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Abstract. Using a probabilistic technique we obtain upper and 
lower estimates for the Poisson kernels of the second order diflerential 
operators on a homogeneous manifold of negative curvature. Our 
results improve estimates obtained in the paper [S] .  Moreover, for the 
noncoercive operator we proved the boundary Harnack inequality 
which turned out to be the same as in the coercive case. 
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1. htroduction and main results. In this paper we consider a second order 
differential operator 3 on a connected, simply connected homogeneous mani- 
fold of negative curvature. Such a manifold is a solvable Lie group S = NA, 
being a semidirect product of a nilpotent Lie group N and an abelian group 
A = R+. Moreover, for an H belonging to the Lie algebra a of A, the real parts 
of the eigenvalues of Ad,,,lN are all greater than 0. Conversely, every such 
group equipped with a suitable left-invariant metric becomes a homogeneous 
Riemannian manifold with negative curvature [lo]. 

On S we consider a second order left-invariant operator 

We assume that Yo, Yl, . . ., Y, generate the Lie algebra 5 of S. Moreover, we 
can choose Yo, Y1, . . ., Y, so that Yl (e), . . ., Y, (e) belong to the Lie algebra n 
of N. Let a: S + A = SIN be the canonical homomorphism. Then the image of 
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9 under x is a second order left-invariant operator on R+,  

where y E R .  The operator 9 = 2y is noncoercive (there is no E > 0 such that 
S + E I  admits the Green function) if and only if y = 0. 

Finally, the operator we are interested.in can be written in the form 

where X, XI, . ,+, X, are left-invariant vector fields on N and vector fields 
XI, . . . , X, generate TI, 

and D = ad,, is a derivation of the Lie algebra n of the Lie group N such that 
the real parts dl of the eigenvalues Aj of D are positive. Multiplying Lf7 by 
a constant we can make d j  arbitrarily large [ 5 ] .  

Our first result is about the Poisson kernels for the operators (1.1). Let 
pi be the semigroup of measures generated by 3. It is known (cf. [7]) that if 
y 2 0, then there exists a unique (up to a positive multiplicative constant) 
positive Radon measure v, with a smooth density m, on N such that 

F ! * v ,  = v,, y 2 0. 

v,  or its density my is called the Poisson kernel for the operator dp,. For y > 0 
the measure v, is bounded, while v,  is unbounded. These measures have been 
studied by many authors and in various contexts; see e.g. [5] and literature 
quoted therein. In particular in 151, Theorem 6.1, by using some probabilistic 
techniques, the following estimates of the Poisson kernels have been proved: 

THEOREM 1.1. Let my be the Poisson kernel of dp,, y 2 0. Then there exists 
a constant C ,  such that, for all X E N ,  

where 1.1 denotes the "homogeneous norm" on N and Q denotes the "homogeneous 
dimension" of N (see Section 2 for precise definitions). 

One of our main goals in this paper is to show that for small range of y we 
can choose C, in (1.2) independent of y. Namely, we are going to prove the 
following 

THEOREZM 1.2. Let my be the Poisson kernel of y j .  fien there exists a posi- 
tive constant C such that, for every X E N  and for every y E[O, I], 

It should be mentioned that the above uniform estimate has already found 
application in [I21 for investigation into unbounded 'harmonic functions on 
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NA groups. Especially in the case y = 0, as there have been no nonconstant 
bounded harmonic functions there. 

Before stating our second result we need some definitions. Let r (sl , s2) be 
the Riemannian distance between two points s l y  s2 E NA. For simplicity we very 
often write z (s )  instead of z ( e ,  s), where e denotes the identity element of NA. 

Let 9: 10, oo) + [c,, m) with @ (0) = co 2 0 and lirn,,, @ ( t )  = co be 
a positive increasing function. A finite sequence of open sets Vl 2 . . .. 3 V, with 
a sequence of points sl, . . ., s, such that si E avi, i = 1,  . . ., m, and with the 
properties that, for every z E dVi+ l ,  

- 

(1.3) ~ ( z ,  3K)  @(z(zy si .1))  

and 

is called a @-chain. 
As in [ 3 ] ,  let Vl 3 V2 be two open sets and B(p,  r)  be a Riemannian ball 

with center p and radius r contained in V1\v2. The triple (Vl , V2, B lp, r)) is 
said to be a (@, r)-triple if for every sl E aVl and every s2 E dV2 there is a @-chain 
passing through sl , s2,  p. 

