ON THE APPROXIMATION OF A RANDOM VARIABLE BY A CONDITIONING OF A GIVEN SEQUENCE

Krzysztof Kaniowski

Abstract: Let (Ω, \mathcal{F}, P) be a non-atomic probability space. If (X_n) is a sequence of r.v.’s satisfying $X_n \to 0$ a.s. (respectively, in probability) as $n \to \infty$ and $EX_n^+ \to \infty$, $EX_n^- \to \infty$ as $n \to \infty$, then for any r.v. Y there exists a sequence (\mathcal{U}_n) of σ-fields such that $E(X_n|\mathcal{U}_n) \to Y$ a.s. (respectively, in probability) as $n \to \infty$.

1991 AMS Mathematics Subject Classification: 60A10.

Key words and phrases: Conditional expectation, almost sure convergence, stochastic convergence.

The full text is available HERE