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Abstract. Let E be a separable real Banach space not containing 
an isomorphic copy of c,. Let 2 be a subset of Yia(E*, E) with the 
property that each Q E ~  is the covariance of the centred Gaussian 
measure pp on E. We show that the weak operator closurc of 1 con- 
sists of Gaussian covariances again, provided that 

If in addition E has type 2, the same conclusion holds for the weak 
operator closure of the convex hull of 1. As an application, sufficient 
conditions are obtained for the integral of Gaussian covariance opera- 
tors to be a Gaussian covariance. Analogues of these results are given 
for the class of y-radonifying operators from a separable real Hilbert 
space H into E. 
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- 
1. INTRODUCTION 

Let &3 be a sequence of Gaussian Radon measures on a real Banach 
space E and let (Q,) _c 9 ( E * ,  E) be the associated sequence of their covariance 
operators. Assuming that the weak operator limit lim,,, Q, = Q exists in 
Y ( E * ,  E), it is natural to ask under what conditions Q is a Gaussian covar- 
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iance again. In this paper we show that this is the case if E does not contain an 
isomorphic copy of c, and the boundedness condition 

sups 11x1I2d~"(x) < 
n E 

is satisfied. For separabIe E this implies that the weak operator closure of any 
family of Gaussian covariances 2 c 9 ( E k ,  E), which is bounded in second 
moment, consists of Gaussian covariances again, and if E has type 2, this result 
extends to the weak operator closure of the convex hull of 2. As an application 
of this l?sult we show that, in separable spaces with type 2 certain weak 
operator integrals of Gaussian covariances are Gaussian covariances again. 
These results are obtained in Sections 2 and 3. 

Our motivation for studying these questions comes from the theory of 
stochastic equations. Let A be the infinitesimal generator of a C,-semigroup 
{ S  ( l ) ) , ,  , on a real Banach space E and let { W(t) ) ,3 ,  be an E-valued Brownian 
motion. Denoting the law of W(t)  by v,, the following formula holds for the 
covariance of W ( t )  in terms of the covariance operator R, of v,: 

Extending well-known results for the case where E is a Hilbert space, it is 
shown in [3] and [S] that the stochastic differential equation 

has a unique weak solution {U(t))tEIO,Tl if and only if the operator Q T €  
9 (E*, E) defined by 

Ls a Gaussian covariance operator. Since the operators Q ( t )  : = S ( t )  R ,  S* ( t )  are 
Gaussian covariances, the abstract framework considered above-applies. In this 
special situation our results show that if E has type 2, the operator Q, is indeed 
a Gaussian covariance, and therefore the problem (1.1) has a weak solution. 

The class of Gaussian covariance operators is closely related to that of 
y-radonifying operators. Indeed, in Sections 4 and 5 we obtain analogues of our 
main results for this class of operators. In the final section we establish a con- 
verse of the main result of Section 5 for spaces with cotype 2. 

2. WEAK LIMITS OF GAUSSIAN COVARIANCES 

A Radon measure p on a real Banach space E is called a Gaussian measure 
if for all x* E E* the image measure ( p ,  x*) is Gaussian. For such a measure 
p on E there exists a unique vector rn E E, the mean of p, and a unique bounded 
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operator Q E 8 (E* ,  E), the covariance of p, such that 

(2.1) { Q x * ,  y*} = J ( x - r n ,  x*) ( x - m ,  y*)dp(x)  for all x* ,  Y*EE'.  
E 

Conversely, m and Q determine p uniquely. A Gaussian measure p is called 
centred if m = 0 or, equivalently, if the image measures (p, x*) are centred for 
all x* EE*. In this paper, all Gaussian measures will be centred. A necessary 
condition for a bounded operator Q E 2 (E* , E) to be a Gaussian covariance is 
that Q be positive and symmetric, i.e., (Qx*,  x*}  2 0 for all x* EE* and 
(Qx*,  y*),= ( Q y * ,  x*)-for all x*, y * ~  E*. If E is a real Hilbert space; a posi- 
tive synimetliic operator Q E 2 (E) (we identify E* with E in the usual way) is 
the covariance of a Gaussian measure p on E if' and only if Q is of trace 
class. Taking y to be centred, we have 

In general Banach spaces, no simple explicit characterization of Gaussian co- 
variances seems to be known. Our main tool for finding sufficient conditions 
on positive symmetric operators to be Gaussian covariances is the following 
Fatou type lemma : 

LEMMA 2.1. Let E be a real Banach space not conlaininy an isomorphic 
copy of co and let F be a norming subspace of E*. Let (Q,) G 9 ( E * ,  E) be 
a sequence of Gaussian covariances and assume that there exists a bounded 
operator Q E 6a (E*, E) such that 

(2.2) lim (Qn x*,  x*}  = (Qx*,  x*) for all x* EF 
n+m 

then Q is a Gaussian covariance and 

Here, for a given Gaussian covariance operator Q E 9 (E* , E)  we write 
pQ for the unique centred Gaussian measure with covariance Q. 