Now we are able to state some kind of the boundary Harnack inequality 
in the. noncoercive case, i.e. for the operator Yo defined in (1.1). 

THEOREM 1.3. Given @ and r there is a constant C such that for every 
(@, +triple (Vl, G',, B @ ,  r)) and any nonnegative 90-superharmonic functions 

g with the properties: 
(a) f is 9,-harmonic on V: and is dominated by a potential there, 
(b) g is 90-hanrtonic in B(p,  r), 

we have, for euery s $  Vl ,  

In the case y > 0 there is a result analogous to Theorem 1.3 and has been 
proved by Damek in [3 ]  by means of Ancona's theory [ I ] .  Then Damek used it 
to give an estimate of the Green function for the operator Y7. The boundary 
Harnack inequality in [3 ]  follows from Theorem 2.8 in [3]. Since our operator 
is noncoercive, we cannot apply Ancona's theory. The only thing we need in 
order to prove Theorem 1.3 is the analogue of Theorem 2.8 in [3 ] .  Fortunately, 
it turns out that we are able to prove it (see Theorem 5.1 below) using an 
estimate of the Green function Q = Qo for 9, obtained by the author in 1151. 
To sum up, in [3] the boundary Harnack inequality was a tool to prove the 
estimate of the Green function; by contrast here, in the noncoercive case, we 
use the estimate of the Green function to get the boundary Harnack inequality. 
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The structure of the paper is as follows. In Section 2 we state precisely 
notation and all necessary definitions. Moreover, some theorems which will be 
used in the sequel are also cited. 

In Section 3 we recall a definition of the Bessel process and prove some 
lemmas about its properties which generalize some standard ones. These lem- 
mas are crucial in the proof of Theorem 1.2. 

Finally, in Sections 4 and 5 we prove Theorem 1.2 and Theorem 1.3, 
respectively. 

Acknowledgments. The author is grateful to Ewa Damek fos suggesting the 
possibility of generalization of the boundary Harnack inequality into the non- 
coercive case. 

2. Preliminaries. Let N be a connected and simply connected niIpotent Lie 
group. Let D be a derivation of the Lie algebra n of N .  For every a f R +  we 
define an automorphism Qi, of n: by the formula 

Writing x = exp X we put 

We assume that the real parts d j  of the eigenvalues 4 of the matrix D are 
strictly greater than 0 and we define the number 

which will be referred to as a homogeneous dimension of N.  In this paper 
D = ad, (see Section 1). 

We consider a group S which is a semi-direct product of N and the multi- 
plicative group A = R+ = (exp tYo: t E R) : 

S = NA = {xa: XEN, ~ E A )  

with multiplication given by the formula 

(xalbb)  = (x@u (Y) ab). 

In N we define a homogeneous norm 1 . 1  (cf. [6]  and [ 5 ] )  as follows. Let (., .) be 
a fixed inner product in n, We define a new inner product 

and the corresponding norm 

IlXll = (X, x>lI2. 
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We put 

One can easily show that for every Y # 0 there exists exactly one a > 0 such 
that Y = 9,(m with 1x1 = 1. Then IYI = a. 

Finally, we define the homogeneous norm on N. For x = expX we put 

Notice that if the action of A = W+ on N (given by @,) is diagonal, the norm we 
have just defined is the usual homogeneous norm on N and the number Q in 
(2.1) is just the homogeneous dimension of N (cf. [8]). 

Let 3 (xu, yb) be the Green function for 8. The function 9 is defined by 
two conditions: 

(i) 9B(., yb) = -ayb as distributions (functions are identified with dis- 
tributions via the right Haar measure); 

(ii) for every yb E S, 93 (-, yb) is a potential for 9. 
Moreover, let g(xa) : = B(xa, e). Then 

(2-2) ~ ( x a ,  yb) = B((yb)-'xa, e) = $((yb)-lxa). 

