): [O ,  11 + R which 
interpolates the set of data {(i/n, (~( i /n))  (w)): i = 0, 1 ,  . . ., n] (cf. [I], 1.1). We 
proved in [I], Lemma 1.3, that F ,  is a well-defined stochastic process. We call 
it the fractal interpolation of (X(i/n))i,Io,l,.,,,n~ with scaling factors dy) .  The box 
dimension D, (o) of the graph of (F, (=)) (o) is given by the formula 

In z;=, dl") (o) 
D,(o) = 1 + 

In n 
I 

I 
The random variable D, is called the interpolation dimension of (X (i/n))iE(o,l,...,n~. 

2. VARIOUS M N D S  OF CONVERGENCE OF INTERPOLATION DIMENSIONS 

In order to examine convergence of interpolation dimensions we shall first 
define-four limit operations on sequences of positive random variables. 

- 1. Let 3, be the class of sequences (Y,) such that ((ln X)/h n) converges 
with probability 1 to a constant limit. The operation 1,: 3, + R assigns to 
every sequence (Y,) E g, the number being the value of the limit of ((ln Y,)/ln n) 
with probability 1. 

2. Let g2 be the class of sequences (Y,) such that ((ln Y.)/ln n) converges in 
probability to a constant limit. The operation 1,: CY2 + R assigns to every 
sequence (Y,)EY, the number being the value of the limit in probability of 
((In Y , ) b  n) - 

3. Let Y, be the class of sequences (Y,) such that (E ((ln &)/Inn)) con- 
verges. The operation 1,: g3 -+ R assigns to every sequence (X)E Y3 the limit 
of (E ((ln KMln a)). 
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4. Let g4 be the class of sequences (x) such that ((ln E (~,))/ln n) is conver- 
gent. The operation 1,: CY4 + R assigns to every sequence (Y.) E Yd the limit of 
((m Y,)llnn). 

We shall summarize relationships between 1,-14. 

2.1. g1 c Y2 and if ( Y , ) E ~ ~ ,  then l1 (K) = lz(Y,). 

2.2. If (Yn)~q2n?Y3,  then 12(K) = l,(Y,,). 

2.3. I j  (YJ E !3', n gQ, then E4 (Y,) B IJ (X). 
2.4. If (YJ E Y, n tY4 and Z, ( Y,) = I, (Y,) = cc, then (7) E !iY2 and E2 (Y,) = a. 

Assertions 2.1 and 2.2 are obvious; 2.3 is a consequence of the Jensen 
inequality. To prove 2.4 we need the following lemma. - 

2.5. LEMMA. Let (X,) be a. sequence of random variables dejned on the same 
probability space (9, 9, P). If 

lim E (ln (X,)) = lim In (E  (X,)) = ol, 
n+m n-tm 

then 

ln (X,) 5 N . 
I 
I Proof. Take an E > 0. By the assumption, 

I (E (In (Xn)) -ln(E (x,))( < E for n large enough. 

I Thus, by the Jensen inequality, 

I Q < In (E (x,)) - E (In (x,)) < E . 
i 
I Let y = a, x+b, be an equation of the line tangent to the graph of the loga- 
I rithmic function at the point (E (X,), ln(E (xJ)). Then 
I 

(2) a, X,(w) + b, 2 In (X, (o)) for every value Xn (w). 

Let 6; and 6: be the smallest numbers satisfying 

for X, (w) < E (X,)  - 6; or X, (w) 2 E (X,) + 6;.  Take 6, = max {S; ,6:) and let 
A, = (a: IX,(rx) - E (X,)I > 6,). Conditions (2) and (3) imply 
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Thus limn,, P ( A 3  = 0. By a simple estimation of increments of the logarith- 
mic function we infer that 6. can be chosen to be less than ,,/%KT- E (X,). 
By the assumption, ( E ( X J )  tends to 8; thus there is a number c such that 
E(X,) < c for all n. Hence, for large n, 

Letting E + 0 makes 

Therefore Xn %en and, consequently, ln(X,) 5 a?, as required. r 

Lemma 2.5 can be easily generalized over injective concave functions with 
some simple requirements on second derivatives. 

