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Abstract. Let (M,, SJnao be a Markov random walk whose 
driving chain (M,JnbD with general. state space (9, G) is ergodic with 
unique stationary distribution 4. Providing n- S, + 0 in probability 
under PI, it is shown that the recurrence set of (S,- y (Mo)+ y (MJ)3).20 
forms a closed subgroup of R depending on the lattice-type of 
(M,, The so-called shift function y is bounded and appears in 
that lattice-type condition. The recurrence set d (S&,*, itself is aIso 
given but may look more complicated depending on y. The results 
extend the classical recurrence theorem for random walks with il.d. 
increments and further sharpen results by Berbee, Dekking and others 
on the recurrence behavior of random walks with stationary increments. 
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I. Irntroduction and main results. Given a random walk (Sn),+, with 
So = 0 and i.i.d. real-valued non-degenerate increments XI,  X,, .. . such 
that n-' S, 5 0, it is well-known that its associated set % of recurrence points, 
defined as 

(1.1) % ~ ( ~ ~ ~ : S ~ ~ ( ~ - ~ , ~ + ~ ) i n f i n i t e l y ~ f t e n f ~ r a l l ~ > O ) ,  

as. forms a closed subgroup of R (see e.g. [3]). More precisely, '3 as. equals 
R or dZ for some d > 0, depending on whether XI has lattice-span d = 0 
(nonarithmetic case) or d~ (0, a) (d-arithmetic case), respectively. Our purpose 
is to show a corresponding result for driftless Markov random walks (MRW) 
which are introduced below. This comprises the class of driftless random walks 
with stationary increments as will be explained below. 

Let (9, 6) be a measurable space with countably generated a-field 6 ,  
P: Y x (6@B) + [O, I] a transition kernel, 23 the Bore1 a-field on R, and 
(M,, X,),,, an associated Markov chain, defined on any probability space 
(Q, d, P), with state space YBR,  i.e. 

P(Mn+l iA,  X , + , E B  I M,, X,) = P(M,,  A x B )  a.s. 
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for all n 2 0 and A 6 G, BE 23. Thus (M,+ X,+ depends on the past only 
through M,, and M = (MJnB forms a Markov chain with state space Y and 
transition kernel P (x, A) B(x, A x R). Given M, the X,, n 2 0, are condi- 
tionally independent with ' 

P(X,EBJM)= Q(M,-l, M,, B) a.s. 

for all n 2 1, BE b and a kernel Q: Y2 x 23 + [O, 11. Throughout we assume 
that a canonical model is given with probability measures Pa, s E 9, on (a, d)  
such that P,(Mo = s, io = 0) = 1. For any distribution -v on Y put 
P, (.) = j, P, (-) v (ds) in which case (Mo, Xo) has initial distribution v@ao  
under P,, where 60 is Dirac measure at 0. 

The MRW associated with (M,,  X,),, , is defined by (M,, Sn)nBO, where 
So = 0 and S, = XI + . . . + X, for each n 2 0. We assume that M has a unique 
stationary distribution {, whence the chain is ergodic under PC in the usual 
sense that any a.s. invariant event A E  Em, i.e. 1, = lA o 0 Py-as., 0 the shift 
operator on Ym, has probability 0 or 1 under Py. Further we assume that 

which holds in particular when EcXl = 0. 
Next let us define the lattice-type of (M,,  S,),,,, which is more com- 

plicated than in the i.i.d. case. Following [9], the latter as well as B are called 
d-arithmetic if d > 0 is the maximal number for which there exists a function 
y: Y + [0, d), called a shift function, such that 

where t @ P  is given through c @ P  (A x B) = j, P (x, B) { (dx) for A, B E Y ,  If no 
such d exists, (M,,  Sn)nBO and P are called nonarithmetic. Note that d may also 
be m, namely when 

(1.4) X, = y (M, - 1) - y (M,) PS-a.s. 

for all-n 2 1 and some measurable y. This is called null-homology in [a and 
corr3sponds to the trivial case X, = 0 for random walks with i.i.d. increments. 