In the proof of Theorem 1.3 we will need the following estimate for the 
Riemannian distance z, which is due to Guivarc'h [9]. 

LEMMA 2.1. There is a positive constant C such that for every x E N and 
~ E A  we have 

For a multi-index I = (i, , . . ., in), ij €Zf, and a basis XI, . . ., X,, of the 
Lie algebra n of N we write: X' = Xy . . . Xk and 111 = i ,  +. ..+in. For 
k = 0, 1, ..., m we define 

Ck = {f: X1f EC(N)  for 111 < k + l }  

and 

Ck, = (f E C ~ :  Iim X1f (x )  exists for 111 < k+1). 
x-r m 

For k < oo the space C: is a Banach space with the norm 

Let 

12-41 = ( t)  - (C @eU) (Xj)' + @a(q (X)) .  
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For a continuous function a: [O, a) + [0, c ~ )  let {Ua(s,  t): 0 < s < t} be the 
(unique) family of bounded operators on C, = CO, which satisfy 

(i) Uu(s,  s) = I ,  
(ii) Uu(s,  r)UU(r ,  t )  = Ua(s ,  t) ,  s < r < t ,  

(iii) 8, Uu (s, t )  f = - &,, Un (s ,  t )  f for every f E C, , 
(iv) 8, Uu (s, t) f = Ua (s ,  t )  LC(,) f for every f E C, , 
(v) UU (s ,  t) : c: -, c: , 

U" (s, t )  is a convolution operator, i.e. Ua (s ,  t) f = f * pb (t , s), where pa ( t  , s) is 
a smooth density of the probability measure. By (ii) we have pa ( t ,  r) + pu (r ,  s) 
= pa(t, s) for t > r > s. Existence of the family Ua(s, t )  follows from [14]. 

Later on we will see that the evolution generated by the operator (2.4) with 
a being a trajectory of the Bessel process (see Section 4 for a definition) appears 
in the natural way in the explicit formula for the Green function and/or Pois- 
son kernel of 9. 

In [5 ] ,  by using the Nash inequality, the following estimate of the evolu- 
tion kernels pu(t, 0) has been proved. 

THEOREM 2.2. For every compact set K c N which does not contain the 
identity element e of N, there exist positive constants C, (, PI, pz and D < Q such 
that, for every X E K  and for every t > 0, 

t 

p* (t , 0) < C (j a - 2(1 - (u) du) - 
0'  (A) 

where A(s ,  t) = C(d1(u)+d2(u) )du .  

3. Bessel process. The main results of this section are Lemmas 3.6, 3.7 and 
the second part of Theorem 3.8. These results become very important in the 
proof of Theorem 1.2. 

Let b,(t) denote the Bessel process with a parameter ol 2 0 (see [13]), 
i.e. a continuous Markov process with the state space [0, +a) generated by 
a: + + ( 2 ~  + I ) / u ~  da. 

The transition function with respect to the measure y2"+ dy is given (e.g. 
in C21) by 

for X , Y > O ,  

(3.1) PI (x, Y) = 1 
for x = 0, y > 0 ,  

where 
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is the Bessel function [Ill. Therefore for x >, 0 and a measurable set 
B c (0, a): 

It turns out that the Bessel process has a property analogous with the Brow- 
nian Scaling Property. Namely, we have the following lemma in the formula- 
tion from [5]  (cf. [13]): 

LEMMA 3.1,. Let S2 be the space of trujectorks of the Bessel process b,jt). 
For b. s a2 and 1 > 0 define BA(b.)(t) = f i b ,  (t/A). A s m e  that b. srhrts from x, 
i.e. b,(O) = x. Then: 

(i) for every A > O,F( t )  = On (b,) ( t )  is the BesseZ process (will-a parameter a) 
starting from A; 

(ii) for every J. > 0, x >,0, 

Now we are going to prove some lemmas concerning properties of the 
Bessel process. In fact, we want to show that in many cases of the very well- 
-known estimates of some functionals of the Bessel process we can keep the 
constants which appear there independent of the parameter a of the Bessel 
process provided that E is between 0 and 112. If this happens, we say that 
estimates are uni$orm. 

