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Abstract. Under the geometric compounding model, we f i s t  
investigate the relationship between the compound geometric distri- 
bution and the underlying distribution, including the preservabon 
of the infinite divisibility property. An interesting upper bound for the 
tail probability of the compound geometric distribution is provided by 
using only the mean of the underlying distribution. Secondly, we apply 
the obtained results to understand better the 9-class of life distribu- 
tions. In particular, we strengthen a surprising result of Bhattacharjee 
and Sengupta [ S ]  and show that there are life distributions F E 2 with 
the following properties: 

(i) the support of F consists of countably infinite points, 
(ii) the coefficient of variation of F is equal to one, and 
(iii) F is not in the HNBUE class (the harmonic new better than 

used in expectation class). 
Finally, we apply geometric compounds to characterize the semi- 

-Mittag-Leffler distribution and extend a known result about the ex- 
ponential distribution. 
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1. Introduction. Consider a sequence of independent non-negative random 
variables X,, n = 1,  2,  . . ., with common distribution F. Assume N,, indepen- 
dent of (X,),"=l, is a geometric random variable with parameter p ~ ( 0 ,  I), 
namely, P, ( N ,  = n) = p(l  -p)"-I for n = 1, 2 ,  . . . Then we say that the ran- 
dom summation SNp = z f : , X n  is a geometric compound of the sequence 
(X,),"=l, and that its distribution, denoted by F,, is a compound geometric 
distribution. Such a compounding mechanism is closely related to the rarefac- 
tion (or the thinning version) of a renewal process, and has practical applica- 
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tions to the trafic theory, reliability and ecology problems involving rare 
events (see, e.g., Kovalenko [IS], [I61 and Gertsbakh [8]). In actuarial ap- 
plications, the compounding variable Np is interpreted as the number of ,claims, 
and the sequence {X,)F=l as the costs of the claims. The summation SNp is the 
total amount of claims (or the aggregate claim amount) paid by a company (see 
Rolski et al. [26]). For more applications of geometric compounds, see SzekIi 
[29], pp. 31-33, and the references therein. 

In the next section we investigate the relationship between the compound 
geometric distribution Fs and the underlying distribution F. An interesting 
upper bound for the tail probability of the compound geometriE distribution is 
provided by using only the mean of the underlying distribution. We introduce 
the geometric compounding operator on the class of all Laplace transforms of 
non-negative random variables, and investigate the fundamental properties of 
this operator, including the preservation of the hplace transform ordering. In 
Section 3 we apply the obtained results to understand better the 2'-class of life 
distributions. In particular, we strengthen a surprising result of Bhattacharjee 
and Sengupta [5] and show that there are life distributions F E ~  with the 
following properties: 

(i) the support of F consists of countably infinite points, 
(ii) the coeficient of variation (CV) of F is equal to one, and 
(iii) F is not in the HWBUE class (the harmonic new better than used in 

expectation class). 
An absolutely continuous distribution F €9, which shares the properties 

(ii) and (iii), is also given. Finally, in Section 4 we apply geometric compounds 
to characterize the semi-Mittag-Lefller distribution and extend a known result 
about the exponential distribution. 

2. Relationship between the compound geometric distribution and the under- 
lying distsibmtioa Consider the rescaled geometric compound S, = pS,,, 
p ~ ( 0 ,  1). Let X be a non-negative random variable distributed as XI, that is, 
F ( x )  = P, (X < x) for x 2 0. Then S, has the same mean as X, namely, 
E(S,) = EX. As for higher-order moments of S ,  we have the following result, 
where Var (X) and CV (X)  = (Var (X))l12/(EX) denote the variance and the co- 
efficient of variation of X, respectively. 

LEMMA 1. Let p ~ ( 0 ,  1). Then, under the geometric compounding model, 
(i) pk-I E (Xk) < E (St) < pk E (Nt) E (Xk) for each integer k > 0. 