In the proof below we use freely the theory of Gaussian Radon measures 
on locally convex spaces presented in [2] ,  Chapter 3, where also unexplained 
terminology can be found. 

Proof .  We begin with observing that (2.1) and (2.3) imply the uniform 
boundedness of the sequence (Q,). Hence without loss of generality we may 
assume that F is norm closed in E*. 
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Let VQ,: = jpQn be the image measure under the canonical isometric em- 
bedding j: E E F*. Each V Q ~  is a centred Gaussian measure on I;*. Let 3 (0, r) 
and Bp(O, r) denote the closed balls of radius r in E and F*, respectively. 
Combining (2.3), the weak*-compactness of Bp(O, r), and the estimate 

we can infer that the family (vp,) is uniformly tight as a family of Radon 
measures on(F*, a(F!, fl); cf. 121, Example 3.8.13 (i). Let v be any. weak limit 
point. fpen v is a Gaussian Radon measure on (F* ,  n(F*,  F)). Let R: F + F* 
be its covariance operator and let Y E  F be fixed. By a standard argument 
involving characteristic functions, (2.2) implies that j o  Q = R. In particular, 
R takes its values in j(E), and therefore we may identify Q and R as positive 
symmetric operators from ( F ,  a(F, E)) to (E, a(E, F)). Let H be their common 
reproducing kernel Hilbert space. The canonical inclusion mapping i: H r E 
is weakly-to-D(E, F) continuous and its adjoint will be denoted by i': F -+ H; 
we have R = i o  i'. By Theorem 3.2.7 in [2] ,  H is separable, and we may choose 
a sequence (y,)  in F such that the sequence (hn) : = (T y,) is an orthonormal basis 
for H. For all N and all y E F, 

E ( Z  c7*<~hn, Y>12 = z G l l if~ll&= <RY, Y}. 
n < N  n Q N  

Hence, by Anderson's inequality [I], for all N we have 

Since F is norming for E, this implies that the series Z n g n  ih, is bounded in 
probability in E. Since E does not contain an isomorphic copy of c,, the 
Hoffinann-Jsrgensen-Kwapieri theorem ( [ 6 ] ,  Theorem 9.29) implies that 
En gn ihn converges in E almost surely and in L2 (a; E). AS a consequence, Q is 
the covariance of a Gaussian measure ,UQ on E. Note that from R = j o  Q we 
have v = j o p Q .  

It remains to prove (2.4). Let EQ denote the closure of the inear support of 
y,. Since pQ is Radon, EQ is a separable closed subspace of E and we may 
choose a sequence of norm-one eIements (y,) in F such that Ilxll = 
sup,, I(x, yn}l for all x €EQ. For every r > 0 and N we have, by weak conver- 
gence, 
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By monotone convergence, (2.4) follows from this by first letting N -+ co and 
then r + a .  rn 

The following example shows that the lemma fails for E = c,: 

EXAMPLE 2.2. Let T :  Z2 + c0 be the multiplication operator associated 
with the sequence l / , / E ,  I/,/=, . . . For n 2 1 let T, denote the multiplica- 
tion operator associated with the sequence 

Then for every 3 1 the-operator Qn : = T, 0 T,* is the covariance of a centred 
Gaussian me'asure p, on co. With Q : = T 0 T* we have limn,, (Q, x*, x*) = 

{Qx*, x*) for all x* E E * .  As is shown in [7], Theorem 11, the assumptions of 
the lemma are satisfied but Q fails to be a Gaussian covariance operator. 