We are almost sure that most of those properties, even in such a general 
setting, should be known. However, since it is not easy to give references and 
our proofs depend heavily on them, we show the proofs or at least sketch them 
out for the reader's convenience. 

In what follows we will very often need to use properties of the asymptotic 
behavior of the Bessel function I,(x) for small and large values of x. They are 
described in the following lemma whose proof can be found e.g. in [Ill. 

LEMMA 3.2. Let I,, a 2 0, be the BesseZ function. Then 

Using the formula (3.1) and the asymptotics given by Lemma 3.2 it is not 
difficult to obtain, after simple calculation, the next two lemmas. A little bit 
weaker results have been proved in l161. In fact, a careful reading of the proofs 
in [16], together with some cosmetic changes there, gives desired estimates. 
Therefore we are going to omit the proofs. 
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LEMMA 3.3. There exists a positive constant c such that, for every 
0 4 a < 1/2, every I > 0, evmy t > 0 and every x 2 0 ,  

P, (ba(t) > X+ A) s cexp ( -A2 /8 t ) .  

LEMMA 3.4. There exists a positive constant c such that, for every 
0 < o l <  1/2, every x > 0, every 1 < x and every t > 0 ,  

The next part of this section contains the uniform (with respect to the 
parameter 1/21) versions of the results from [16] and- [ 5 ] .  

LEMMA 3.5. There exist positive constants cl, c2 such that, for every 
0 < a  < 1/2 and for evmy x 2 0 ,  r > 0, t > 0 ,  

px(maxbE(s) 4 r) < c l exp ( - c2$ ) .  
SE[O.~] 

Proof.  Notice that it is enough to prove that there exists E > 0 and 
0 < do < 1 such that, for every x 2 0 and for every a E [O, 1/21, 

providing that r/,,h Q 6.. 
At first we need to show that there exists 0 < So < 1 such that, for every 

x 2 0 ,  0 < a Q 1/2 and for every S Q So, 

where the constant C does not depend on x. In order to get this we use the asymp 
totic behavior of the Bessel function Ia(x) for small and large values of x (b- 
ma 3.2) and the formula for the transition function for the Bessel process (3.1). 

Clearly, 

PX (max b,(s) < 6) < ~ 6 " "  Q CS. 
SE[O,SI 

Moreover, we will show that, for every  EN, 

P,  ( max ba(s) < 6 )  < (CS1 +a)k < CSk. 
sEC0,kSI 

Indeed, the case k = 1 is proved. Now, by induction, using the Markov proper- 
ty we get 
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Thus, if k6 = 1, we get 

By the first part of Lernma 3.1 we get 

~ , ( m a x  b,(s) < r)  = P,,- ~2 (max b,(s) d rt- l i2)  S exp 
IE[O .tl s ~ [ O . 1 1  

LEMMA 3.6. Thme exist constants c l ,  c2 such that, for every 0 d a d 1/2, 
R > 0 and for every t > 0 ,  - 

P r o  of. Clearly, we may assume that R2/t 2 1. Otherwise the inequality is 
trivial. Moreover, at first we prove this lemma for R = 1 and t < 1. For arbi- 
trary R we use Lemma 3.1 which implies 

Let 6 < 112 and let A be such that 1/2 = AX:=, i/2". Notice that 

{b,: ba(0) = 1, inf b,(s) < 1/21 
=CO,tl 

m 2"-1 

c U U {b,: b, ((k + 1) t/2") < b, (kt/2*) - ~ 1 2 " ~ ) .  
n = l  k = O  

Thus, 
- - 

Pl ( inf b, (s) < l /2)  < PI (b ,  ((k + 1) r/2") < b, (kt/zn) - A/2"') 
sE[O.f] n = l  k = O  

m 2"-1 m 

s c c sup j Q, (Y) PS (1, Y )  max ( Y ,  YZ) dy ,  
n = l  k = O  se(O,l] 0 

where 

@ (Y) = E y  l{ua:a.(r/2"] < -A/2&] = = ~ y  ( ~ r r  (t/2n) < y- A/2n8)- 

Using the estimate of 4501) and Lemma 3.4, we get 

P1 ( inf b, (s) < 112) < c~ exp (- c,/t). 
sa[O,tI 
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LEMMA 3.7. There exist constants cl, e ,  such that, for every 0 < a d 112, 
every x 2 0, every 11 > 0 and every' t > 0, 