Although trivially obtained, it is important to note that every random 
walk (Sn)nBo with ergodic stationary increments XI,  X2, . . . and property (1.2) 
may be investigated in the previous framework. We must simply define an 
appropriate driving chain of that random walk, the canonical candidate being 

In view of our purpose to describe the recurrence set of the possibly 
occurring shift function in the arithmetic case is somewhat annoying because it 
means that the S, "live" on the same lattice only modulo a time-varying adjust- 
ment with respect to that shift function. On the other hand, one can overcome 
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this problem by observing that, given a d-arithmetic MRW (M,, S,),,, with 
non-vanishing shift function y, its transformation (M,, S,+y (M,)-y (M,)),,, 
forms again a d-arithmetic MRW but with shift function 0 .  It also satisfies (1.2) 
if and only if the former does. 

Our fist  result shows that the dichotomy B = O (transience) or = closed 
subgroup of R (recurrence) extends from the i.i.d. case to general MRW 
with ergodic driving chain and shift function 0 if d-arithmetic for some d > 0. 
Further it gives a corresponding dichotomy for the renewal measures Us of 
(Sn)n3 under the P,, S E  Y, defined as - 

u,(A) ~ E , N ( A )  = P(S,EI), 
n B O  

where N ( A )  Zn,, llssrl. A E B. Finally, put Lo = R, L, = dZ for d s(0, oo), 
and Em = (0). 

THEOREM 1. Let (Mn, S,),,, be an MRW with lattice-span d~ [0, a), shijt 
finction 0 in the case d > 0, and driving chain (M,JnaO having a unique stationary 
distribution t. Denote by 3 the set of recurrence points of (S,JnB O ,  as de$ned 
in (1.1). Then either % = L, or 3 = t3 PC-as., and the following assertions are 
equivalent: 

(a) (M,, S,), is transient (% = GJ PC-u.s.). 
(b) P,(N(I) < co) = 1 for r-almost all s E 9 and all bounded intervals I. 
(c) There is a 5-positive set Y o  and a bounded open interval I, I n Ld # 0, 

such that U,(I) < co for all s E Yo. 
(d) Us ( I )  < oo for r-airnost all s E 9' and all bounded intervals I. 

Adding the condition (1.2) to the assumptions in Theorem 1 yields the 
following recurrence theorem which is the canonical extension of the result for 
random walks with i.i.d. increments stated at the beginning of this section. 

THEOREM 2. Let (M,, S,),30 be as in Theorem 1. Then (1.2) implies 
% = L, PS-as. (and thus P,-a.s. for c-almost all s E 9). 

In order to describe % in the d-arithmetic case with non-vanishing shift 
function y, denote by W ,  the set of points of increase (support) of P:'~"', i.e. 

'Xy {XE[O, dl :  P,(Iy(Mo)-XI < E )  z 0 for all E > 01. 

Clearly, %, is closed and PS ( y  (Mo)  E W,) = 1. 

THEOREM 3. Let (M,, Sn)nBO be as in Theorem 1 with d ~ ( 0 ,  co), but with 
non-vanishing shijt function y. Then 

In particular, PC (dZ c %) = 1 . 



Remarks.  (a) It is interesting to note and obvious now that even in the 
d-arithmetic case we can have 3 = IR PC-as., namely for V, = [0, d). 

(b) As a trivial consequence of Theorem 2 or 3 we obtain 

(1-5) lim i d s ,  = - co and lim sup S ,  = CQ PC-a.s. 
n + m  n* m 

(c) Providing Ec IX1[ < cc in Theorem 1, one can show by slightly rnodify- 
ing an argument by Lalley [6] (see his Proposition 6)  that (M,, Sn)n20 is null- 
-homologous (see (1.4)) if and only if sup,,, Eg ISnI < KC. 

(d) All previous results remain valid if the driving chain (M,),,, merely 
has a a-finite stationary measure 5 which is unique up to multiplicative con- 
stants. The basic technique for proving the extensions is to consider the MRW 

SBn(EJ)n30, where am(&) denotes the n-th visit of the driving chain to 
a set Ye P,C 9' such that < (YJ < co and Y, r Y as E 10. We omit further de- 
tails. 