Assume, in addition, E (X2) < m. Then 
(ii) Var (8,) = pVar (X) + (1 - p)   EX)^; 
(iii) E (Si) - 2 (E (S,))' = p [E (X2) - 2 (EX)']; 
(iv) Var(S,) 2 Var (X) if and only if CV(X) < 1, pro~ided EX > 0; 
(v) CV(Sp) = 1 if and only if CV(X) = 1. 
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P r  o of. For convenience, let us put q = 1 - p ,  p, = pqn- and N = N,. 
(i) For integer k > 0, we have 

On the other hand, by the moment inequality: E (X? < (E (xL))~'~ for 0 < r c k, 
we have E [E;=, xjY] < nk E ( ~ $ 1 ,  and hence 

Part (i) follows from the inequalities (I), (2) and the fact that EN = l/p. 
(ii) Note that Var (N) = q/p2. Then part (ii) is an immedia-te consequence 

of the following identity: 
N 

var ( X,) = ( E N )  Var (X) + (Var (N))  (EX)', 
n - 1  

which can be verified by a straightforward calculation. 
(iii) Part (iii) is equivalent to part (ii) because E (S,) = EX, 
The remaining parts (iv) and (v) follow immediately from part (iii). Thus 

the proof is complete. 

Re mark  1. (a) Lemma 1 (i) implies that E ( s ~ )  < KJ if and only if 
E (xk) < co. 

(b) In view of the proof above, the inequalities (1) and (2) hold true not 
only for a geometric random variable but also for any positive integer-valued 
random variable N. 

(c) Lemma 1 (iii) implies that CV (S,) - 1 = p [CV (X) - 11 if EX > 0, and 
hence CV (S,) < 1 or CV (S,) 2 1 according to whether CV(X) 4 1 or CV (X) >, 1. 

To estimate the tail probability of the compound geometric distribution 
F,, Rolski et al. [26], Theorem 6.2.4, suggested an upper bound for 1 -F ,  (x) in 
terms of the Laplace transform of the underlying distribution. However, this 
bound, as remarked by Rolski et al., is hard to handle, and is too complicated 
to be restated here. In the next theorem we shall give another upper bound 
which involves only the mean of the underlying distribution F. On the other 
hand, let N,* = N ,  - 1; then the random summation SNg is also called a geo- 
metric compound in the literature (where S N f ,  = 0 if N,* = 0). For comparison, 
we shall give the corresponding result of SG as well. For each p > 0, define the 
distribution H,  by 

Then we have the following result (for extensions sed Remark 3 (b) belbw): 
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THEOREM 1 .  Let p ~ ( 0 ,  1), and let F be a distribution with support 
SF c [ O ,  a) and mean p E (0, a). Then 

(i) the compound geometric distribution F ,  of SNp satisfies 

(3) 1 - s ( 1  1 - H P  ( 1  for x 2 p / p ;  

(ii) the distribution Fs* of SN*, satisfies 

(4) 1 - F ( x 1 - x )  for x > p * p ( l - p ) / p .  
Proof. Recall that E (S,,) = pip and E (SG) = p (1 -p ) /p ,  Then the in- 

equalities (3) and (4) follow immediately from Lemma 2 below. 

LEMMA 2. If F is a distribution with support SF c [O, CO) and mean 
PE (0, m), then 

Proof, Denote by L the Laplacd-Stieltjes) transform of F, and recall the 
truncation inequality: 

e 
i - ~ ( i / ~ ) ~ - S ( i - ~ ( s ) ) d ~  for x > O  

xo 

(see Rossberg et d. [27], p. 62). Here is a detailed proof for this inequality (for 
its extension see Remark 3 (b) below). Using Fubini's theorem, we write, for 
x >o, 

in which the integrand of the last integral is a positive and increasing function 
in xy. Then applying the truncation inequality (6) and the fact that 
L (s) 2 kxp(-p) for s 2 0 (see Lemma 3 (i) below), we obtain the required 
result (5). The proof is complete. 

Re m a r k 2. In Lemma 2 , l -  F (x) 6 p/x < 1 - H, (x) for ~ ~ c i e n t l y  large 
x, and, as shown below, the distribution H ,  is interesting in itself. Let X be 
a non-negative random variable with finite mean p > 0, and let 2, be another 
random variable obeying the distribution H,. Then Lemma 2 asserts that X is 
smalier than 2, in the stochastic order, and hence E(XB) < E ((Z,)B] for all 
p > 0. On the other hand, H, is heavy-tailed and the tail 1 - H ,  (x) is regularly 
varying at infinity of index ol = -1. Namely, for each y > 0, 
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In particular, E [(z,)B] < GO or E [(z,)B] = GO aocording to whether < 1 
or 1. Set K = l/Z1; then its density function is of the form 
k(x )  = ex-2 (1 -e-x-xe-x), x E (0, 1). Therefore 

an interesting identity for the transcendental number e. 

