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Abstract. Let K be a hypergroup with left Haar measure and (v,,) 
a sequence of symmetric probability measures on K converging to s,. 
We will prove a functional limit theorem in the sense that conver- 
gence + pe d1 ( K )  implies unique embeddability of p into a sym- 
metric convolution semigroup and vfhJ] -t p, holds for all t > 0. 
This generalizes the corresponding result for hermitian hypergroups. 
Furthermore, by analogy with locally compact groups, it can be shown 
that for specific hypergroups similar results are available without sym- 
metry assumptions. 
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For triangular systems of identically distributed probability measures on 
Rd it is well known that weak convergence + p implies that the limit 
measure p is infinitely divisible, and hence uniquely embeddable into the 
continuous convolution semigroup (p')r20.  Further, the discrete -semigroups 
(VI,~~I])~, , converge to (p'), >,, which means that - 

and the convergence is uniform on compact subsets of R + .  This so-called 
functional convergence is essential for most nontrivial properties of limit laws 
p = limn,, v,k, including, for example, the concept of (semi) stability (see, e.g., 
C6l or ClOl). 

However, studying such convolution products on more general algebraic 
structures as, for example, hypergroups it is not clear whether the conclusion 
that simple convergence leads to functional convergence can be drawn. Fol- 
lowing the notation of Nobel and Teloken ([I51 and [IS], see also [6]) ,  who 
both treated the case of locally compact groups, statements concerning this 
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problem are called fvnctional limit theorems. Nobel was able to prove a func- 
tional limit theorem for strongly root compact groups which have no non- 
trivial compact subgroups (see [14] and [15]), Teloken generalized it to wider 
classes of locally compact groups, particularly to those admitting nontrivial 
compact subgroups (cf. [I71 and [18]). 

The purpose of this paper, which is drawn from the author's thesis 1121, is 
to study functional limit theorems for probability measures on hypergroups K, 
where for standard definitions and relevant: facts we use the notation in [2]. 
For this, two ditTerent approaches are chosen. On the one hand, a result on the 
embedding df infinitely divisible measures and a corresponding functional limit 
theorem'for hermitian hypergroups shown in [I21 are generalized to the case of 
symmetric probability measures on a hypergroup with left Haar measure. On 
the other hand, there are no difficulties in transferring Teloken's functional 
limit theorem from locally compact groups to hypergroups. After doing 
so, where a (suitably defined) assumption of root compactness occurs, we 
give examples for hypergroups satisfying the requirements of this general 
theorem. 

Notation. For a locally compact Hausdorff space E let &?(El denote the 
Bore1 D-aIgebra in E, A' ( E )  the probability measures, and Aif)(E) the positive 
contractive Radon measures on E. If for a sequence (pn)n,, r Ail)(E) the kind 
of convergence limn,, pn = p is not specified, then always weak convergence is 
meant. For XEE, E ,  denotes the point measure in x. We write C,(E) for the 
vector space of continuous functions on E with compact support and Cb (E) for 
the vector space of continuous and bounded functions on E. For a bounded 
function f :  E -, C,ll f llm is the sup-norm. 

In the sequel we will make use of the following notation (see [2]): K al- 
ways denotes a hypergroup, e the neutral element, and K 3 x w x - the involu- 
tion of K. We always assume K to be second countable; then the vague topolo- 
gy of Ali1 (K) is metrizable. For bounded Radon measures p, v on K we denote 
by y * v the convolution of y and v, and by yn,  EN, the n-fold convolution 
product of p. If K is commutative, then let R be the dual of K and the 
Fourier transform of a bounded Radon measure 11 on K. We write for a left 
Haar measure on K. For a nonvoid subset A of K, [A] denotes the smallest 
subhypergroup of K containing A. If (p,),,, is a continuous convolution semi- 
group in AIL) (K), that means ,us * & = ps,, for all s, t > 0 and lim, & = yo 
( # O )  with respect to the weak topology, then necessarily p, = w,, where H is 
a compact subhypergroup of K and o, its normed Haar measure ( [2] ,  5.2.3). 

For a hypergroup K admitting a left Haar measure oK we define, as usual, 
the Hilbert space LZ (K) = L2 ( K ,  wK) with ( f ,  g) = 1 fa doK for f, g E L2 (K). 
Let L(I.?(K)) denote the space of all linear and bounded operators 
A: J? (K) -, I? (K) endowed with the operator norm. We write R, for the (left) 
convolution operator of ,u E 44" (K), that means R, f = y * f for f E I.? (K), 
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where the convolution of measures and functions is defined by 

If X is a topological space and M a subset of X, then M is the topological 
closure and AP(M) the set of all accumulation points of M. 

