SOME REMARKS ON αS, β-SUBSTABLE RANDOM VECTORS

BY

JOLANTA K. MISIEWICZ* (ZIELONA GÓRA) AND SHIGEO TAKENAKA** (OKAYAMA)

Abstract. An αS random vector X is β-substable, $\alpha < \beta \leq 2$, if $X = \Theta^{1/\beta}$ for some symmetric β-stable random vector Y, $\Theta \geq 0$ a random variable with the Laplace transform $\exp \{-t^{\beta}\}$, Y and Θ are independent. We say that an αS random vector is maximal if it is not β-substable for any $\beta > \alpha$.

In the paper we show that the canonical spectral measure for every αS, β-substable random vector X, $\beta > \alpha$, is equivalent to the Lebesgue measure on S_{n-1}. We show also that every such vector admits the representation $X = Y + Z$, where Y is an αS sub-Gaussian random vector, Z is a maximal αS random vector, Y and Z are independent. The last representation is not unique.

Mathematics Subject Classification: 60A99, 60E07, 60E10, 60E99.

Key words and phrases: Symmetric α-stable vector, substable distributions, spectral measure.

Let us remind first the well-known definitions of symmetric α-stable random variables, random vectors and stochastic processes, $\alpha \in (0, 2]$. The random variable X is symmetric α-stable if there exists a positive constant A such that

$$E \exp \{itX\} = \exp \{-A \|t\|^\alpha\}.$$

A random vector $X = (X_1, \ldots, X_n)$ is symmetric α-stable if for every $\xi = (\xi_1, \ldots, \xi_n)$ the random variable $\langle \xi, X \rangle = \sum_{k=1}^{n} \xi_k X_k$ is symmetric α-stable. This is equivalent to the following condition:

$$\forall \xi = (\xi_1, \ldots, \xi_n) \ \exists c(\xi) > 0 \ \langle \xi, X \rangle \overset{d}{=} c(\xi) X_1.$$

It is well known that if X is an αS random vector on \mathbb{R}^n, then there exists a finite measure ν on \mathbb{R}^n such that

$$E \exp \{i \langle \xi, X \rangle\} = \exp \{-\int_{\mathbb{R}^n} |\langle \xi, x \rangle|^\alpha \nu(dx)\}.$$

* Institute of Mathematics, University of Zielona Góra.
** Department of Applied Mathematics, Okayama University of Science.
The measure v is called the spectral measure for an $S\alpha S$ random vector X. If v is concentrated on the unit sphere $S_{n-1} \subset \mathbb{R}^n$, then it is called the canonical spectral measure for X. The canonical spectral measure for a given $S\alpha S$ vector X is uniquely determined.

An $S\alpha S$ random vector X is β-substable, $\alpha < \beta \leq 2$, if there exists a symmetric β-stable random vector Y such that

$$X \overset{d}{=} Y\Theta^{1/\beta},$$

where $\Theta \geq 0$ is an α/β-stable random variable with the Laplace transform $\exp\{-t^{\alpha/\beta}\}$, Y and Θ are independent.

Definition 1. An $S\alpha S$ random vector X is maximal if for every $\beta \geq \alpha$ and every $S\beta S$ random vector Y, and every Θ independent of Y the equality $X \overset{d}{=} Y\Theta$ implies that $\alpha = \beta$ and $\Theta = \text{const}.$

A stochastic process $\{X_t : t \in T\}$ is symmetric α-stable if all its finite-dimensional distributions are symmetric α-stable, i.e., if for every $n \in \mathbb{N}$ and every choice of $t_1, \ldots, t_n \in T$ the random vector $(X_{t_1}, \ldots, X_{t_n})$ is symmetric α-stable.

For more information on stable random vectors, processes and distributions see [2]. Almost all $S\alpha S$ random vectors and stochastic processes studied in literature are maximal; and even more, almost all of them have pure atomic spectral measure. In [1] one can find some results on characterizing maximal $S\alpha S$ random vectors in the language of geometry of reproducing kernel spaces, however, except some trivial cases, these results are given only for infinite-dimensional $S\alpha S$ random vectors. The following, surprisingly simple theorem characterizes maximal symmetric α-stable random vectors on \mathbb{R}^n:

Theorem 1. Assume that a random vector $X = (X_1, \ldots, X_n)$ is symmetric α-stable and β-substable for some $\beta \in (\alpha, 2]$. Then the canonical spectral measure v for the vector X has a continuous density function $f(u)$ with respect to the Lebesgue measure on the unit sphere $S_{n-1} \subset \mathbb{R}^n$, and $f(u) > 0$ for every $u \in S_{n-1}$.

Proof. From the assumptions we infer that there exists a symmetric β-stable random vector $Y = (Y_1, \ldots, Y_n)$ such that $X \overset{d}{=} Y\Theta^{1/\beta}$, where $\Theta > 0$ independent of Y is α/β-stable with a Laplace transform $\exp\{-t^{\alpha/\beta}\}$. Assume that

$$E \exp\{it \langle \xi, Y \rangle\} = \exp\{-c(\xi)^\beta |t|^{\beta}\}.$$

This means that for every ξ we have

$$\langle \xi, Y \rangle \overset{d}{=} c(\xi) Y_0,$$

where $E \exp\{it Y_0\} = \exp\{-|t|^{\beta}\}$.