Let us compare Theorem 1 with some known results. For the distribution 
Fp of S,;, Brown [a obtained the following bound for 1 -Fp(x): 

1-Fs*(x) 6 exp -- +-, x 3 0, if E(X2) )< m, ( r L)) 1 y p  

where y = ~ ( ~ * ) / ( 2 p ~ )  and p = EX. As x + m, the bound above tends to 
yp/(l -p) > 0 while ours in (4) tends to zero. Therefore our bound is better than 
Brown's for estimating the tail probability of FSlp. AS for the tail probability of 
the compound geometric distribution Fs ,  Brown [6] considered some special 
classes of underlying distributions (e.g., the NBUE class) and gave upper 
bounds sharper than ours in (3). It is worth noting that our bounds in Theo- 
rem 1 above are valid as Iong as the underlying distribution F has finite mean. 
On the other hand, if F is subexponential (a heavy-tailed distribution which 
may have an infinite mean), then 

1-Fs(x)-(l-F(x))/p and 1 - ( x ) ( / p - ( I - )  a s x - + m  

(see, e.g., Embrechts et al. [7], p. 580). 
To extend the result of Lemma 2 (and hence of Theorem I), we need the 

following bounds for Laplace transforms. To the knowledge of the authors, 
Lemmas 2 and 3 (ii), although simple, appear for the first time. More general 
results are given in Remark 3 below. 

LEMMA 3. Let F be the distribution of a non-negative random variable X 
with finite mean p > 0. Further, assume that L is the Laplace(-Stieltjes) trans- 
form of F.. Then 

(i) L(s) 2 exp ( - ps) for s > 0. 
If, in addition, E(X2) < m, then 
(ii) L(s) 6 1 - spexp (-sE (X2)/(2p)) for s 2 0. 

Proof. Part (i) is an application of Jensen's inequality because, for each 
s > 0, the function g,(x) = exp(-sx) is convex on [0, a). To prove part (ii), we 
recall the equilibrium distribution F(,, of F: 

Suppose Xt l ,  is a random variable with distribution F(,, and denote by L(,, the 
Laplace transform of F(l,. Then we have E(X( , , )  = E(x2)/(2p) and 
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L(l, (s )  = (1  - L (s))/(sp) for s > 0. Applying Jensen's inequality to the equilib- 
rium distribution FI1 ,  yields Lll, (s) 2 exp ( - sE (X( l , ) )  fdr s 2 0 or, equivalent- 
ly, L(s) < 1 - s p e x p ( - s ~ ( X ~ ) / ( 2 )  for s > 0. This completes the proof. 

Remark 3. (a) We now give two more functional bounds for the t a -  
place transform L ( s ) .  For s 2 0 and for integer m 2 0, define the function 
g , ,  by 

" ( - s x y  
gs,m (4 = Z -- e-sx for x 2 o 

k = O  k! - 

(where O0 = 1). I t  is known that, for even integer m = 2n 2 2,.gS,,, 3 0 is a con- 
vex function on [0, co) (see, e.g., Hardy et al. [lo], p. 104). Therefore, if 
E ( x Z n )  < a, we have, by Jensen's inequality, E ( Q , ~ ,  (XI) 2 gS,~ .  (EX)  = gSyzn @) 
for s 3 0. Equivalently, for integer n 3 1, 

Clearly, both upper 'bounds for L (s)  are equal to 1 - ps + $ s2 E ( X 2 )  + o IsZ) as 
s -, 0'. The hrst bound (Lemma 3 (ii)) involves only the first two moments of F, 
while the second bound involves higher-order moments. On the other hand, for 
odd integer na = 2n + 1 2 1, g , , ,+  , d 0 is a concave function on 10, co). This 
implies that E (g , , , ,  (X)) < g , , , ,  (p) if E (X2"+') < m. Equivalently, for in- 
teger n > 0, 

(b) We are ready to extend the inequality (5). Let X be a non-negative 
random variable with distribution F and finite mean p > 0. If, in addition, 
E(Il2"'l) < GO for some integer n 2 0, then by (6) and (8 )  we have 

l ) k " ( ~ ( ~ k ) - p k ) ]  
(9) 1 - F ( x ) < e  for x > 0 .  

,=, ( k + l ) ! 2  

When n 2 1, the bound above is sharper than that of (5) for sufficiently large x. 
On the other hand, if E ( X 2 " )  < co instead, proceeding as in the proof of Lem- 
ma 2 we extend (6) to the following: 
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where g,,,, is defined by (7) and E (gs,2m (1)) = x ~ m o  {(- s ) ~  E(Xk)/k!]  - L (s) 
(which reduces to 1 - L (s) when n = 0). Then applylng Lemma 3 (i) to (10) 
yields for x > 0 

Both (9) and (11) reduce to the inequality (5)  when n = 0. 