Throughout this paper, (k,)n,N always denotes a sequence of natural num- 
bers with k, r co. 

2. A..FWNCTIONAL L M T  THEOREM 
FOR Sl%lMETRI[C PROBABILITY MEASURES 

Remark  2.1. The following facts are known for herrnitizui hypergroups 
([2], 5.3.11 and 5.3.4): 

(a) Let (v,),, r dl1 (K) be infinitesimal, which means v, E,. If (v>),,~ 
converges to a measure p E A1 (K), then p is infinitely divisible. 

(b) If p E A1 (K) is infinitely divisible, then there exists a unique continu- 
ous convolution semigroup (fi),,, in A1(K) such that p, = p. 

In this situation, that means under the assumptions of fa), the relation 
= ( @ I t ,  t > 0, holds for the Fourier transforms, and using the Jkvy continuity 

theorem ( [2] ,  4.2.2) one gets functional convergence 

vLkntl a p t  uniform on compact subsets of 10, a[. 
Note that for hermitian hypergroups the characters, and hence the Fourier 
transforms of probability measures are real-valued. 

The proof of statement (b) can be done by showing that the functions 
ft : = (@It E Cb (R), t > 0, and f, : = are Fourier transforms of probability 
measures p,eA1(K) ([lg], Theorem 4.3, or [2], Theorem 5.3.4). Considering 
hypergroups with left Haar measure o,, a similar conclusion can be drawn by 
making use of operators, provided the measures ,un~A1 (I() with pi = p are 
symmetric in the sense that p i  = pn holds. The parts of the functions f, are 
taken by operators in I? (K), that can be constructed in an obvious way 
from the convolution operator R, via the spectra1 theorem for normal opera- 
tors in Hilbert spaces. Based on these ideas it is possible to prove a func- 
tional limit theorem - in generalization to that in Remark 2.1 - for the,case 
when (vJnGN is a sequence of symmetric probability measures converging 
to E,. 

Throughout this section let K always denote a hypergroup with left Haar 
measure cog and let the convolution operators act on I? (K). If ,u E A1 (K) is 
symmetric, then the corresponding convolution operator R, is self-adjoint. 

At first, the symmetric analogue of (b) in Remark 2.1 is proved. 

THEOREM 2.2. Let p E A1 (K) be a symmetric infinitely divisible measure, 
which means that for every n E N  there exists a symmetric measure p(,, E A1 (K) 
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with p?,, = p. Then there exists a unique continuous convolution semigroup (p,),30 
in d1 ( K )  such that p1 = p and p; = p, for all t 2 0. 

For the proof of Theorem 2.2 we will need the following lemma which is 
known for locally compact groups and can be transferred to hypergroups. 

LEMMA 2.3. Let the mapping @: Ail)(K) -t L(L2(K))  be defined b y  

Then 8 is injective and continuous with respect to the vague topology, resp, the 
weak fapoldgy of @erators in L(I? (K)). Hence @ (&I1)(iX)) is compacl and 
@ : @'(Mi1) (K)) + ( K )  is also continuous. 

Pro  of. Theorem 6.21 in [9] yields the injectivity of @. If (p,),, G Ail)(K) 
is a sequence converging to p E &il)(K) vaguely, then since for v E &J1)(K) 
and f? s Cc ( K )  

{RYf, 8) = J ( f  * 8-) ( Y )  dv -  ( Y )  
K 

holds and f *g "  is in C,(K), we have 

for all f, g E C, (K). Here g * denotes the mapping g" ( x )  = g (x-) for x E K. 
Because C, (K) is dense in I? (K), (1) is valid for all f, g E I.? (K),  and hence @ is 
continuous. The remaining part of the lemma follows by Theorem 8.12 in 
[16]. 

P r o  of of The  orem 2.2. Choose p(2, E A' ( K )  such that p&, = p and 
pG, = F ( ~ , .  Since Rp(2) is self-adjoint, the convolution operator R, is positive' 
semidefinite (in short: positive), i.e. 

(R,f, f)aO for all f€L?(K). 

