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Abstract. Consider independent and identically distributed ran- 
dom variables (X, XRj ,  I < j < k ,  k > 1) from a particular distribu- 
tion with EX = oo. We show that there exists an unusual generalized 
Law of the Iterated Logarithm involving max,,,,,Xkj. 
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This paper explores the asymptotic behavior of weighted partial sums of 
random variables. These random variables are the largest observations from 
each row of a triangular array. The techniques used in proving our theorems 
are similar to those found in [I] and [ 5 ]  in the sense that we first obtain 
a weak law to conclude that the lower limit is almost surely bounded above by 
l/(a + 2). As for obtaining equality the proofs differ in the sense that we actually 
exhibit a random variable that achieves this bound. Furthermore, it should be 
pointed out that our random variables, (X,, k 2 I}, are not identically dis- 
tributed. 

Let {x, Xkj, 1 < j < k, k 2 1) be independent and identically distri- 
buted random variables with common density f (x) = x-' I ( x  2 I). Set 
Xk = m a ~ ~ < ~ $ ~ X ~ ~ .  Note that since EXkj = oo, it follows that EX, = oo 
for all k 2 1. As for notation we set a, = nu and b, = na+'lgn, where 
Igx = max (1, logx). To expedite matters we also set en = bJa, = n2 lgn. We 
use the constant C to denote a generic bound that is not necessarily the same in 
each appearance. 

THEOREM 1. 

c ; = l u k X k  p 1 
+- for all a > -2. 

bn a+2 
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P r o  of. We will use the Degenerate Convergence Theorem, which can be 
found on p. 338 of 131. For all 1 G k ,( n, 

So for a 2 - 1 and all E > 0 

When -2 < a < - 1 we need to partition j into three cases. Let 

A j = G :  j <  -l/(ol+l)), B j = G :  j =  -l/( a+ 1)) 

and 
C j  = 0: j > -l/(a+l)). 

Then, as above, 

enaf l g n  

The first series goes to zero since 

and there are only a finite number of terms in Aj. In the event of Bj f: 0, in 
which case the second term would be zero, this series consists of one term, 
which is bounded above by 

C (n lgn)(af 2)/(a+ 1) 
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which goes to zero since the exponent is negative. Finaily, the last series 

Next, we need to show that 

This sequence is bounded above by 

Lastly, we need to see where our sequence is going: 

The first sequence 
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The second sequence 

Using equation 0.155,#4 from [dl, p. 4, we have 

Hence our third sequence 

Next we wdl show that the last sequence converges to zero. In doing so, we 
again need to observe two different cases. If a 3 -1, then 

When -2 < a < -1 we need to partition j into three cases. Let 

Aj = Q: (a+l)Cj+l) > -11, Bj = G: (a+ l ) ( j+ l )  = -1) 
and - 

Cj = Q: (a+ l ) ( j+ l )  < - 1 ) .  

Then, as in the last calculation, 
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The first sequence 

The second sequence, which consists of at most one term, 

since -2 < a < -1. As for the final sequence, 

C 
d lgn + 0- 

Combining (I), (2) and (3) we have 

completing the proof. a 

CLAIM. For all M > 0 

1 1 
1-[I- ] -- 

Mn2 lgn Mnlgn' 

Proof. From the Binomial Theorem we have 

- - +  ) (  - y. 
Mnlgn j=2 Mn2 l gn  
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Thus, we need to show that 

and 

1 ~ ~ 1 ~ ~  i ("( Mn21gn 1 4  Mnlgn + , J  f (7) Mn21gn 1 
1 l j  

<Mnkn j = 2  i d (  Mn2 lgn Y - ~ n l g n  .l= i 2 (--) Mn lgn 

n 1 
<Mnlgn[ ( ~ n l g n ) ~  ] = + O .  Mlgn 

~ ~ = l a k x k  1 
lim inf -- - almost surely for ail a > - 2 

n-r m b n  a+2 

CI[=lakXk 
lim sup = a, almost surely for all a > -2. 
n+ m bn 

Pro of. Using our Claim, for all M > 0 we have 

This &plies that 

a n  xn lim sup - = ao almost surely, 
n + m  bn 

whence 

akxk 
lim sup = CQ almost surely. 

n+ m b n  

In view of Theorem 1 we need only show that 

X ; = p k x k  1 
lim inf 2- almost surely for all u > -2. 

n+ m b n  01+2 



Generalized Law of the Iterated Logarithm 155 

To this end we need to find a new truncation to our random variables. Note 
that 

The first term vanishes almost surely by the usual KhintchineKolmogo- 
rov Convergence Theorem (see 131) and Kronecker's lemma-since 

As for the second term, 
I 

The first sequence 

The second sequence 

The last sequence approaches zero since 
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- 
1 C - .(cna+ ') F - + 0. 

na+ lgn lg n 

Combining (4) and (5 )  we have 

~ ~ = l a k X k ( l ~ X k ~ k 2 )  2 
7 

1 1 
lirn inf 3 lim inf - ---=- 

I-QI bn n-+ ar bfi or+? a+2 u+2' 

which completes the proof. ia 

In the case of ct = -2, a Strong Law of Large Numbers does exist. Natu- 
rally, the norming sequence differs from our sequence b, = naf Ign. This result 
can be found in [2]. If a < -2, then our partial sum EL=, akXk  converges. So 
if we divide it by any sequence approaching infinity, the limit will be zero, 
which is quite uninteresting. 

THEOREM 3. The partial sum z;= ak X, converges for nil GL < - 2. 

Proof .  Here we partition our sum in a fourth and final way: 
OD m m 

an x,, = a,, X,, I (1 $ X .  < n2 (lg n)') + an X. I (Xn > n2 (lgn)'). 
n =  1 n =  1 n= 1 

Observe that 

P (X, > n2 (lgn)'} = 1 - P {Xn < n2 (lgn)2) 

Thus 

1 
P {X,, > n2 (lgn)2) - - 

n og n)' 

since 
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So by the Borel-Cantelli lemma the second series is finite almost surely. As for 
the first series; 

since u < -2. Hence our series is convergent almost surely. ra 

A couple of comments about the underlying distribution used &I this paper 
should be mentioned. We used f (x) = x - 2  I (x 2 11, but it should be possible to 
work with any distribution in which P (X > x )  - L(x)/x for all-slowly varying 
functions L(x). However, each case must be treated separately due to the in- 
tricate cdculations that must be performed, as shown in this paper. Also, on 
a much simpler note, it does not matter where our distribution starts. What 
always matters is the tail behavior. For example, if we let Y,, = X,, + c  for 
some constant c, then Y, = X, + c, and since El=, ak = o (b.), our conclusions 
also hold for the partial sum Ci=,a,  yk. 
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