Denote the Laplace transform of S, by 

PL, Cps) 
- 

(12) L , F  (s) = E ( ~ X P  ( -ssp)) = G N ~  (LF (PSI) = for s 2 0, 
1-(1 -P)LF(Ps) 

where GN, (2) = pz/(l- (1 - p )  z), z E [O ,  I), is the probability generating function 
of N,. We say that L , ,  is a geometric compounding transform of F (or of X), 
comparing to the Laplace transform LF of F. The mapping which maps L, to 
Lp,F will be denoted by Qp(LF) = LP,,, and is called a geometric compounding 
operator (GC operator). We shall Eurther investigate the properties of the com- 
pound geometric distribution through the GC operator 3,. Let V denote the 
cIass of all Laplace transforms of non-negative random variables. Namely, the 
class %' consists of all L, for which L, (s) = E (exp (- sX)) for s 3 '0, where X is 
a non-negative random variable with distribution F. The following result sum- 
marizes the properties of GC operator gP, which can be verified by using the 
relation (12). 

PROPOSITION 1. k t  p, ply p2 ~(0, 1) be three constants. Then 
(i) the geometric compounding operator 3,: +? %? is one-to-one; 
(ii) the composite operator gP, o BPI = B,,,, ; 
(iii) 3, (L,) < B, (L,) if a d  only if L, 6 L,; 
(iv) limp,, (9, (L)) (s) = 1/(1+ ps) for s 2 0 ifand only if L(s) = 1 - ps + o (s) 

as s + O + ,  where p > 0 is a constant. 

Remark 4. (a) Proposition 1 (i) means that the geometric compounding 
transform L,,, uniquely determines the distribution F, a property also posses- 
sed by tlie Laplace transform LF. 

(b) Proposition 1 (ii) means that successive application of the GC opera- 
tors B,, and %,, is equivalent to the operator B,,,,. (In particular, 
9, o Bp = Bp2.) This is exactly the well-known result: two successive rarefac- 
tions of a renewal process can be replaced by a single rarefaction procedure. 

(c) Proposition 1 (iii) shows the preservation of the Laplace transform 
ordering under GC operation, a property to be used in the next section. 

(d) The sufficiency part of Proposition 1 (iv) is exactly the Rknyi limit 
theorem. The latter asserts that if the underlying distribution F (fixed, indepen- 
dent of p) has finite mean p, then, as p -t Of,  Sp converges weakly to an ex- 
ponential random variable with mean p (see, e.g., Kalashnikov [12], p. 3). 
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Recall that S,(= pSNp) and X are equally distributed if and only if X has 
an exponential distribution (including the degenerate distribution at zero) (see, 
e.g., Azlarov et al. [2], Arnold [I], and Azlarov and Volodin [3], p. 79). We 
rewrite this result in terms of the fixed point of GC operator, and at the same 
time offer a somewhat simpler proof (for related results see Theorem 2 below 
and Lin and Hu [22]). 

PROPOSI~ON 2. Let p ~ ( 0 ,  1) and let gP: %? + %' be the geometric cow- 
pounding operator de$ned by B,(LF) = L,,,. Then B,(Lp) = Lp if and only 
if Lp (s) = 1/(1+ ps) for s 3 0 and for some fixed constant p 2 0. 

P r o  o f, The sufficiency part is trivial. To prove the necessity part, suppose 
that g,(L,) = L,. Then we have 

Define the function g (s) = l/LF Is)- i for s 3 0, and rewrite the equality (13) as 
g(s) = g (ps)/p for s 2 0. Then it implies that for s > 0 and n 3 1 

Note that, by definition of the function g, the limit g' (O+) = lim,,, + g' (s) exists 
and has a non-negative value -Lk(Of) (being finite or infinite). On the other 
hand, applying the Mean Value Theorem and letting n + co in the equality (14), 
we have g (s)/s = g'(O+) for s > 0. This implies that the limit g'(Of), denoted 
by p, should be finite, and hence L,(s) = l/(l +ps) for s 2 0. This completes 
the proof. 

Although the class of self-decomposable distributions is not closed under 
geometric compounding (Szekli [28]), in the next result we are able to show the 
preservation of in6nite divisibility property under geometric compounding. 
Note also that there is no restriction on the support of the underlying dis- 
tribution F. 

PROPOSITION 3. Let p ~ ( 0 ,  1) and let F be an in$nitely divisible distribution. 
Then the compound geometric distribution Fs of SNp is in$nitely divisible. 