- The spectral theorem for normal operators in Hilbert spaces (e.g. [I 11, Theo- 
rem 18.10) implies the existence of a unique spectral measure E-on the spectrum 
a (R$ G [O, 11 such that - 

R, = S Z ~ E ,  
where z denotes the identical mapping on a(R$. Defining, for t > 0, 
h,: a (RS + R+ by h, (x) : = xt and ho by ho : = l[r.(RJ:rz 0 ) ,  we see that the 
functions h, are Borel-measurable and bounded, and they satisfy h,,, = h, h, for 
s ,  t 2 0. If for t 2 0 is the operator 

j then (Tt)tB c L (I? (K)) is a family of positive operators such that Tl = R,, 
IITJl < 1 for all t 2 0, 

(3) T,+, = T,  for all s ,  t 0, 



Functional limit theorems on hypergroups 159 

and that R+ 3 t H 7; is continuous with respect to the weak topology of opera- 
tors. For n E N, TI,,, is the unique positive n-th root of the positive operator R,, 
and the family (T),,, is uniquely determined by the above properties. 

Given n E N there exists p(,,) E A1 (K) such that p("$,, = p and ~ ( 2 ~ )  = P(~, , ) .  
But then RPh, is positive, and hence coincides with TI,,. With the definition 

for r E Q*, , r = p/q, where p ,  q E PI, we obtain 

and thus (pr)r9: is a (symmetric) rational convolution semigroup. 

Let now t be an element of R, and (r,) G QS a sequence converging to t. 
Then (prnInEN has a vague accumulation point R,E ~%'ll)(K). Lemma 2.3 together 
with the continuity of t w 7; and RWr = T, for all r E &7 implies 

and hence T = Rlt. In particular, A, is the only vague accumulation point of 
(h,lnsN, SO that p,. + At =:p t  holds with respect to the vague topology. 

(pJ t3  ,, is a convolution semigroup, and since for each r E Q*, the measure 
M is a probability measure, (cc,)dao is contained in A 1 f K ) .  The convolution 
semigroup is continuous by construction. 

The applied methods of functional analysis can also be used to prove the 
following functional limit theorem. 

THEOREM 2.4. Let (v,),, G A1 ( K )  be a sequence of symmetric probability 
measures with v, a E,. I f  (v?).,~ converges to p~ A 1 ( K ) ,  then ,u is uniquely 
ernbeddable into a continuous convolution semigroup ( p t h 3 ,  G A 1 ( K )  with the 
property p; = p, for all t 2 0 and we have functional convergence 

vkknt3 a pClr un$orrn on compact subsets of 10, co[. 

The proof will be performed in several steps. In one of them the following 
lemma, which is a special case of Theorem 2 in Section X.7 in [4], is needed. 

LEMMA 2.5. Let T and (T,Jn, be positive operators in a HiIbert space 
H with I ]  Tll < 1 and llTJl < 1 for all n E N. Then T, T implies 
vE 3 vF for every N E N ,  conuergmce in each case with respect to the 
strong topology of operators, where v F  and vz, n e N ,  denote the unique 
positive operators with (yFlN = Z resp. ( ~ Y ) N  = K .  

Proof  of Theorem 2.4. S t ep  I. R, is a positive operator. 
Since (v?) converges to p and (v,) to E,, we have 
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and 

(5.1 < v ? " * f ,  f )  * < P * f ,  f )  
for all f E L' (K).  If (k,JnEN admits a subsequence (k,J,,, such that k,, is even for 
all I E N ,  then the self-adjointness of RVnI and (4) imply 

(6) ( p *  f, f}aO for all ~ E @ ( K ) .  

If there is no such subsequence, then (k,),, admits a subsequence with odd 
members only and (6)  follows from (5). 

-. . 

-Step 2. - ~ e t  (?;),,, be the family of positive operators constructed in the 
proof of Theorem 2.2; in particular, for each N E N, Tll,  is the unique positive 
N-th root of R,. Defining for N E N  

we can prove that the convolution operators (RAi~))nEN converge to TI,, in the 
strong topology of operators. Indeed, write for n E N 

I 

2N summands 

with E ,  E (0, 1 ,  . . ., 2N - 1). Since v, + E,, we first obtain v 2  + E,, and then 
because of v$ + p and the shift-compactness theorem ([2], Theorem 5.1.4) 
we get 

( 2 N ) ) N  = Vfi("12NJ * . . . * yLk" /2m + p. - n-+m 
2 N  factors 

R ( A i ~ ) ) ~  and R,$I are positive operators so that Lemma 2.5 gives the above 
statement. 