P, ( sup 6, (s) > x +A) < cl exp ( - c,A2/t). 
~ € [ O , t l  

P r  o of. As before, it is enough to prove the lemma for i12/t 2 1. Moreover, 
from the estimate for x = 1 by Lemma 3.1 we get this estimate for all x > 1. 
Therefore it is enough to consider x d 1. If so, let 6 < 112 and let A be such 
that A/2 = A zr= A/2"'. Notice that 

{b,: b,(O) = x, sup b,(s) > A) 
~ [ O , t l  

c U U {b,: b, ((k + 1) t/2") > b, (kt/2") + AA/2"'). 
n = l  k=O 

Thus, 
00 2"-1 

P, ( sup ba (s) > x +A) < C C Px (b, ((k + 1) t/23 > b, (kt/2") + AA/~"? 
MDJl n = l  k = O  

where 

Now we use the estimate of Y(y), Lemma 3.3, and the assumption that 
A2/t 2 1, and obtain 

P, ( sup b, (s) > A + x) < x 2"exp ( - AA2 2n(1 - 2b)18f ), < clexp(-AilZ/16t). H 

=dO,tl n =  1 

THE~REM 3.8. Let y > 0. There exist positive constants fi ,  C1, C2 such that, 
for every nonnegative a, t and A and every 0 6 u < 112, 

t 

(3.2) E, exp (- A' +?I2 S bi (s) ds) G c1 exp ( -  c2 (At)B). 
0 

Moreover, let D > 0. Then, for every a 2 0, 
t 

(3.3) ~ , ( j b z ( s ) d s ) - ~  < Ct-D(1+y12), 
0 

where C = C(D, y, 8). 
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Proof.  At first, notice that it is enough to prove (3.2) for R = 1. Indeed, 
assuming (3.2) for ;1 = 1, by Lemma 3.1 we can write 

Ai A t  

clexp (- C2 (At)b) 2 E,i,a, exp(- bz(s) ds) = EaexP (- v2 bi (s/A) ds) 
0 0 

It is clear that it is enough to consider only t 2 1. 
Let 1.1 denote the Lebesgue measure on the real line. Fora fixed but 

arbitrary U E  [0, 1/21 divide the set of all trajectories of the Bessel process 
b, into three subsets 

07 = {b, : max b, (s) < R )  , 
SEC0.Y 

a", {b,: rnax b,(s) > R ,  [{s: b,(s) > R/2)1 3 R-512}, 
S€CO.tl 

Q", {be: max b, > R, I{s: b, > R/2)1 < R - ~ I ' ) ,  
aCO,tl 

where t > 0 and R = R(t) 2 1 will be chosen later. 
First we consider the set a. By Lemma 3.5 we get 

f 

(3.4) E, exp (- J b: (s) ds) lq < P, (0,) < exp (- &tiI2/~),  
0 

providing that R/t1/2 < JO, where do is as in the proof of Lemma 3.5. 
On the set Q",e have 

t 

(3.5) Ea exp (-1 bi(s)ds) 1,: < E,exp (-RY-'I2) = exp (-RY-<l2). 
0 

At last, for 0-e have 
f 

E, exp ( - j bi (s) ds) lW < Pa (a:). 
0 

We define a stopping time T = inf{s: b,(s) = R). Then using the strong Mar- 
kov property and the inequality j(s: b,(s) > R/2)1 < R-U2 we have 

By Lemma 3.6 we get 
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independent of a E [0, 1/21 if R-5iZ 6 1. Thus, 
t 

