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Abstract. We propose a new test for multivariate normality 
based on the empirical characteristic function. We show that the test is 
afine invariant and consistent against every non-normal alternative. 
The test considered in this paper is also able to detect contiguous 
alternatives that converge to the normal distribution at the rate n-'I2. 
The results of an extensive Monte Carlo study show that the test has 
power comparable with one of the best existing procedures. 
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1. INTRODUCTION 

Although there exist more than 50 procedures for testing multivariate 
normality (for a recent review see [7]), Henze and Wagner [a] noted that only 
BHEP test (introduced in the univariate case by Epps and Pulley [5] and 
extended to the multivariate one by Baringhaus and Henze [2] )  shares all of 
the following desirable properties: 

affine invariance, 
a consistency against each fixed non-normal alternative distribGtition, 

asymptotic power against contiguous alternatives of order n - l i 2 ,  

feasibility for any dimension and any sample size. 
In this paper, we propose a new test having the foregoing properties. 
Let XI, X,, . . . be a sequence of d-dimensional, independent, identically 

distributed random vectors with distribution P and characteristic function C (t). 
By Sn we denote the empirical covariance matrix 



where X, stands for the sample mean, X,, = n-'C;_, Xj. Let S;1/2 denote 
a symmetric, positive definite square root of S; and define the scaled residuals 
by 5 = S; ' I 2  (Xi- 8.). By c,, (t) we denote the empirical characteristic func- 
tion of the scaled residuals, i.e. 

1 " en It) = - C exp (i <t , 5)) = exp (- i { S ,  t ,  S,)) C, [S ;  l i2  t), 
njZ1 

where C,(t) is the empirical characteristic function of the sample XI, . . ., X,, 
i.e. -. . -. . - 

and (a ,  .> denotes the inner product in Rd. 
For testing a hypothesis that the sample comes from a non-degenerate 

d-dimensional normal distribution (P  E &) we consider the following statistic: 

T,, = T . { X , ,  ...,x,J=,/i SUPIKV.~)~ ,  
ltl < r  

where 

t = 0, 

and 1.1 denotes the Euclidean norm in Rd. 
Note that the test statistic is defined only if S,  is non-singular. But, if P is 

the non-degenerate d-dimensional normal distribution, then S, is non-singular 
with probability one. 

The proposed statistic is a kind of distance between the empirical charac- 
teristic function of the scaled residuals and the theoretical characteristic func- 
tion of the standard normal distribution. Two similar statistics have been con- 
sidered before. The first, proposed by Csorgo 131, was as follows: 

and the statistic of the BHEP test was 

where 

2 - 4 2  exp ( - K) $s(t):= (2nP 2p2 * 

In this paper we consider the weighted supremum distance. Since the most 
important properties of a distribution are determined by the behaviour of 
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its characteristic function in a neighbourhood of zero, we use the weight func- ! 

tion l /JtJ .  

2. AFFINE INVARIANCE 

As Szkutnik 191 pointed out, every full-rank affine transformation of the 
sample is equivalent to an orthogonal transformation of the scaled residuals. 
Therefore, to obtain the affine invariance of the test statistic, it is sufficient to 
ensure that the value of the statistic T, does not change, when is replaced by 
HYj for -j =-I, . . ., n, where H is an arbitrary orthogonal matrix. To this end, , I 

In-' x;=, exp(i (t, HI;))-exp(-lt12/2)1 
SUP 
It l<r It1 

1n-l x;=, exp (i (s, Q)- exp (- IHs12/2)1 
= sup 

I H S ~  < r  lHsl 
In-'CH ]=I  exp(i(s, q})-exp(-l~1~/2)1 

= sup 
I SI 9 

Isl<r I 

which means that the test statistic is affine invariant. 

3. THE ASYMPTOTIC BEHAVIOUR 
OF THE TEST STATISTIC UNDER NORMALITY 

Let r > 0 be fixed. By C(B,)  we denote the space consisting of all com- 
plex-valued continuous functions with domain B,, where B, denotes the closed 
ball in Rd with center in 0 and radius r, endowed with the supremum norm 

Iff llcc~,.) = sup If - 
~EB,. 

Define the process Z,  by the formula 
- 

Under the null hypothesis, Z ,  converges weakly to a certain Gaussian process. 
Due to the af.fine invariance of T,, it is suficient to consider the standardized 
normal distribution of the sample. 