S t e p 3. For every N E N there exists a symmetric pllN E d1 (a such that 
''IN = ' N I I N '  

Indeed, for N E N fixed and a vague accumulation point e s Ail) (K) of 
(If"))n, Step 2 implies R, = T I I N .  In particular, q is the only accumulation 
point. Since R, = R p ,  P ~ / N  := g is a probability measure. 

S tep  4. Using Theorem 2.2 we obtain a unique continuous convolution 
semigroup (pJtao G A1 ( K )  with p, = p and p, = iu, for all t 2 0, where 
?; = R, holds for each t 2 0. 

S tep  5. It remains to show that vik-" + p, for all t > 0 is satisfied. This is 
done by proving convergence of the corresponding convolution operators. In 
this step we assume that for each B E N  the operator RYn is positive, which also 
implies positivity of R,:.. 
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For fixed t > 0 define the sequence (I-,) c Qg by r, : = [k,  t ] / k ,  for n suf- 
ficiently large. Let E'") denote the spectral measure of the positive operator 
RVkn. Then we have 

for n E N, where the functions (h,),,, are defined as in the proof of Theorem 2.2, 
and so we have to verify that the operators (j hrn d ~ ( ~ ) )  converge to Rflr = j h, LIE. 

Let f E I.? (K) and E > 0 be given. Since (h,) converges to h, uniformly on 
[ O ,  11, jhthere eGsts n o € &  such that Ilh,,-h, l l o o  < E for all n 2 no and 
114nD-hJl.. 2 e. Because of properties of the s&tral measure and integrals 
with respect to it the estimations 

and 

IIJh,od~f-Ihd~flJ~ < 8 1 1 / 1 1 ,  

hold true. For r = M / N  E QT with M, N E N convergence R,:. -$ Rp and Lem- 
ma 2.5 imply 

in the strong topology of operators. Thus we can find n1 E N  with n, 2 no such 
that 

I I ~ h r n o d E " ' f - ~ h r n 0 d ~ f I I 2 < e  for a l l n 2 n l .  

The following inequality, valid for all  EN, completes the proof: 

With the same methods we can prove that the convergence is _uniform on 
compact subsets of 10, a[. In fact, let t > 0; then defining (rJ G QS by 
r, := [ k ,  tJ/k, for a sequence (t,) c RT converging to t ,  we conclude that 

S tep  6. Let 6, : = v, * vn for n E N and Q : = ,u 4 p. Then (Ram),,, are positive 
operators and Steps 1-5 imply that Q is uniquely embeddable into a continuous 
convolution semigroup (et),.,, with e; = er for all t 2 0 and that functional 
convergence 

(9) 65knt1 Q, uniform on compact subsets of 10, a[ 
holds true. Defining A:= etiz for t 2 0, we infer that fp,),,, is the unique 
continuous convolution semigroup in A?' (K) satisfying pi = p and h- = p, for 
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all t 3 0. For fixed t > 0 and for a sequence (t,) E R$ converging to t, (9) 
yields 

where E,E{O, 1). H 

Remark  2.6. (a) Theorem 2.2 was formulated and proved first because the 
result on embedding is itself interesting, and furthermore, transferring the proof 
from the corresponding result for hermitian hypergroups in 1121 to the level of 
operatms, stresses the motivation for this functional analytic approach. 

(b) Steps 1-3 yield the symmetric analogue to statement (a) in Remark 2.1 
for hermitian hypergroups. 

(c) With the methods used in this section we can also prove that for each 
symmetric ~onvolution semigroup (p,),,, in A%' ( K )  the limit lim,,,p, exists 
with respect to the weak topology, and so ( P , ) , , ~  is continuous. We only have 
to assume the existence of a left Haar measure on K. This generalizes the result 
in [2] (Proposition 5.2.7 (a)) for commutative hypergroups, which is verified by 
methods of Fourier transform, 

3. A GENERAL FUNCTIONAL LIMIT THEOREM 

In Section 2 a functional limit theorem was proved by making use of 
methods of functional analysis, which we were able to apply to the convolution 
operators because of symmetry of the probability measures (v.). We will now 
drop this assumption and prove a functional limit theorem that can be transfer- 
red almost verbatim from the case of locally compact groups treated in [I71 
and 1181. By analogy with this, the notion of infinitesimality is replaced by 
a more general concept. 

