WEAK LIMITS AND INTEGRALS OF GAUSSIAN COVARIANCES IN BANACH SPACES

J. M. A. M. van Neerven
L. Weis

Abstract: Let E be a separable real Banach space not containing an isomorphic copy of c_0. Let S be a subset of $L(E^*, E)$ with the property that each $Q \in S$ is the covariance of the centred Gaussian measure μ_Q on E. We show that the weak operator closure of S consists of Gaussian covariances again, provided that

$$\sup_{Q \in S} \int_E \|x\|^2 d\mu_Q(x) < \infty.$$

If in addition E has type 2, the same conclusion holds for the weak operator closure of the convex hull of S. As an application, sufficient conditions are obtained for the integral of Gaussian covariance operators to be a Gaussian covariance. Analogues of these results are given for the class of γ-radonifying operators from a separable real Hilbert space H into E.

2000 AMS Mathematics Subject Classification: Primary 28C20; Secondary: 35R15, 60B11, 60H05.

Key words and phrases: Gaussian Radon measure, covariance operator, γ-radonifying operator, Fatou lemma, type 2, cotype 2, weak operator topology.

The full text is available here.