(e) Omstein [7] and independently Stone [lo] showed that a random 
walk (Sn)nBO with i.i.d. increments XI, X2, .. . is recurrent if' and only if 

where yl denotes the characteristic function of XI. A slightly weaker equivalent 
condition was given earlier by Chung and Fuchs [4]. We conjecture that an 
MRW (M,, S,J,>, whose driving chain has a unique stationary distribution 
9 is recurrent if and only if 

where cp (s, t )  Es exp (itX,). 

2. Proofs. Throughout this section we denote by (M,, S,),>, an MRW 
satisfying the assumptions of Theorem 1. Since (M,, X,+l),B, is stationary 
under Pry we may extend it to a doubly infinite sequence (M,, X,, Notice 
that we have thus altered the definition of X, which is generally no longer 
equal to 0 under PC as stipulated in the Introduction. Put S - .  = -Ci:X-, 
for n < 0, i.e. Sn+ = S, +X,+ , for all n E Z .  The time reversal 

is again stationary and Markovian with kernel 

where p(x, y) denotes the G2-measurable (since 6 is separable) 9-density of 
Ptx, dy). Consequently, (M:,  S,*)nEZ, where S$ -S-,, is also an MRW whose 
driving chain M* = (M,*),, has the transition kernel P* (x, dy) = p 01, x) 5 (dy) 
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and the same unique stationary distribution $. We call (M:, St),, the dual of 
(M,,  Sn),,= and note that they have the same lattice-span and shift function and 
that either both or none of them satisfy the condition (1.2). This follows im- 
mediately from 

for all ~ E Z .  Finally, assume that N* and U,* have the obvious meaning. 
Our presentation follows to a far extent the one in Breiman's book [3] for 

the i.i.d. case. However, the loss of independence makes a number of crucial 
arguments more difficult. Moreover, we make use of the following result from 
Berbee's [2] thesis (see his Corollary 2.3.4): 

PROPOSITION 1. Either PC ( N  ( I )  < co) = 1 for all bounded intervals I or 
PC (N ( I )  E (0, CQ j )  = 1 for all intervals I .  

PROPOSITION 2. If  d denotes the lattice-span of (M, ,  S,JnBO, then either 
% = L d  or %=a.  

Proof.  % is clearly closed. Put BE(x)  = (x-e, X + E )  and call x E R  a pos- 
sible state if 

for all E > 0. Let 9' be the collection of all possible states. We claim that X E  % 
and Y E S  implies x -  Y E  '$2. For the proof fix any E > 0 and observe that 
a [-positive set YO exists such that En a 2-" P, (S -, E BE (- y)) > 0 for each 
~ € 9 ~ .  It follows that 

0 = Pr (N (B, (x) )  < a) = PC (S, E BE (x) finitely often) 

2 2-k  PE(Sk E B,(y), Sk+, -Sk E B,, (x - y) finitely often) 
k 2 1  

= C Z T k  J pr ( sk  E B, (y) ,  Sk+*-Skf  B2, (X - y) finitely often 1 M~ = S) [ (ds) 
k 2 l  9 

and hence P, (N (B,, (x - y)) < a) = 0 for c-almost all s E Yo, i.e. 

p t ( ~ ( ~ 2 , t x - Y ) )  = m) > 0. 

Now use Proposition 1 to infer P, ( N  (BZ6 ( X  - y)) = CO) = 1 ,  i.e. x -  y E 93, since 
E > 0 was arbitrarily chosen. 
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If W is not empty, then x E '3 and W c 9' imply x- x = 0 E 3, which 
further gives - x = 0 - X  E 8. % thus forms a closed subgroup of R, i,e, 93 
equals R, dZ for some d > 0, or {O). The latter can obviously hold only if 
P,(X, = 0) = 1 .  If (M, ,  S,),,, has lattice-span d ~ ( 0 ,  a), we obtain % = k, 
because % =  L,, for some k 2 2 would imply PS(N ({x)) < m) = 1 for all 
x E L, - L,, and thus, by another appeal to Proposition I, P g  (N ( { x ) )  = 0) = 1. 
This, however, would further lead to PC (Sn E Lkd for all n 3 0) = 1, and thereby 
to a lattice-span greater than or equal to kd. By a similar argument, we obtain 
R = R in the nonarithmetic case. - 

PROPOSITION 3. Let d  be the lattice-span of (M,,  S,JnBO. If there is a bound- 
ed interval I  such that U f ( I )  = oo c-as., then % = L,. . 