DEFINITION 3.1. Let K be a hypergroup. A sequence (v,),,.~ J 1 ( K )  is 
called infinitesimal if 

(ij (v,),, converges, v, a v E A1 (K), and - 

(ii) H : = Esupp (v)] is compact and v is not supported on a coset {x) * G of 
any proper supernormal subhypergroup G of H. 

The theorem of Kawada-It6 for compact hypergroups (Theorem 5.1.17 in 
[2])  gives the following characterization of infinitesimality. 

PROPOSITION 3.2. Let K be a hypergroup. 
(a) if ( v , ) , , ,~  c A' (K) is infinitesimal, then v1 wtr. 
(b) For (v,),, G 4' ( K )  assume that v, a v E d1 ( K )  and v' 3 w,, 

where H is a compact subhypergroup of K .  Then (v,),,~ is infinitesimal and 
[supp (v)] = H holds true. 

Proof.  (a) is clear by the Kawada-It6 theorem. 
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For (b) it has to be shown first that [supp(v)] is compact, and then the 
assertion also follo\i.s from the Kawada-It6 theorem. But the assumption 
v' + w ~ ,  which leads to v * o, = w,, and Theorems 1.6.9 and 1.6.3 in [2] imply 
compactness. 

Remark  3.3. (a) ( v ~ ) ~ ~  E A1 ( K )  with v, + E, is infinitesimal, and so is 
(v , ) . ,~  G A" (K) with v, + a,, where H is a compact subhypergroup of K. 

(b) If K admits no nontrivial compact subhypergroups, then ( v , ) , , ~  is 
infinitesimal iff (v,) converges to E,. 

(c) It gufices to demand the existence of Q:= lim,,,v[ in Proposi- 
tion 3.2 (b). 

(d) The result in Remark 2.1 (a) remains valid if the sequence is infinitesi- 
mal in the sense of the new definition and thus a functionaI limit theorem can 
easily be proved under this condition. 

By analogy with the case of locally compact groups we define: 

DEFINITION 3.4. A hypergroup K is called aperiodic if ( e )  is its only com- 
pact subhypergroup. 

THEOREM 3.5. Let K be a hypergroup and (v,),,, G A1 ( K )  be infinitesimal 
with v and H as in Definition 3.1. Assume that 

B?:= (ve: n € N , O  6 Z <  k,) 

is compact. If  converges to a probability measure p E A1 (K), then there 
exist a subsequence N G N and a rational convolution semigroup (pJr,p++ such 
that 

v i k n r ~  r n ~ m ,  

and pr * w, = w, * ,tiF = h, p, * v = v * p, = hold for all r E Q$ . If  further- 
more C s K is a compact subhypergroup such that 

(10) AP {v>:  EN) c A1(C) 
. - 

holds for every sequence (rJnEN c N with r,/k, a . 0  as well as 

(11) k * a c = w c * p r = p r  for all ~ E Q T ,  

then (pr)FEp+ has Q unique extension to a continuous convolution semigroup (pJt >o 
with po = wc, and it follows that 

vLkntl + p,, n E fl, for all t > 0 .  

Moreover, the convergence is uniform on compact subsets of 10, oo [ and uniform 
on compact subsets of R+ if v,, wc (where v: : = oc). 

Proof.  We sketch the proof only in a very brief form because it can be 
directly transferred from that of Theorem 2.3 in [18]. 
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If L E N ,  then compactness of 9, the Tykhonov theorem and the con- 
tinuity of the mapping dl1 (K) x A1 (K) 3 (p, v) H ,u * v with respect to the weak 
topology guarantee that * . . . * 9 (L factors) is compact. Since 

is contained in B ZL . . . * a, it is also compact. The latter property is important 
for the whole proof, which makes essentially use of subsequence arguments. 
The first part of the theorem can be verified analogously to Steps 1-3 in 
Theorem 2.3 in [lg]. Since (A1(K), *) is a topological semigroup, we can 
apply ~ i r n r n a  3.4.4 and Theorem 3.4.6 in 181 in order to show that the semi- 
group homomorphism Q+ 3 r H h, where po : = wc, has a unique continuation 
to a continuous convolution semigroup (pt)x3 o. Using the methods of Step 4 in 
1181 we can prove that Q+ 3 r w ,u, is continuous at 0. Note that at this point 
we make use of the fact that the weak topology on Jtl fK) is metrizable (since 
K is second countable) and that the assumptions (10) and (1 1) are needed. The 
remaining parts of the theorem can be proved analogously to Steps 5-7 in 1181, 
where again subsequence arguments are used and the conditions (10) and (11) 
are applied. I 

Remark  3.6. (a) For the subhypergroups H and C the inclusion H s C 
holds. 