Let us denote by 9(E*, E) the collection of all Gaussian covariances in 
Y (E* , E). A collection 9 E 3 (E*, E) will be called bounded in second moment if 

suPJ11x1I2dclQ(x) < a. 
Q E ~  E 

Lemma 2.1 can be rephrased as follows: if 2 G g(E*, E) is bounded in 
second moment, then its sequential weak operator closure is contained in 
9(E*, E). For separable spaces E this may be strengthened as follows: 

THEOREM 2.3. Let E be a separable real Banach space not containing an 
isomorphic copy of co.  Let 9 E $9 (E*, E) be bounded in second moment and let 
2w denote the closure of 9 in the weak operator topology of 9 (E*, E). Then 
- 
22" G 9 (E*, E), and for all R E  Sw we have 

- P r o of. Since E is separable, we may pick a sequence (x,*),~, in E* whose 
linear span P is a norming subspace for E. Fix an arbitrary R ~ 2 ~ .  For each 
n 3 1 let Q, E 9 be an operator such that I((R- Q n )  x;, x ~ > I  Q l / n  for 
j ,  k = 1 ,  . .., n. Then lim,,, (Q,x;, xT) = (Rx?, x,*) for all j ,  k 2 1, and by 
polarization this implies lim,,, <Q,x*, x*) = (Rx*, x*) for all x* EF. The 
result now follows from Lemma 2.1 rn 

3. WEAK INTEGRALS OF GAUSSIAN COVARIANCES IN SPACES WlTH TYPE 2 

Recall that a Banach space E is said to have type 2 if there exists a con- 
stant C B 0 such that for all finite subsets {x,, . . ., x,} of E we have 
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where I&,):= are independent Rademacher variables. The least possible con- 
stant C in (3.1) is called the type 2 constant of E and is denoted by C2. Examples 
of spaces with type 2 are the Hilbert spaces and the LP-spaces for p E [2, co). 

LEMMA 3.1. Ler E be a real Banach space of type 2. Let Q = E, a,, Q., 
where un 2 0 and Q, E 9 ( E * ,  E )  for all n = 1, . . ., N .  Then Q E $9 (E* , E) and 

Pr__oof. -Without loss of generality we may assume that an > 0 for all 
n = -1, . . ., N. Let us denote by v, the centred Gaussian measure on E given by 

v n  (31 = P Q ~  ( B / J ~ I  

for Bore1 sets B E E. Then Q is the covariance of the centred Gaussian measure 
p~ = vl * . . . s v,. For any choice of (rl, . . ., rN)  E ( -1, 11, we have, using the 
symmetry of each of the v,, 

Let be independent Rademacher variables on a probability space 
(a, P). Putting r ,  : = E, (w), taking expectations with respect to w E i2 and ap- 
plying Fubini's theorem, we obtain 

Since E has type 2, the right-hand side can be estimated from above by 

A Banach space E with type 2 cannot contain an isomorphic copy of c,.  
Hence we may combine Theorem 2.3 and Lemma 3.1 to obtain the following 
result, in which c o 9  denotes the convex hull of 9.: 

THEOREM 3.2. Let E be a separable real Banach space with type 2. i f  
9 G 3 ( E * ,  E)  is bounded in second moment, then aW c 9 (E*, E) and for all 
 RE^^ we have 
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This theorem will be applied next to show that in spaces E with type 2 the 
weak operator integral of a function with values in Q(E*, E) belongs to 
B(E*, E). For this result we need the foIIowing elementary lemma. 

L E ~ '  3.3. Let {X, A) be a probability space and let pl > 0 be arbitrary. 
For m = 1, . . ., M let f,: X R be bounded. Then there exists a jinite partition 
P = A,, .. ., Ak of X into disjoint measurable sets with the following proper- 
t y :  for every refinement P' = B 1 ,  .. ., Bk, and every choice of points l j ~ B j ,  
j = 1, ..., kt,  we have 

Proof.  Let If,l d R for m = I ,  . . ., M. For N so large that 2R/N < y, 
divide [ - R ,  R] into N disjoint intervals I, of length 2R/N and let 
B,,, = fil{I,), pn = 1, . . ., M ,  n = 1 ,  . .., N. Consider the partition P of X 
generated by the k = jVM sets B n . . . n BMTnM with 1 < n l ,  ..., n~ G N .  
If P' is a refinement of P and if Cj  E P', then Bj s Ai for some Ai E P, and 
therefore for all (E Bj and all pn we have 

By integrating, we see that P has the required properties. s 

T H W ~ M  3.4. 'Le t  E be a separable real Banach space with type 2, let (X, A) 
be a probability space, and let Q : X -+ 3 ( E X ,  E) be a function with the fol- 
lowing properties: 

(1) Q (0 E B (E*, E) for I-almost all 5 EX and we have 

(2) 5t+ Q (5) x* is Pettis integrable for all X* EE*. 
Then the operator Qx E 9 (E" , E) defined by 

Qxx* := S Q ( t ) x * d I ( t ) ,  P E E * ,  
X 

- 

belongs to B(E*,  E) and we have 

Remark  3.5. It is implicit in the formulation of the theorem that the 
function 

is measurable. That this is indeed the case can be checked by an argument 
using approximation of x w ( I X ~ ( ~  by cylindrical functions. The details are some- 
what tedious and are left to the reader. 