(3.6) E, exp (- j b:(s) ds) 1,: (bA < c1 exp ( - C ,  R~ +e/2).  
0 

Now, taking e.g. ( = 7, and R = t1I4, b y  (3.4H3.6) we get inequality (3.2). 
Now we are going to prove inequality (3.3). We make use of (3.2). 
Let { be such that A1+y12 = t1ID. Integrating the left-hand side of (3.2) with 

respect to 5 over (0, +a) we get 

m m f 

(3.7) 1 E. exp ( - r l l ~  E b; (s) ds) d t  = E. exp ( - t j b: (s) d s j d ~  
0 0 0 0 

t m t 

= E. (J b:(s) d ~ ) - ~ j  exp (- u l l l  du 4 CE. ( j  bi (s) 
0 0 0 

Similarly, integrating the right-hand side of (3.2) with respect to over (0, + w) 
and changing variables, u = t[[D(1+y/2)r-' ,  we get 

03 

(3.8) C 1  j exp (- C ,  (t[[w1+Yi2)'-i)B)d< 
0 

Now (3.2), (3.7) and (3.8) give us (3.3). 

4. Proof of Theorem 1.2. In the proof of Theorem 1.2 we make use of 
a probabilistic method introduced in [4] and then continued among others in 
C51, C 6 l  and C151. 

As in the previous papers [ 5 ]  and [15],  along with the operator 9 = TY, 
y €kt, defined in (1.1), we consider the corresponding operator on N x  R + :  

On N x R +  we define dilations: 

It is easy to check that although the operator (4.1) is not left-invariant but is 
hornoge'neous of degree 2, i.e. 
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Let y 2 0. The Green function G-, for L- ,  is given by 
m 

(4.3) G-,(x, a; Y ,  b) = J Pt(x, a; y ,  b)dt, 
0 

where Tl;f (x, a) = 1 f (y, b)pt(x, a; y ,  b )dyb l+"db  is the heat semigroup on 
L2 (N x R', dybl + db) with the infinitesimal generator L -,. In (4.3) we allow 
(y, b) to be ( e ,  0) since 

lim G-,{x, a; y, b)=:G-,(x, a; e ,  0) 
(~.b)+(e,Ol - 

exists [ S ] .  
Notice that (4.2) implies that 

(4.4) G-?(x, a;  y, b) = t - Q ~ - , ( ~ , - l ( x ,  a); D,-~ly, b)). 

It turns out (see [ 5 ] )  that the Poisson kernel m,, y 2 0, can be expressed in 
terms of the Green function: 

where G?, is the Green function for the operator 

conjugate to L - ,  with respect to the measure dxp(da)  = d x ~ l + ~  da. Moreover, 
it has been proved in [5] that 

where the expectation is taken with respect to the distribution of the Bessel 
process a(t) with the parameter a = y/2 and p S ( t ,  s) are smooth probability 
densities of the evolution generated by the operator (2.4). 

Ske tch  of the proof  of Theorem 1.2. We are going to modify the 
proof of Theorem 1.1 from [ 5 ] .  The idea in [ 5 ]  of the proof of Theorem 1.1 was -. as follows. 

Using the explicit formula (4.6) for G - ,  (x, a; e ,  0) = m, (x-I) we try to 
show that there exists a positive constant C which may depend on y, so let us 
call it C,, such that 

for every (x, a) from the set {(x, a): Ixl+a = 1). In order to do this we have 
used Theorem 2.2 and, by some standard techniques such as stopping times 
and properties of the Bessel process, we succeeded in proving (4.7). When (4.7) 
is established, the rest is just an application of dilations D, and the homogeneity 
of the Green function (4.4). 

15 - PAMS 21.1 
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All the above were done in [ 5 ] .  A little bit earlier but only the upper 
bound in (1.2) has been proved in [16]. 