(b) In 1181 (Remark 2.4) examples on the torus are constructed, which 
show that the functional limit theorem is not valid if conditions (10) and (1 1) 
are dropped and that H Z C  is possible. 

4. A FUNCTIONAL LIMIT THEOREM 
FOR APERIODIC AND STRONGLY ROOT COMPACT HYPERGROUPS 

In the functional limit Theorem 3.5, the compactness of W and the con- 
ditions (10) and (11) are - beside the infinitesimality of the sequence (v,) - the 
essential assumptions. In this section we will first introduce the-notion of 
a strongly root compact hypergroup for which convergence v i m  -t ,u immediate- 
ly implies that 9 is compact. Further, it is shown that conditions (10) and (11) 
are fulfilled for hypergroups which are aperiodic. Theorem 4.8 is an application 
of Theorem 3.5 for hypergroups satisfying the two properties just mentioned 
and corresponds to the functional limit theorem proved by Nobel for locally 
compact groups (1151, Theorem 1). 

DEFINITION 4.1. A hypergroup K is called strongly root compact if for every 
relatively compact subset df c A1(K) the root set 



Functional Jirnit theorems on hypergroups 165 

is also relatively compact, where 

9 ( p ) : =  U {urn: V E A ! ' ( K )  with vn = p, 1 G m < n) 
MEN 

is the root set of p. 

Remark  4.2. If we define B-strongly root compact hypergroups by analo- 
gy with the case of locally compact groups ([8], Definition 3.1.10) strengthening 
the notion of root compactness in [I], these hypergroups are also strongly 
root compa_ct in, the sense of Definition 4.1, This can be shown in the" same 
way as -the implication (i) *(ii) in Theorem 4.4 in [I] is proved. (For the 
corresponding result for locally compact groups compare Theorem 3.1.13 
in 181.) 

A hypergroup K is called 3-strongly root compact if for every compact 
subset C of K there exists a compact subset C, c K with the property that for 
every  EN the finite sequences {x,, . . ., x,) of K with x, = e satisfying 

for all i i - j  < n are contained in C,. 
Since B-strong root compactness is a strong property that is difficult to 

handle and since for the following proposition only strong root compactness in 
the sense of Definition 4.1 is needed, we will use the latter notion, not only for 
hypergroups but also for locally compact groups. 

PROPOSITION 4.3. Let K be a hypergroup that is strongly root compact and 
(v,JnEN G A1 (K) .  Assume v> p E 4' (K). Then 

W =  {ve: n ~ N , O d 1 6  k , )  

is compact. 

Proof.  The assertion follows immediately from Definition 4.1. 

In order to prove that for aperiodic hypergroups the conditions (10) and 
(11) in the general functional limit Theorem 3.5 are-satisfied we need the fol- 
lowing proposition. 

PROPOSITION 4.4. Let K be an aperiodic hypergroup. If for e E M1 ( K )  the 
set (ek:  EN) is relatively compact, then Q = E, holds true. 

Remark  4.5. The corresponding result for locally compact groups can be 
shown by using Theorem 2 in [I31 (compare Lemma 2 in 1151). Since it is not 
known whether this theorem can be transferred to hypergroups, Proposi- 
tion 4.4 is proved by applying a result on compact afine semigroups in [3]. 

P r o o f of P r o  p o s i t  i o n 4.4. By assumption it follows that 
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is a compact semigroup with respect to r. We will show that the closure c o ( d )  

of the convex hull of d is also compact. If this is the case, then (co ( d ) ,  *) is 
a compact afine semigroup in the sense of the definition in [3]. For 

6.:= A c ek for n c N  
nk=l  

the sequence (6,) converges to an idempotent measure o E co (d) satisfying 
w * Q = Q *o = w by Theorem 1 in [3]. Then the assumption on K implies 
w = E , ~  and, hence Q .= E, . 

' Thebfollowing lemma shows that co (d) is compact, which wlll complete 
the proof. ra 

LEMMA 4.6. Let E be a (second countable) iucally compact Hausdorffspuce 
and d E d l ( E )  be compact. Then co (d )  is compact. 

Pro of. Defining for A E  d1 (at) 

we have a E A!' (E),  and for f E Cb (E)  

Then the mapping 

@: dl (d) + k1 (E), 

is continuous (with respect to the weak topologies), and since A!'(&) is corn- 
pact, so is @ (A1 (&)). 