In particular,

$$E|\langle \xi, Y \rangle|^\beta = c(\xi)^\beta E|Y_0|^\beta.$$
Since \(\alpha < \beta \), we have \(c^{-1} = E|Y_0|^\alpha < \infty \) and \(c(\xi)^\alpha = cE\langle \xi, Y \rangle^\alpha \). Calculating now the characteristic function for the vector \(X \) we obtain

\[
E \exp \{i \langle \xi, X \rangle \} = E \exp \{i \langle \xi, Y^{1/\beta} \rangle \} = E \exp \{-c \langle \xi, Y \rangle \} = \exp \{-c \langle \xi, Y \rangle \} = \exp \{-\int_{\mathbb{R}^n} \langle \xi, x \rangle^\alpha c f_\beta(x) \, dx \},
\]

where \(f_\beta(x) \) denotes the density function of the \(S\beta S \) random vector \(Y \). This means that the function \(cf_\beta(x) \) is the density of a spectral measure for the random vector \(X \).

To get the canonical spectral measure \(v_0 \) for the \(S\alpha S \) random vector \(X \) from this spectral measure it is enough to make the spherical substitution \(x = ru \) and integrate out the radial part. Consequently, for every Borel set \(A \subset S_{n-1} \) we obtain

\[
v_0(A) = \int_{S_{n-1}} \cdots \int_{S_{n-1}} c f_\beta(ru)^{n-1+s} \, dr \, w(du),
\]

where \(w \) is the Lebesgue measure on \(S_{n-1} \). Since \(f_\beta \) is uniformly continuous on \(\mathbb{R}^n \) and \(f_\beta > 0 \) everywhere, \(g(\mathbf{u}) \) is a continuous function and \(g(\mathbf{u}) > 0 \) everywhere. The uniqueness of the canonical spectral measure implies that the function \(g(\mathbf{u}) \) is the density of the measure \(v_0 \), which completes the proof.

Corollary 1. Every random vector with a pure atomic spectral measure is maximal. In fact, for maximality of the \(S\alpha S \) random vector it is enough that its spectral measure \(\mu \) is zero on a set in \(S_{n-1} \) of positive Lebesgue measure.

Corollary 2. Let \((E, \mathcal{B}, \mu) \) be a \(\sigma \)-finite measure space and let \(Y = \{ Y(B); B \in \mathcal{B}, \mu(B) < \infty \} \) be an independently scattered \(S\alpha S \) random measure on \((E, \mathcal{B}) \) controlled by the measure \(\mu \). We say that a stochastic process \(X = \{X_t; t \in T\} \) is a set-indexed \(S\alpha S \)-process if there exists a map \(S \) from \(T \) to \(\mathcal{B} \) such that

\[
X_t = Y(S_t).
\]

Every set-indexed \(S\alpha S \)-process is maximal.

Proof. Notice that any finite-dimensional marginal distribution of a set-indexed \(S\alpha S \)-process has a pure point spectrum. For example, the 3-dimensional marginal characteristic function is
J. K. Misiewicz and S. Takenaka

\[E \exp \{ i (z_1 X_{1t} + z_2 X_{2t} + z_3 X_{3t}) \} = E \exp \{ i (z_1 Y(S_1) + z_2 Y(S_2) + z_3 Y(S_3)) \} \]

\[= \exp \{ |z_1|^{\eta} \mu(S_1 \cap S_2 \cap S_3^c) + |z_2|^{\eta} \mu(S_1 \cap S_2 \cap S_3^c) \]
\[+ |z_3|^{\eta} \mu(S_1 \cap S_2 \cap S_3) + |z_2 + z_3|^{\eta} \mu(S_1 \cap S_2 \cap S_3) \]
\[+ |z_3 + z_1|^{\eta} \mu(S_1 \cap S_2 \cap S_3) + |z_1 + z_2|^{\eta} \mu(S_1 \cap S_2 \cap S_3^c) \]
\[+ |z_1 + z_2 + z_3|^{\eta} \mu(S_1 \cap S_2 \cap S_3). \]

Some of important \(\mathcal{S}\alpha\mathcal{S}\)-processes are set-indexed processes: for example, multiparameter Lévy motion, multiparameter additive processes, generally linearly additive processes, a class of self-similar \(\mathcal{S}\alpha\mathcal{S}\)-processes (see, e.g., [3]–[6]). Moreover, all these processes have very interesting properties, called determinisms.

Corollary 3. If an \(\mathcal{S}\alpha\mathcal{S}\) random vector \(X\) is not maximal, i.e., if \(X\) is \(\beta\)-substable for some \(\beta > \alpha\), then there exist a symmetric Gaussian random vector \(Z\) and a maximal \(\mathcal{S}\alpha\mathcal{S}\) random vector \(Y\) such that

\[X \overset{d}{=} Z \Theta^{1/2} + Y, \]

where \(\Theta \geq 0\) has the Laplace transform \(\exp \{-t^{\eta/2}\}\), \(Z\), \(Y\) and \(\Theta\) are independent.