Note as an immediate consequence that %*, the set of recurrence points 
of the dual walk (S,*)n30, always coincides with R. Indeed, W* = Ld gives 
UF(I) = oo < - a s  for some finite interval I, which in turn implies % = L,, 
by Proposition 3, and thus Us(]) = oo r-a.s. for some finite interval I .  
For the converse it smces to note that (Ma ,  Sn),Bo is the dual of 
(W, s:1nao. 

Proof, Suppose there is a finite interval 1 such that U,* (I) = a, for {- 
-almost all s E 9. It is no loss of generality to assume I = (0, 11 in the following 
argument. Obviously, Y (minus a 5-null set) can be split into two subsets 
YIP, and Y,,,, defined by 

Going on this way we obtain, for each rn 2 1, a partition 9'm,k, 1 < k < 2'", of 
Y (minus a l-null set) such that 

P I ( S : ~ I m , . ) =  P , ( S - n ~ - I m , k ) = m ,  I , , , E ( ( k - 1 ) 2 - " , k 2 - " I ) ,  
a 2 0  a 2 0  

for all s~ Yrn,,. Now fix rn, k and define the disjoint sets 

A o g { S n $ - I m , k  for all n2 I), 
def 

Aj = ( S j ~ - I m , k ,  S j+n$-Im,r  for all n2 11, j2 1 ,  

and observe that 
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For j >  1, 

Pg(A,) 2 P<(S,E - l m , k ,  ISjr,-Sjl 2 2-m for all n 2 1) 

2 Ps (ST E I,,,) P, (IS,I 2 2-" for all n 3 1) { (ds), 
Ym,k 

whence, by summing over j, 

P r ( N ( -  I,&) < ao) 2 j P,({S,I 2 2-m for all n 2 1) P,(S; ~I, ,dt(ds).  
9 m , k  j3 1 - 

Since the sum under the integral is infinite, we have 

Ps(lSnl 2 2-" for all n 3 1) = 0 

for <-almost all SEYI,,~. But m, k were chosen arbitrarily so that we obtain 

I (2.2) P,(IS,I 3 E for all n 2 1) = 0 
I 

I for c-almost all s E Y and all E > 0. 

. .  i Now consider the A, with I,,, replaced by B, (0) = -B,(O) with an 'arbi- 
trary E > 0. Then 

I 

Aj = Iim(Sj~B9(0), Sj+,$B,(0) for all n 3 1) 
a t e  

implies 

Pr(Aj) G P~(S~EB~(O) ,  ISn+j-Sj] 2 E-6 for a l l  n 2 1) 

= J P,(S~*EB~(O))P,(IS,I 2 E - 6  for all n 3 l)t(ds) = 0, 
9 

that is Pc(Aj) = 0 for all j 2 1. Use (2.2) directly to get 

Pc(A,) = P9(1S,I 2 E for all n 2 1) = 0. 

Thus we have shown that P<(N ( ~ ~ ( 0 ) )  = co) = 1 for every E > 0, that is 0 E %. 
, Proposition 2 finally gives 93 = L,. 

Proof  of Theorem 1. The first assertion of Theorem 1 follows from 
Proposition 2, whence it only remains to show the equivalence of (a) through (dl. 
The implications (d) * (a) * (b) (c) are obvious, the non-trivial step thus 
being only (c) * (d), which we now prove by contradiction. 