P r o  of. Let f and g denote the respective characteristic functions of F and 
F* Then 

pf It) 
(t) = G N ~  (f (t)) = (t) e f (t) h (t) for all real t, 

where h(t) = p/{l-(1 -p) f (t)) is an infinitely divisible characteristic function 
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(see Lukacs [23], p. 320). Therefore the product function g = fh  is also in- 
finitely divisible (see, e.g., Lukacs [23], p. 109). The proof is complete. 

3. Applications to the 9-clrsss of life distributions. In this section we shall 
apply the above results to the $8-class of life distributions. Let F be the dis- 
tribution of a non-negative random variable X with finite mean p ~ .  Then we 
say that the life distribution F belongs to the 9 - c la s s  if 

m 
PF 1 e-""(1 -~ (x ) )dx  2 - for s 2 0 

0 1 + SPF - 

and that F belongs to the HNBUE class if 

For convenience, the degenerate distribution at the point zero is also said to be 
HNBUE. RecalI that the HNBUE class is a subfamily of the 9-class and that 
the relations (15) and (16) are equivalent to the following relations (17) and (IS), 
respectively: 

- ~ ~ ~ ( s )  for ~ 2 0 ,  . L F ~  - 

m m 

(1 8) j '( l-~(x))dx<j(1-G,(x))dx for t 2 0 ,  
t 8 

in which G, denotes the exponential distribution with mean ,u = pF, and 
Go denotes the degenerate distribution at zero. For other properties of the 
9-class and of the HNBUE class, see, e.g., Klefsjo [13], 1141 and Lin 1201. 

To understand better the 9-class of life distributions, Bhattacharjee and 
Sengupta [5] (henceforth referred to as BS [5]) gave a surprising two-point 
distribution, denoted by F,,, which has the following properties: 

(i) the coefficient of variation of Fbs is equal to one, and 
(ii) F,, is in the 9-class but not in the HNBUE class. 
The former property (i) implies that the equality CV = 1 is not sac ient  to 

characterize the exponential distribution within the 9-class, and the latter 
property (ii) shows that the 9'-class is strictly larger than the HNBUE class. In 
particular, consider a random variable Xbs defined by P,(X,, = 0.3) = 25/29 
and P,(X, = 1.75) = 4/29 (namely, take a = 0.3, b = a29/6 = 1.45 and 
a = 4/29 in Example 3.1 of BS [5 ] ) .  Then BS [5] proved that the two-point 
distribution Fbs of Xbs belongs to the 9-class and that the CV of Fbs is equal 
to 1. The latter implies that Fbs is not IZNBUE because the equality CV = 1 
characterizes the exponential distribution within the HNBUE cIass (see Basu 
and Bhattacharjee [4]). Note that the above-mentioned properties (i) and (ii) 
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of Fbs are scale invariant in the sense that, for any constant c > 0, the dis- 
tribution of cXbs also shares the same properties with Fb,. 

It is natural to ask the following question: Is there any infinite-point di- 
screte distribution that shares the same properties (i) and (ii) with the two-point 
distribution Fk? As stated below, with the help of the geometric compounding 
model the answer to this question is positive. Therefore, the life distributions 
F E  dP sharing the same properties with Fb, are perhaps more prevalent than it 
is commonly expected. 

COROLLARY 1. Let p~ (0, 1) and let X be the random variabie Xbs defined 
as above. Then CV (3,) = 1 a d  the distribution of S, is in the 9-class but not in 
the HNBUE class. 

Proof, The result follows immediately from Lemma 1 (v), Propositions 
1 (iii) and 2 and the fact that the equality CV = 1 characterizes the exponential 
distribution within the HNBUE class. 

In order to construct an absolutely continuous distribution sharing the 
same properties with F,,, we need the following 

LEMMA 4. Let XI and X2 be two independent random variables with 
EXl = EX2 # 0 and let CV (1,) = CV (X,) = I. Assume further that B, indepen- 
dent of (XI, X,), is a BerwuZli random variable with parameter p E (0, 1). Then 
the coeflcient of variation of X3 E BX1 +(I - B) X2 is equal to one. 

Proof. A straightforward calculation shows that E X 3  = E X ,  and 
E(X:) = E(X:). Therefore CV(X,) = 1 because CV(X,) = 1. The proof is 
complete. 