THEOREM 3.1. Let XI, X2, . . . be a sequence of d-dimensional independent, 
identically distributed random vectors with distribution Nd(O, Id). Then there 
exists a centered, complex-vahed Gaussian process Z in C (B,), with the covariance 
4 - PAMS 25.1 
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kernel 

for all t ,  S E B ,  such that 

where 5 denotes weak convergence. 
Since the proof of this theorem is analogous to the proof 2.1 in [a], we give 

only its main steps (the process considered in [8] is of the form % Z , + ~ Z , , '  
where 3 Z n  and 32, stand for the real and imaginary part of the complex- 
valued process 2, defined above). 

Ske tch  of t he  p ro  of. Define the auxiliary processes Z: and z,, as . 

follows : 

sin 0, xj> + <t, xj) exp (-?)I 
and 

where A = (S; '1' -Ia) Xj - S; X, for j = 1, . . ., n. By straightforward cal- 
culations it is easy to prove that 

E (2: (t))  - 0 and E (2: (s) Z,* (t)) = K (s , t): 
.- . - 

In a way analogous to that in [8], one can obtain 

as well as the existence of a complex-valued Gaussian process Z E C (B,.) such 
that E (2 (t)) = 0, E (2 (s) Z ( t ) )  = K (s, t )  and 

Before formulating the next theorem we introduce the following notation: 
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THEOREM 3.2. Under the conditions of Thewem 3.1, 

Proof.  In order to prove the theorem, we show that 

and 

f 3) 

To show (21, one can notice that (cf. [8]) 

l z n  ( t)-~n(t)l  G l t lZ~p(l).  

To obtain (31, one can estimate 

where I n 

1 " 
B, ( t )  = - (icos {t, Xj> - sin (t, Xj)). 

n j,l . .. 

Now, using - 

I (':)I-0a.s.. suplAn(r)+terp(-$)I -0  as., sup R(t)+iexp -- 
Itl <I. Ill < r  

we have (3). 
In order to prove (I), one should obtain weak convergence of finite- 

dimensional distributions (which is a consequence of Theorem 3.1) and tight- 
ness of the process Z,* (-)/I-]. 

The tightness of this process can be proved by applying Corollary 7.17 
from [I] to the real and imaginary part of this process. The entropy condition 
used in that corollary is shown in [8]. 



We define the foIlowing auxiliary functions: 

cos (t, x) -exp (- lt12/2) 
s (t, X) = 

Itl 

Now, we ought to show that there exist real-valued random variables M I  and 
M ,  such that E (M:) < a, E (M:) < co, and 

b 

Is Ct, X ) - B ( ~ ,  X)I < MI It-4, Ih(t, x)-h(s, x)l 6 M,2 It-4- 

Straightforward (but somewhat lengthy) calculations show that these inequali- 
ties hold for 

Theorem 3.2 and continuity of the norm yield 

COROLLARY 3.3. Under the assumptions of Theorem 3.1, 

SUP 
dn~c(t)-exp(-lt12/2)1 d 

If1 -=r It1 l l ~ l l c ~ B r ~ ~  
Unfortunately, there are no results about the distribution of the limit 

random variable, since it is the supremum of modulus of non-stationary com- 
plex-valued d-dimensional Gaussian random process. 

4. CONSISTENCY 

Consistency of the test based on the statistic T, for every non-normal 
alternative is implied by Corollary 3.3 and the following theorem: 

THEOREM 4.1. If P is not a d-dimensional non-degenerate normal distribu- 
tion, then there exists a constant D > 0 such that 

lim inf I C n  (4 -exp ( - ltt2/2)1 a.s. . . 

P r o  of. Csorgo [4] has showed the existence of a constant Do > 0 such 
that for every t€Rd 

lim inf I I ~ , ,  @)I2 -exp (- ltI2)1 3 Do a.s. 
n+m 
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Since, almost surely 

JC,(t)-exp(-lt12/2)1 Ile;l(t)l-ex~f-ltt~/2)) 
Itl 

2 
I tl 

the conclusion follows immediately. 
-. .. . - 

: . . . . . .- . 
- 2. ASYMPTOTIC BEAAVIOUR OF THE TEST STATISTIC 

UNDER CONTIGUOUS ALTERNATIVES 

Consider a triangular array X,,, . . ., X,,, n 2 d + 1, of rowwise indepen- 
dent and identically distributed random vectors with probability density func- 
tion f, (x) = cPd (x) (1 + n-'I2 p (x)), where @, is the density of a ddimensional 
standard normal vector and p is a bounded measurable function such that 
J R n p  (x) Qd (x) d x  = 0. We assume that n is large enough to guarantee that f,, (x) 
is non-negative. 

From the following theorem we deduce that the considered test is able to 
detect alternatives that converge to the normal distribution at the rate n-112. 