Suppose there is a 5-positive set Yo and a bounded interval I such 
that Us (I) = m for all s E Yo. We must show that % # 0. Choose an arbi- 
trary t-positive subset C of Yo, put < (. [ C) = 5 (. n C)/t (C), and consider 
the MRW 

9 - PAMS 21.1 
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where c, = c,(C) denote the successive visit times of M to C. The imbedded 
chain M' = ( e ) , 2 0  has the unique stationary distribution t(. I C) and 
Es(.lcla, = l/C(C) < coy where, by Birkhofs ergodic theorem, 

Let K(- I C) = CnB0 P , ( ( e ,  Sf) E.) be the Markov renewal measure of 
(e, under P, and Us ( - I C )  = L,, P, ($ E .) its second marginal. It 
follows from the above assumption and by the strong Markw property that 

and therefore (use Ud- I Yo) 3 Us (. I C )  for all s E 9' and C c 9,) 

for all r-positive C c Yo. From this we conclude that U,(l 1 Yo) = co for 
t-almost. all s€Y0, which together with Proposition 3 shows that the recur- 
rence set of (S,"D)n30, and thus also of (Sn)n30 itself, is non-empty. 

Theorem 2 follows immediately when combining Theorem 1 with the 
following proposition, a proof of which may be found in 151 (see also the 
references therein). It is based on a clever subadditivity argument and an ap- 
plication of Kingman's subadditive ergodic theorem. 

FROPOSITION 4. If (1.2) holds true, then Pt (N (~~(0)) = co) = 1 for all 
E > 0, i.e. OE%. 

We must finally prove Theorem 3. 

P r o  of of The orem 3. Without loss of generality suppose d = 1 and 
define for k 2 2 

V, (k) = { y  E Q: 1 y - xl < 1/2k for some x E V,) , 

and furthermore 

Fix any k 2 2 and y €V,(k) and put C = y (B,,, (Y)). Notice that 

> pY[Mo) B S (c) = Pi'M0' ( B I , ~  ty)) , ( l j 2 k  (x)) > 0 for some x E %?,, . 
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Hence M visits the set C infinitely often PC-as. and we can consider the MRW 
(M;, Sanaa defined in (2.3), where ME = Mo and SE = So = 0. Under a proba- 
bility measure I" equivalent to PC (Palm duality, see e.g. [Ill), the sequence 
(M,3,,, is stationary with P'(MI;'E - )  = { ( a  I C). It follows by Lemma 1 below 
that (N, is again 1-arithmetic with shift function y. Consequently, by 
Theorem 2, 

~ ~ ( ~ - . y ( ~ ~ ) + y ( ~ ~ = m i . o . ) = l  for a l l m ~ Z ,  

which in turn yields 
- 

pc (3: E Bzlk (y (M*) - x + m) in.) = 1 for all m E Z ,  

because y (M:))E BIIkb) c B21k(~) for each n 3 1. But y and k were arbitrarily 
chosen and each (St).> is a subsequence of (S,,),,,. Hence R contains 

On the other hand, the recurrence set of (Sn- y (Ma)+ y (M,)),,,~ being dZ, the 
recurrence set % of (S,),,, itself cannot be larger than 

iy (M,) - x + rn: m E Z and x a recurrence point for (y (M,)), , ,) PC-a.s. 

and it follows from the ergodicity of (M,),30 that the Iatter set coincides with 
the one in the previous display Iine. Finally, Pc(dZ c a) = 1 is a trivial con- 
sequence of PC ( y  (M,) E %,) = 1. L 

It was crucial for the proof of Theorem 3 that, for any t-positive set C, 
(MI;', is of the same lattice-type as (M,, Sn)nao itself. This is not as 
obvious as one might think at first glance and thus shown as a separate lemma. 

LEMMA 1. Let (M,, Sn)nao be an MRW as in Theorem 1 with lattice-span 
d E [0, CQ) and shiftfunction y in the case d > 0. Then, for each 5-positive C E G, the 
imbedded MRW (M:, mnao has the same lattice-span and the same shijtfinction. 

P r o  of. Suppose that, for some t-positive C, (e, Sanaa is &-arithmetic, 
d > d, with shift function y'. Without loss of generality let d' = 1 and y' = 0. Hence 

ES(.lc) exp (2niSf) = E S ( . l ~ ) e x ~  (2niS,,{~,) = 1- 

Let q be a geometric (1/2)-variable on the positive integers, which is indepen- 
dent of (M,, Sn)nBO and en = inf (k 2 q + n: Mk E C). We claim that, for suita- 
ble 9: Y2 + [0, I), 

(2.4) E (exp (2.niS,) I Mo, M,) = exp (2x22 (Mo, M,)) PS-as. 