Now we are going to show how to prove Theorem 1.2. In fact, everything 
what is needed to do this has already been prepared in Section 2. AU lemmas 
for the Bessel process are "uniform" provided that parameters a are in [ O ,  1/21, 
Recall that "uniform" means that constants do not depend on a between 0 and 
112. Therefore we can now rewrite the proof from 151 replacing appropriate 
probabilistic "nonuniform" lemmas and theorems by their "uniform" versions 
from Section 2 of this paper and get lower and upper bounds in (4.7) with C,'s 
which do not depend on 0 < y = 2a d 1. Now, as in [5], we use the homo- 
geneity argument to complete the proof. (If we are interested only in the upper 
bound in Theorem 1.2 we can use the proof from [16], which seems to be 
a little bit longer but maybe more elementary.) rn 

5. Proof of Theorem 1,3. The main tool in the proof of Theorem 1.3 is the 
following theorem, being the analogue of Theorem 2.8 in [37, which gives us 
the behavior of the Green function B = Bo for the operator LPo on the @-chain. 

THEOREM 5.1. Given a @-chain with points sl ,  . . . , s, there exists a positive 
constant C such that for every k (1 < k < m) 

(5.11 C-'Q(sm, sk)g(sk, SI) G $(sm, SI) G Cg(srn, s k ) g ( s k s  SI). 

P r o  of. It has been proved in [15] that for every 0 < S < 1/2 there exists 
a positive constant C such that, for every xa# T, : = (xu: 1 - 6 < a < 1 + 6,Ixl < 61, 

(5.2) C - w (xu) ,< 9 (xu) < Cw (xu), 

where 

r l if 1x1 < 1, a < 1 (region I), 

W(XQ) = J x J - ~  if 1x1 2 1, 1x1 > a (region II), 1 
[ a - ~  i f a 2 1 ,  a > l x (  (regionIII), 

and Q = x d j  = XReA,. 
- By (2.21, inequality (5.1) is equivalent to 

where s = skis,, t = s;'sk, u = s;'s,. 
Depending on the number of points in the regions I, I1 and 111 we have to 

consider 10 cases which we have indicated in the table below. 
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In fact, there are more cases to consider because sometimes we have to 
take into account permutations of the set {s, t, u).  Since the proofs of some 
cases are very similar to each other, we are going to prove only some of them. 
Namely, these ones which are representative of all the methods sufficient to 
deal with the remaining cases. 

Case  1. By (5.2), 

Case  7. By (1.3), (1.4) and the property of the Riemannian-distance, for 
every 1 < i < j < pn we have 

Now it folIows from (2.3) that there exists a constant D such that, for 
p = S, t ,  U, InN(P)I < D, where x, denotes the projection from S onto N .  There- 
fore, using (5.2) we can write 

Case  8. Notice that (5.4) is still valid. Hence there exists a constant 
D such that, for p = s, t ,  u, D - I  < r(p) d D .  Therefore there exists 6 such that 
p does not belong to T,. Moreover, by (2.3), this implies that there exists 
a constant D such that D-I  < n,(p) < D ,  where nA denotes the projection of 
S onto A. In order to prove (5.3) we have to use (5.2) and proceed similarly to 
the previous case. 

Case 6. Suppose that s, t and u are in the regions I, 111 and 11, respec- 
tively. By (5.4) there is a constant C such that, for p = s, t, u, D-l  < z ( p )  < D. 
Therefore, there is a constant D such that D-' d nA(p), InN(p)( < D. Using (5.2) 
we can write 

Other locations of the points s, t, u are considered similarly. 
To sum up, in order to prove inequaIity (5.3) in the remaining cases we 

proceed as in the above cases. The general strategy is as follows. We notice that 
inequality (5.4) is satisfied. This implies that nA (p) and InN(P)I for p = s, t, u are 
bounded from above and below. Then we use the estimate (5.2) for the Green 
function $9. H 
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Now we are able to prove Theorem 1.3. 

Proof o f  Theorem 1.3. We have just to adopt the approach from [I] 
to our setting. 

Let u be a potential which dominates f on r;. Thus there exists a positive 
measure p on dV2 such that u (s) = jaV2 B (s, t) d p  (t) for every s E VC,. By Theo- 
rem 5.1 and the Riesz Representation Theorem, for every s€8V1 we obtain 

By assumptions on s and p and by (5.2), g(s ,  p) i8 bounded. Thbrefore (5.5) 
implies that 

on dVl, and so on Vi .  On the other hand, the inequality 

on V; follows from the Harnack inequality. Combining (5.6) with (5.7) we get 
Theorem 1.3. B 
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