THEOREM 5.1. If all the above assumptions hold, we haue 

where the function C is defined by 

c ( t )  = j g ( ~ ,  l ) ~ ( x ) @ d ( ~ ) d x + ~ I ~ ( x ,  t)~(x)@d(x)dxy 

and g and h are defined in Section 3. 

-Proof.  Analogously to [8], one can show that 

z n  (9 d (-1 + c (.I + in C (BJ .  
1.1 1-1  - 

Thus, the continuous mapping theorem completes the proof. 

6. SIMULATIONS * 

In this section, we present the results of a simulation study in which we 
computed the empirical power of the test for some specified alternatives. Since 
in some recent studies (see [7] and [6])  the BHEP test was recommended as 

* All the computations were performed in ACK Cyfronet AGH in Krakbw under Grant 
KBN/SGI/2800/PK/029/2003 using Mathernatica 4.2. 



a reasonable choice for the omnibus test for multivariate normality, we com- 
pare the estimated powers with t@e estimated powers of this test. 

We simulated the critical values and powers of the tests for the sample 
sizes la = 20, 50 and 100 upon 10000 runs in each case. The sigdcance level 
was a = 0.05. 

In Table 1, we present the empirical critical values for the test sta- 
tistic. Table 2 and Table 3 contain the empirical powers for the test based 
on statistic T, with radius r = 1, 2, 5 and the BHEP test with parameter 
p = 0.5, 1, 2, respectively. Table 2 presents the powers for the case d = 1, 
whereas .Table 3 contains the results for the case d = 2. In these tables 
we have used the following symbols: N (0, 1) and Ex (1) denote the stan- 
dard normal and exponential distribution, U ( 0 ,  1) is the d o r m  distri- 
bution on the unit interval, LN(0, 1) is the lognormal distribution cor- 
responding to the standard normal distribution, and LogCa, b), B(a ,  b) and 
G(a, b) stand for the logistic, beta and gamma distributions, respectively. 

TABLE 1. Empirical critical values 
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TABLE 2. Estimated powers for d = 1, or = 0.05 

Alternatives 

LN (0, 1) 

Ex(l) 

u(0, 1) - . . 

Log(0, 0.6) b 

X:O 

t4 

26 

a 2 3  1) 

B(2.5, 1.5) 

LN(O, 1) 

E x ( l )  

u(0 ,  1) 

Log (0, 0.6) 

X?O 

t4 

t6 

G(2 ,  1) 
B(2.5, 1.5) 

LN(0, 1) 

Ex (1) 

U P ,  1) 

Lodo, 0.6) 

x i ,  
t4 

t6 

G(2 ,  1) 

B(2.5, 1.5) 

n = 20 

i'-" 

r = l  ~ = 2  r = 5  

90 90 90 

73 75 74 

1 15 18 

12 10 10 

24 22 2 1 

26 23 23 

17 13 13 

49 48 47 

6 12 12 

BHEP 

p=0.5  f i = 1  j j = 2  

91 91 87 

74 75 69 

2 11 . 21 

12 10 7 

24 22 16 

26 23 17 

17 14 10 

49 48 38 

7 11 13 

n 50 

100 100 100 

100 99 99 

3 63 62 

21 17 16 

64 53 52 

47 44 43 

29 25 24 

94 90 90 

22 37 36 

100 100 100 

100 100 99 

5 53 60 

21 16 12 

63 54 37 

47 44 35 

29 24 17 

94 9 1 82 

24 36 32 

n = 100 

100 100 100 

100 100 100 

10 97 97 

28 25 25 

91 84 83 

67 67 67 

43 39 38 

loo 100 loo 
53 74 73 

100 100 - 100 

100 100 100 

30 94 94 

28 24 18 

91 84 68 

68 67 57 

43 39 28 

loo 100 99 

59 73 65 
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Tanr.~. 3. Estimated powers for d = 2, ct = 0.05 

Alternatives 

L N ( 0 ,  1)' 

~ x ( 1 ) '  

u ( 0 ,  1)' 

Log(0, 0.6)' . . 