Now, to prove the assertion it is enough to show that the inclusion 
co(d)  s 8 ( A 1 ( d ) )  holds true. If YE&, then v ~ B ( d l ( d ) )  because of 
B (E,) = V. For 

111 - 
V = C aivi€co(&), 

i =  1 

where m EN, vi E at, ai 2 0 and x:=, ai = 1, define 

Then @ (2) = v is fulfilled, and hence v E B (A1 (4). 
COROLLARY 4.7. Let K be an aperiodic hypergroup and (v,),, G A1 ( K ) .  

Assume that 

W = (vf: n € N ,  0 < 1 < k,} 
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is compact. Then V> a E, holds for every sequence ( Y , ) , , ~  E N with 
lim,,, r,F. = 0. 

P r o of. If Q = lim,,~ vj; is an accumulation point of the relatively compact 
sequence (v?);), then {ek: k E N) r 9 is relatively compact, and Proposition 4.4 
gives Q = E,, s 

Theorem 3.5 implies the following functional limit theorem. 

T H ~ ~ M  4.8, Let K be a hypergroup that is strongly root compact and 
aperiodic and (v,jnfl z &-'.(K). If converges to a probability measure 
~ E A '  (K), Then there exist a subsequence A G N and a continuous convolution 
sernigroup (p,),, , G 4' ( K )  such that 

vLknt1 +A,  n E N ,  ungormly on compact subsets of 10, m[. 

Proof .  Using Proposition 4.3 and Corollary 4.7, which in particular im- 
plies that (v,) is infinitesimal (that means v, 4 E, since ( e )  is the only compact 
subhypergroup of K), we see that the assumptions of Theorem 3.5 are satis- 
fied. FA 

5, EXAMPLES 

In this section we give examples for hypergroups satisfying the assump- 
tions of the general functional limit theorem. 

Remark  5.1. Note that for the requirement of "root compactness" in the 
functional limit Theorem 3.5 we only need the following condition: 

(*) v$ a p .L B1 ({v,: n E N}) relatively compact, 

where we define 

for a fixed sequence (k,JnEN G N with k ,  7 ao and a sequence (an)neN E dl1 (K) of 
probability measures. 

The condition I*) is satisfied for hermitian Godernent hypergroups (see 
[2], 2.5.3 for the definition) provided that (v,),,, is relatively compact. This can 
easily be shown by using Proposition 5.1.10 in [2]. But since there already 
exists a functional limit theorem for hermitian hypergroups (cf. Remark 2.11, 
the example just mentioned is of less interest in this context. 

We will now show that examples for strongly root compact and aperiodic 
hypergroups are given by orbit hypergroups GE (see the following definition) 
arising from locally compact groups satisfying these two properties. 

DEFINITION 5.2. Let G be a locally compact Hausdorff group, Aut (G) the 
group of topological automorphisms of G furnished with the topology de- 
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scribed in Definition 26.3 in [7], and H G Aut (G) a compact subgroup with 
normed Haar measure con. If for x E G 

xH = {xh: h E H )  = {a (x ) :  U E  H )  

denotes the orbit of x under H,  then the orbit space 

GH = (xH: X E  G )  

is a hypergroup with the convolution 

for xH,  y H ~  G". In fact, the orbit space GR is a decomposition of G into com- 
pact subsets and a locally compact Hausdorff space with respect to the quotient 
topology. The neutral element of this hypergroup is eH = ( e l ,  and the involu- 
tion is given by (xH)-  = ( x - ' ) ~  for X E  G.  

Remark  5.3. If (G", *) is an orbit hypergroup and 

(G)  : = {p E dl1 (G): p is z-invariant for all z E H I ,  

then the mapping 

q ~ :  MI: ( G )  + dl fGE), 

where ,un E dl (GH) denotes the image measure of p under the canonical map- 
ping q: G -+ GR, has the following properties (see the proof of Theorem 1.1.7 
in [2]): qH is bijective and for p ,  v E (G) 

hold. Further, qH and q i l  are continuous. 
- PROFQSITION 5.4. Let K = GH be an orbit hypergroup, where G is strongly 
root compact. Then K is also strongly root compact. 