Proof. Since every continuous function attains its extremes on very compact set, we have

\[A = \inf \{g(u): u \in S_{n-1}\} > 0, \]

where \(g(u)\) is the density of the canonical spectral measure for \(X\) obtained in Theorem 1. Now it is easy to see that \(X \overset{d}{=} Z \Theta^{1/2} + Y\) for the Gaussian random vector \(Z\) with the characteristic function \(\exp \{-A^{1/\alpha} \sum_{k=1}^{n} z_k^2\}\), and the \(\mathcal{S}\beta\mathcal{S}\) random vector \(Y\) with the spectral measure given by the density function \(f(u) = g(u) - A\).

Remark 1. The representation obtained in Corollary 3 is not unique. In fact, for every \(\mathcal{S}\alpha\mathcal{S}\) \(\beta\)-substable random vector \(X\) and every symmetric Gaussian random vector \(Z\) taking values in the same space \(\mathbb{R}^n\) there exist a constant \(c > 0\) and a maximal \(\mathcal{S}\alpha\mathcal{S}\) random vector \(Y\) such that

\[X \overset{d}{=} cZ \Theta^{1/2} + Y, \]

where \(\Theta\) as in Corollary 3, \(Y\), \(Z\) and \(\Theta\) are independent.

Proof. The representation \((*)\) for the characteristic function of an \(\mathcal{S}\alpha\mathcal{S}\) random vector holds for every \(\alpha \in (0, 2]\) including the Gaussian case. However, for \(\alpha = 2\) we do not have uniqueness for the spectral measure \(\nu\). In fact, \(\nu\) can always be taken here from the class of pure atomic measures on \(S_{n-1}\), but such a representation is not useful for our construction. We will use the measure \(\nu_A\) constructed as follows:
Let \(v = v_1 \) be the uniform distribution on the unit sphere \(S_{n-1} \subset \mathbb{R}^n \), and let \(U = (U_1, \ldots, U_n) \) be the random vector with the distribution \(v \). Then we have

\[
\exp \left\{ -\int_{S_{n-1}} \langle \xi, u \rangle^2 c_n v(du) \right\} = \exp \left\{ -\frac{1}{2} \langle \xi, \xi \rangle \right\},
\]

where \(c_n^{-1} = 2EU^2 \). Now let \(\Sigma \) be the covariance matrix for the random vector \(Z \) and let \(\Sigma = AA^T \). We denote by \(v_1 \) the distribution of the random vector \(AU \). Then

\[
\exp \left\{ -\int_{\mathbb{R}^n} \langle \xi, x \rangle^2 c_n v_1(dx) \right\} = \exp \left\{ -\int_{S_{n-1}} \langle A^T \xi, u \rangle^2 c_n v(du) \right\} = \exp \left\{ -\frac{1}{2} \langle A^T \xi, A^T \xi \rangle \right\} = \exp \left\{ -\frac{1}{2} \langle \xi, \Sigma \xi \rangle \right\},
\]

which is the characteristic function for the Gaussian vector \(Z \). It is easy to see now that for a suitable constant \(a > 0 \)

\[
\exp \left\{ -\int_{\mathbb{R}^n} \langle \xi, x \rangle^2 c_n v_1(dx) \right\} = \exp \left\{ -a(\langle \xi, \Sigma \xi \rangle)^{n/2} \right\},
\]

which is a characteristic function of the sub-Gaussian vector \(Z \Theta^{1/2} \). We define now the measure \(v_A \) as the projection (in the sense described in the proof of Theorem 1) of the measure \(v_1 \) to the sphere \(S_{n-1} \) and we obtain

\[
\int_{\mathbb{R}^n} \langle \xi, x \rangle^2 c_n v_1(dx) = \int_{S_{n-1}} \langle \xi, u \rangle^2 v_A(du).
\]

Since \(v_1 \) is absolutely continuous with respect to the Lebesgue measure, \(v_A \) has the same property and \(v_A(du) = f_A(u) \omega(du) \) for some continuous positive function \(f_A \). If \(g(u) \) is the density of the spectral measure for \(X \), then there exists \(c_0 > 0 \) such that

\[
c_0 = \sup \{ c > 0 : g(u) - cf_A(u) \geq 0 \}.
\]

Now it is enough to define the maximal \(\mathcal{S} \alpha \mathcal{S} \) random vector \(X \) by its canonical spectral measure absolutely continuous with respect to the Lebesgue measure with density \(h(u) = g(u) - c_0 f_A(u) \) and put \(c = c_0^{1/\alpha} \).

REFERENCES

Jolanta K. Misiewicz
University of Zielona Góra
ul. Szafrana
65-246 Zielona Góra, Poland

Shigeo Takenaka
Department of Applied Mathematics
Okayama University of Science
700-0005 Okayama, Japan

Received on 3.6.2002