( X ~ O ) ~  , 
@412 

( td2  

G(2 ,  
B(2.5, 1 . 5 ) ~  

LN(O, 1)@N (0, 1) 

E x ( l ) @ N  (0 ,  1) 

l ] @ N ( o ,  1) 

Log(O, 0.6)@N(Q, 1) 

x:,@N(O, 1) 

t,@N(O, 1) 
k @ N ( O ,  1) 
G(2 ,  1 )@N(o ,  1) 

B(2.5, 1.5)QN (0, 1) 

LN (0 ,  1)' 

Ex 

u ( 0 ,  1)' 
Log (0,  0.6)2 

kf 0)" 

(td2 
(t6)2 

G(2 ,  1)' 
B(2.5, 1.5)' 

LNtO, l )@N(O,  1) 

Ex( l )@N(O,  1) 

u ( 0 ,  l ) @ N ( o ,  1) 

Log(0, 0.6)@N(O, 1) 

x:,oN(O, 1) 

t4@N(O9 1) 
t6@N(O> 1) 

G(2 ,  1)@N(O, 1) 
B(2.5, 1.5)QN(O, 1) 

n = 

r, 
r = l  r = 2  r = 5  

93 96 95 

76 8 1  80 

1 4 8 

15 13 13 

24 22 22 
32 24 29 

20 17 17 

50 52 51 

3 6 7 

76 79 79 

52 57 56 

2 4 6 

9 8 8 
15 14 14 

20 18 17 

13 11 11 

31 31 31 

4 5 6 

n = 

20 

B H E P  
B=0.5 p = 1  f l = 2  

97 97 94 

85 88 79 

1 8 19 

16 13 9 

28 26 16 

34 30 20 

21 17 11 

5 8 60 43 
4 9 11 

75 76 65 

53 5 5 42 

3 6 11 
10 8 6 

15 15 10 

20 17 11 

13 11 8 

32 3 1 2 1 

4 6 8 

50 

100 100 100 

100 ZOO 100 

0 35 44 

23 19 18 

64 56 55 

57 53 53 

3 5 29 29 
95 94 94 

9 26 27 

100 100 100 

97 97 97 

2 22 28 

15 12 12 

4 1 36 35 

36 34 33 

22 18 18 

78 76 76 

7 15 16 

100 100 100 

100 100 100 

1 48 57 

25 19 12 

7 1 62 3 8 

61 56 41 

37 30 18 

98 97 - 88 

16 34 29 

10D roo 99 

96 95 87 

3 18 26 

14 11 7 

41 33 19 

36 31 20 

21 17 10 

77 71 51 

9 15 13 
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Xi and tk are the chi-square and t-Student distributions with k degrees of 
freedom. 

PI Q P ,  is the distribution having independent marginals P I  and P, ,  and 
by P2 we denote PBP.  

- It might be observed from the simulations that in one dimension both tests 
behave much the same. In case of d = 2, the results depend on the type of 
alternative distribution. When both marginals are the same, the BHEP test is 
slightly superior, while in the case when one of the marginals is normal, the test 
based on T, behaves slightly better. 

It must be noticed that the power performance of both procedures heavily 
depend on the choice of test parameters. 

It is worth noticing that the tests based on the empirical characteristic 
function behave poorly when the alternative is the uniform distribution. For 
instance, the most powerful invariant test (specialized against the uniform dis- 
tribution) has power 60 in the case d = 2, n = 20 (see [lo]). 

Alternatives 

LN(0, 112 
Ex (1j2 

u(0, I)2 
Log (0, 0.612 

(x:o)\__ -. 

( t d 2  - . 
(ts)2 

G(2, 112 
B(2.5, 1.5)2 

LN(O, ~ ) @ N ( Q ,  1) 

Ex(1)ON (0, 1) 

U(0, 1)@N (0, 1) 
Log(& 0.6)@N(O, 1) 

~:o@N(o, 1) 

t4@N(O, 1) 

t 6 @ N ( O ,  1) 
G(2 ,  11C3N(03 1) 
B(2.5, 1.5)@N(O, 1) 

Acknowledgments. I would like to express my gratitude to Professor A. L. 
Dawidowicz and Professor 2. Szkutnik for many fruitful discussions. 

n = 

r, 
r = l  r = 2  r = 5  

100 100 100 
100 100 100 

0 94 94 
30 27 25 

94 89 88 

79 78 77 

50 45 43 
loo loo loo 
28 67 65 

100 100 100 

100 100 100 
2 78 78 

19 17 16 
78 68 66 
55 54 52 
31 27 26 

99 98 98 

18 44 42 

100 

BHEP 

p=0.5 j = 1  j = 2  

100 100 1 0  

100 100 1 DO 

13 96 96 
35 30 19 

97 93 74 

8 5 82 69 
56 48 33 

100 1 OD 100 

5 5 77 66 

100 100 100 

100 100 100 
6 57 62 

19 16 11 
74 6 1 38 
55 50 37 
31 25 16 

98 97 87 

23 38 3 1 
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