Proof.  Suppose that JV G 4' (GH) is relatively compact. Since q, l is 
continuous, q i l  (N )  is also relatively compact, and strong root compactness of 
G implies that the root set W ( q i l  (M))  is relatively compact. q i l  is a homo- 
morphism with respect to convolution, and thus the inclusion 

holds. Therefore qG1 (9 (N)) is relatively compact, and so is W (N).  H 

PROFQSITION 5.5. Let K = GH be an orbit hypergroup, where G is aperi- 
odic. Then K is also aperiodic. 

Proof.  Let C be a compact subhypergroup of GH. Then A1 (C), regarded 
as a subspace of Jtl(K), is compact, and so is q i i  (A1(c)) c A 1 f G ) .  If 
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Q E 4' (a, then ( ( q i  ' (Q)f: k E N ]  is relatively compact because it is contained 
in q i l  (A1(C)). This yields q i l  (Q) = E,, which implies Q = E,H, and hence 
C = i s H ) ,  E l  

Remark 5.6. Applying methods similar to those used in the proofs of 
Propositions 5.4 and 5.5 we can show the following statements: 

(a) If K is a strongly root compact hypergroup and H s K a compact 
subhypergroup, then the corresponding double coset hypergroup K / / H  (see 
1.5.13 in [2] for the definition) is also strongly root compact. 

(b) I_f & and K2 are -strongly root compact hypergroups, then the product 
hypergroup Kt x K ,  (defined as in 1.5.28 in 121) is strongly root compact. 

(c) If K ,  and KZ are aperiodic hypergroups, then the product hypergroup 
K, x K, is also aperiodic. 

Concrete examples for - nonhermitian - hypergroups which are strong- 
ly root compact and aperiodic, and hence satisfy the assumptions of the func- 
tional limit Theorem 4.8, can be constructed as orbit hypergroups OH, where 
the underlying locally compact group G is the Reisenberg group. 

EXAMPLE 5.7. (a) Let G = A, be the (2nfl)-dimensional Heisenberg 
group  EM), that means Eln = C" x R with the composition 

(z, t ) ( z t ,  t') = (z+zf, t + t t - i I m  (2 ,  z t ) )  

for (z, t), (z', t') E H,. If U (a) denotes the group of unitary n x n-matrices, then 
for A E U (n) the mapping 

FA:  H ,  + H,, 

is an automorphism of H,, and H : = (FA:  A E U (n)) is a compact subgroup of 
Aut{H,). Since the Heisenberg group is simply connected and nilpotent, it is 
strongly root compact and aperiodic. By Propositions 5.4 and 5.5 the corre- 
sponding properties hold for the - nonhermitian - orbit hypergroup GH. 

-(b) In particular, for the 3-dimensional Heisenberg group G =-HI = 

R2 x R with 

for ((x, y ) ,  s), ((a, b),  E EM^, SO(2) = ( A E R ' ~ ~ :  ATA = I ,  det A  = 1) - U(1), 
H = { F A :  A E  SO (2))  c Aut (PI , ) ,  and FA defined as above, the orbit hyper- 
group GH has the desired properties. 

The spaces GR and R +  x R are homeomorphic by the mappings 
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and 
@-I: G3 + R+ x R, 

(well-defined and continuous). Carrying the convolution structure from G" to 
R+ x R one gets 

- .  . . 

for- (xy~) ,  (y, ~ ) E R +  x R, and with this convolution the group R+ x R is the 
so-called Laguerre hypergroup (with parameter 0). 

(c) A further example of a (nonhermitian) hypergroup having the two 
properties is the orbit hypergroup GH, where G = Idl and H = { F A :  A EM} 
with 

Remark  5.8. For Gelfand pairs (G, H) the corresponding space G / / H  of 
double cosets is a commutative hypergroup, In the paper [5] conditions on 
Gelfand pairs are given such that K = G//H has certain root compactness 
properties. For example (compare [5] ,  Proposition 5.25, if (G, H) is a symmetric 
pair and G is 2-root compact (see [8] for the definition), then for any compact 
set C c 4' (K) the factor set 

is also compact. Since 

the condition (*) in Remark 5.1 is satisfied. 

Conc lud ing  Remark  5.9. The hypergroups above are all aperiodic, 
and therefore the results correspond to those of Nobel for locally compact 
groups. But since there are many examples of non-aperiodic locally compact 
groups for which the generalized functional limit theorem of Teloken can be 
applied (see [17] and [IS]), more general examples fulfilling the assumptions of 
the general functional limit Theorem 3.5 can be constructed also within the 
framework of hypergroups. 
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