P r o  of of 2.4. Let us assume that 

E Y,) lim - - InE(Y,) 
- 01. - lim - - 

+ Inn n+m Inn 

By the Jensen inequality, applied first to the logarithmic function and second to 
a power function with the exponent l/lnn, we obtain 

Thus, also 

lim l n ~  (Y:/'"") = a. 
n+ a, 

By Lemma 2.5 applied to X, = Y:/'"~, 

Hence (In K)/lnn 5 a and I, (Y,) = a, as claimed. 

We shall use the above results to examine the convergence of interpola- 
tion dimensions D, with scaling factors dl") defined in (1) for i = 1, 2, . . ., n and 
n > 2 . ~ e n o t e ~ ~ = , d ~ b y  Y,.LetLj(D,J= l+Ej(Y.)forj= 1, ..., 4(ifthelimit 
I j  (Y,) exists). Note that the mean values which occur in the definition of L3 and 
L4 exist, since dy) and D, are bounded and measurable. Statements 2.1-2.4 can 
now be reformulated for the operations L1-L4. 

2.6. COROLLARY. (i) L1 (D,) = a 3 Lz (D,) = o: = LS (D,) = a. 
L4 (Dn) 2 ~ 5 3  (Dn). 

(iii) L4 (D,) = L3 (D,) = a = LZ (D,) = or. 
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Corollary 2.6 (iii) is of special interest to us because it allows us to prove 
convergence in probability of interpolation dimensions by estimating only 
corresponding expectations, which is easier and even can be done experimen- 
tally. In the next section we shall apply that result to interpolation dimensions 
of self-similar processes with stationary increments. 

3. INTERFOLATION DIMENSION OF H-sssi PROCESSES 

In [I] we proved that if {X(t)} is a fractal interpolation of fractional 
Brownian motion with index H, then the interpolation dimensions$, converge 
to 2 -H with probability 1. Applying methods developed above we can easily 
extend this result to H-sssi processes. For a process (X(t)),,I,,ll let 

x:hx = rnax {X(i/n)) and XC;, = min {X(i/n)). 
i ~ [ O , l +  ....ill i~{O,l,,..,n$ 

3.1. THEOREM. Let {X(t)}, , , , , ,  be an H-sssi process with E ( X ~ ~ , - X $ I , )  
being finite. Then L3 (D, (X (iln))) 2 2 - H .  

Proof. Since X ( 0 )  = 0 and X(1) # 0 with probability 1, there is a posi- 
tive constant c such that 

Therefore, by the Jensen inequality, we have 

- lnc 
n 

1 "  
= Inn + - E (ln ] X  (i/n) - X ((i - l)/n)l) - In c. 

n ,, 
Now it saces to estimate the value E (ln (X (Vn) - X ((i - l)/n)(). By self-simi- 
larity, 

~ ( l n ( x ( i / n ) - ~ ( ( i -  l)/n)l) = E ( ~ ( ( x ( ~ ) - x ( o ) I ~ - B ) )  = -Hlnn+C, 

where C = E (ln lX (1) -X (0)I). Hence, by the Jensen inequality, 



3.2. THEOREM. Let { X  (t)),Eo,ll be an H-sssi process. If E(IH,I) < co, then 
Ld (D, (X Iiin)) < 2 - H. 

Proof. It is enough to prove the following inequality: 

Take an E > 0. Let 

A, = {IX (I) - X (O)I > l/nB} . - - 

Since X (0) = 0 and X (1) + O with probability 1, we have limn,, P (A,) = 1. 
Therefore, using self-similarity we get 

< ndS IX(1)-X(O)IdP+P(Q\A,) g nen-H j IX(1)-X(O)IdP+P(Q\A,). 
An A" 

Thus 

Letting n -+ cx, we get the claim. rn 

Summarizing the above results we obtain the following corollary: 

3.3. COROLLARY. Let ( X  (t)),Io,ll be an H-sssi process with E (Xg),, -Xg1,) 
being finite. Then the sequence D, of interpolation dimensions converges to 2 - H 
in probability. 