COROLLARY 2. Let Fbs be the distribution defined as above, and let Glj2 be 
the exponential distribution with mean 1/2. Assume further that p E (0, 1) and 
H = pFb,+(l -p)Gl12. Then 

(i) the coefJicient of variation of the absoIutely continuous distribution H 
is equal to one; 

(iij H is in the 9-class, but not in the HNBUE class. 

Proof. Part (i) follows from Lemma 4. To prove part (ii), note first that, 
for F1, F, E 2 with the same mean, the convex combination pF + (1 - p) F2 of 
PI and P2 also belongs to the 9-class. Part (ii) then follows from the fact that 
the equality CV = 1 characterizes the exponential distribution within the 
HNBUE class. 

4, Applications to the semi-Mittsag-killer distributioeas. In this section we 
shall apply geometric compounds to characterize the semi-Mittag-hmer dis- 
tribution defined below. Let F be the distribution of a non-negative random 
variable X. Then we say that F is a semi-Mittag-Lefjler distribution with ex- 
ponent a ~ ( 0 ,  11 if its Laplace transform is of the form 

(19) L P ( s ) = ( ~ + Q ( s ) ) - I ,  s 2 0 ,  
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where y satisfies the functional equation 

for some constant b ~ ( 0 ,  1) (see Pillai [24] or Jayakumar and Pillai [ll]). We 
fist  have the following observations on the Laplace transform Lp defiued by 
(19) and (20): 

(A) For the special function q (s) = say L, reduces to LFa (s) = (1 + s") -", 
s 2 0, which is the Laplace transform of a Mittag-Leffler distribution Fa. 
Gnedenko [9] might be the first one who investigated the Laplace transform 
LFa. For properties of Fa, see Pillai [25] and Lin [21]. 

(B) For the special case a = 1, LF reduces to 

(21) L,(s) = (I +ps) - l ,  s 2 0, for some fixed constant p 3 0, 

which is exactly the Laplace transform of an exponential distribution. To see 
this result, it suffices to note that from (20) we obtain 

r l (4  s) tlw 06-=-- - ... - - - 
s bs 

)t 'b"s)<m fo reachs>Oand  for n > l ,  
b" s 

the last term converging to q1(0+) = - Lk(0') = p (the mean of F )  as n + c~ 
(see, e.g., Lin [17], Lemma 2). This implies that q (s) = ps for s 2 0, and hence 
the relation (21) holds. 

(C) Let h (x) = q (e")lex for x E (- m, m). Then we can rewrite L, in the 
form 

L , (~)={ l+s~h( logs ) ] -~  for s > 0 .  

Note that the function h is infinitely differentiable and with period -log b (this 
cIarifes the statement of Jayakumar and Pillai [ll] in Lemma 2.1). 

Using a stationary first-order autoregressive process Jayakumar and Pillai 
[ll] gave a characterization theorem for the semi-Mittag-Leffler distribution. 
We shall now give another characterization result via the stability of geometric 
compound- (for related results about the Linnik distributions see Lin [18], 
1191). Use for equality in distribution. 

THEOREM 2. Let p E (0, 1). Then the stability relation 

holds for some constant a ~ ( 0 ,  11 if and only $XI has a semi-Mittag-Lefler 
distribution with exponent a ~ ( 0 ,  11 (and b = plla). 

Proof. Let LF be the Laplace transform of XI.  Then the relation (22) is 
equivalent to 

LFh- ' / "~)  = 
PLF (4 for s 2 0 .  

l-(l-p)L~(s) 

10 - PAMS 21.1 
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Let us put q (s) = (Lp ( s ) ) - I  - 1 for s 3 0, and rewrite the relation (23) as 
pg Ip-l/as) = q (s) or, equivalently, g (s) = p-I q Cpllas) for s 2 0. This completes 
the proof. 

Remark  5. If u = 1, then Theorem 2 reduces to Proposition 2. We now 
further extend Theorem 2 through the Pascal (or negative binomial) com- 
pounding model defined below. Let K be a positive integer, and denote by 
N,,, a negative binomial random variable having mass function 

where p ~ ( 0 ,  1). For the case rc = 1, N , ,  reduces to the geometric distribution. 
Using N , ,  instead of N ,  we extend Theorem 2 to the following: 

FOP any fixed constants p ~ ( 0 ,  l), a ~ ( 0 ,  11 and integer K > 0, the stability 
condition 

d - 
SN,,, = P  " ( X 1 + X z + * - - + X , )  

holds if and only if Xi has a semi-Mittag-Leer distribution with exponent 
a (and b = pll"). 

The proof is similar to that of Theorem 2 and is omitted. 
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