Indeed, by conditional independence. of S,, S, + , - S, and Sen - S, + , given 
Mo, M,, M,+,  and Me,, we obtain, for each n 2 0, 

1 = ES[-lc) exp (2niS,3 

= En.,q (E ( ~ X P  (2niSn) I Mo , Mn) E (exp (2ri (&+, - S.)) I M.3 M.+ ,) 
x ~(ex~(2ni(s,.-s.+# I Mn+,, MeJ). 
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Thus 

I E  (exp (2ni (s,,,,, -sJ) I M, = x, M.,, = y ) l  = 1 PiF;f"m+d-a.s. 

Then the equality (2.4) follows from 

E ( ~ x P ( ~ ~ ~ ( s . + , - - s , , ) )  I M ,  = x, M.+. = Y) 
= E (exp (2ni S,) I Mo = x , M ,  = y) Pky~fM" + 1)-as. 

and the fact that PiMo,M~) and ~ n , 0 2 - n F ~ ~ ~ ~ + ~  , are equivalent measures 
(ergodicity). As a consequence, - 

(2-5) E (exp (2xiSA I Mo, M,) = exp (2ni9 (Mo,  M,)) PC-a.s. 

for all n > 1, because 

1 = Et exp (hi (8, - 8 ( M ,  , M,))) = 1 exp (2xi (S, - S (M,, M,))) dpc 
8 3  1 (q=n} 

Further the equality (2.5) can easily be extended to arbitrary stopping times 
z 2 1 for M = (Mn)n30, i.e. 

E (exp (2,rciS,) I M,, M,) = exp (2x8 (M, ,  M,)) PC-a.s. 

Indeed, PC (S,  - 9 (Ad,, M,) E Z for all n 2 1) = 1, by (2.5), implies 

Notice next that, for each n 2 1 and each stopping time T > n, by con- 
ditional independence of ST-S,  and S, given Mo, M ,  and M,, we obtain 

and therefore 

as well as (put z = n+l) 

for all n  > 1, where sz means equivalence modulo integers. 
Now let ( C : ( C ) ) , ~ ~  denote the sequence of successive visit epochs af- 

ter n of the chain M to the set C, in particular &(C) = c,(C) for all m 2 1. 
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By assumption, S ( M , ,  M,,(C)) = 0 for all n, m. Consequently, from (2.6) we 
infer that 

9 (MO, hf,J + 9 (M., M.k(c)) Z P,.lo-a.s. 

for all m, n. But 9(., .)E[O, 1) implies that Pc(.lq-a.s. 

8 W o  , Mn) if 9 (M, ,  M,) = 0, 
(2.8) 9 (Mn Y M,k(c),) = 

l - g ( M o ,  M 3  if 9 t M 0 ,  M,)E(O, 1) 

for all m, pa. In any case we conclude that 
- 

dcf j+f for each n 2 0. Put &(- I C) = and use time-homogeneity to see further 
that 

1 l N  
P , l n  ( lim - C 8(Mn, Mc_,d exists) = Pcm(.lc) ( lim - 9 (Mo, M 3  exists) 

~ - r m l \ r ~ , ~  N + ~ N , , , = ~  

for all n 3 0 .  Since g and C,02-(n+ 5,c I C) are equivalent distributions, it 
follows that 

exists PC-a.s. Now go back to (2.8), sum over m = 1, ..., N to get 
I N 

which can be summarized hs 

9 (M, ,  M,,) = O ( M , )  Pa.lc)-a.s. with B(x) (1 - 0 (x)) ~ ( o ( ~ ) > o ) .  

Finally, this gives in (2.7) 

9  (M,,  Mn+ 1) z g ( ~ n  + ~ ) - d ( ~ n )  P<(.ICI-~.S- 

for all n 3 1 or, equivalently, 

9 ( M , ,  M I )  =z O ( M , ) - ~ ~ ( M , )  PS-a.s., 

an obvious contradiction to the assumption that (M,,  Sn)n>o is d-arithmetic for 
some d < 1.  
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