- Proof. By Corollary 2.6 '(ii) and Theorems 3.1 and 3.2 we obtain 

Thus L, (D,) = L 3  (D,) = 2 - H  and, in view of Corollary 2.6 (iii), also 
L2 (D,) = 2 - H .  

4. CONVERGENCE OF PATHS OF FRACTAL INTERPOLATIONS 

In [I] we examined uniform convergence of sample paths of fractal inter- 
polations to sample paths of the interpolated process. We proved the following 
theorem ([I], Theorem 3.3): 
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4.1. THEOREM. Let (X(t)),,Io,ll be a stochastic process that has continuous 
sample path. Let F, be the fractal interpolation of (X(i/n))k~o,l,,,.,n, with scaling 
factors 

ap = 
IX (i/nl- (6 - l)/n)l 

maxi (1 (i/n)] -mini {X  ((i - l ) /n))  ' 

If  there is a constant c such that 

then 

sup (IF, (t) - X (t)l) t . . O  in probability. 
t ~ [ O , 1 1  

We shall use that theorem to H-sssi processes. 

4.2. THEOREM. Let (X(t)),,Io,ll be an H-sssi process with continuous 
sample pa th  and E ( I x ( I ) I )  < co. Let Fn be the fEactaI interpolation of 
(X(i/n):  i = 0 ,  1 ,  . . ., n) with scaling factors 

dp' = 
lx (i/n) - x ((i - l)/n)l 

maxi { X  (i/n)) -mini {X ((i - l)/n)) ' 

Then 

sup (IF,, ( t)  - X (t)l) + 0 in probability. 
t € [ O , l I  

Proof. We shall prove that lim,, , maxi dl") = 0 in probability. Let 
0 < E < H. Like in the proof of Theorem 3.2, ,let 

Then - 

maxi J X  (i/n) - X ((i - l)/n)l 
- x%n 
maxi I X  ( i /n)  - X ((i - 1Mn)I 

dP + P (O\ A3 
A n  IX(l)-X(O)I 

where c = E (IX (1)-X(0)I). Therefore (maxidP1) converges to 0 in C, which 
implies convergence in probability ([4j, Chapter II, 9 10, Theorem 2). H 
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Final remarks. Xiao and Lin [7f gave general conditions under whch the 
Hausdodfdimension of the graph of a sample path of an H-sssi process is equal with 
probability one to 2-H. They also showed that these conditions are satisfied by 

fractional Brownian motions, 
strictly stable processes with index a, 1 < a < 2, 
(a, #+fractional stable processes with 1 < u < 2, - 1 /a < P < 1 - l/u, 
and all H-sssi processes X satisfying the moment condition 

3y > 1/H E (Ix (111 Y) < co 
(for the last condition see [5] ,  for more details concerning H-sssi processes see [3], 
Chapter 7). One of the conditions used by Xiao and Lin is, fox H-sssi processes, 
equivalent to 
(*I E (  sup [X( t f  h)-x(t)l) < m .  

hE[O,lI 

In proofs of Theorems 3.1, 3.2 and 4.2 we use only the assumption 
E (IX (1)I) < ca or E ( X Z L  - Xg],) < m, which is a discrete version of (a). Thus 
we can apply the results to all processes mentioned above. For these processes 
interpolation dimension can be used as an estimator of the Hausdorff dimen- 
sion of graphs of their sample paths. 

The class of H-sssi processes which satisfy (*) and have continuous sample 
paths versions includes (cf. [Z]) 

fractional Brownian motions, 
(a, fl)-fractional stable processes with 1 < a < 2, 0 < f i  < 1 - l/a, 
sub-Gaussian SaS-processes with 1 < u < 2, 
For this class, fractal interpolations approximate sample paths of the inter- 

polated process. 
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