5 - PAMS 25.1 
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P r o  of. Let X, be a set of full A-measure in X with the property that Q (5 )  
is a Gaussian covariance for all  EX^. Without loss of generality we may 
assume that X ,  = X. 

Step  1. We first prove the theorem under the additional assumption that 
the function Q is bounded in the operator norm of T[(E*, E). Let W be the set 
of all operators R E co 2 of the form R = c=, aj  Q (c,), where 

(3.2) aj=p(Aj)  and t j € A j  for all j = 1 ,  ..., k 

for some partition P = A l l  . . . , Ak of X. 
- F;. 6 > 0 arbitrary and fixed let la denote the collection of all R E  8 for 

which P and the C j €  Aj in (3.2) satisfy the additional requirement 

Note that every partition P = A,,  ..., A, has a refinement P' = B, ,  . .., B,# 
such that (3.3) holds for P' and a suitable choice of points 

W 

We claim that Q,E& , Suppose the contrary. Then some weakly open 
subset of Y (E*, E) containing Qx is disjoint from g6. It follows that there exist 
an integer M 3 1, elements x:, . .., x&, y?, . . ., y g ~  E*, and an E > 0 such that 
for all R E  9d we have 

I((Qx-R) x:, y:)l 2 E for some E ,  r n ~  (1, . . ., M ) .  

In particular, for all partitions P of X and all choices Aj subject to the 
condition (3.3) we have 

for some 1, r n ~  (1, .. ., M). But this is impossible in view of Lemma 3.3. This 
- proves the claim. 

By Lemma 3.1 and (3.3), for any R E B ? ~  we have 

Moreover, by the claim and Theorem 3.2, 

The theorem (for bounded Q) now follows by combining these estimates and 
noting that 6 > 0 was arbitrary. 
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Step  2. For general functions Q, let Q(") : = lr Q. Then Q(') is 
bounded and satisfies the conditions (1) and (2). Hence, by Step 1, the opera- 
tor Q, E 9 (A*, E) defined by 

Q$)x* : = Q(')({) X* dA (t), x* E E*, 
X 

is a Gaussian covariance. Clearly, we have {Q t 'x* ,  x*) 'T (Q, x*, x*) as 
n + m for all x* E E*. Therefore the condition (2.2) in Lemma 2.1 is satisfied 
and, by Anderson's inequality, the condition (2.3) is satisfied as well. The proof 
is concluded by; an application of this lemma and noting that for x*'E E* we 
have L 

( Q x  x*, x*} = lim (QP x*, x*} 
n+ m 

= lim <Q'"'(t) x*, x*) dlE (8 = j (Q (t) x*, x*) dA ({I, 
n+cc X 

where the last equality follows by monotone convergence. 

COROLLARY 3.6. Let E be a separable real Banach space with type 2 and Iet 
(X, 1) be a probabiiity space. Let Q E B(E*, E) be fixed and let S :  X -, 2 (CE)  be 
a strongly measurable function satisfying 

(3.4) 1 llS~5)1l2 (5) < a. 
X 

Then the operator Q ,  E 9 (E*, E) defined by 

belongs to 9 ( E * ,  E )  and we have 

Proof.  For all x* E E*, the function i: H S(5) QS* ( T )  X* is strongly measu- 
rable by Pettis's measurability theorem, and therefore Bochner integrable by 
(3.4). For all 5 EX,  S ( 9 )  QS* (t) is the covariance operator of the image measure 
S (t) ,up = : pr, and therefore 

An application of this result to stochastic evolution equations has been 
discussed in the Introduction. 
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4. WEAK LIMITS OF y-RADOMFYING OPERATORS 

Let H be a separable real Banach space. A bounded operator T E 2 (H, E)  
is said to be y-radonijying if TT* E B ( E * ,  E). Here we identify H and its dual in 
the usual way, which permits us to view T T *  as a bounded operator from E* 
into E. It is well known that 

defines a- norm I l - l l v c H ~  on the vector space y ( H ,  E) of all y-radonifying opera- 
, r 

tors f r o m ' ~  to E, and that y ( H ,  E)  is a Banach space with respect to this norm. 
If (h,) is an orthonormal basis for H and (g,) is a sequence of independent 
standard Gaussian variables, then 

IITIIf(H,E) = IIzgt~ Thnl12m 
n 

I 

An overview of the theory of y-radonifying operators is presented in [2]. We 
shall need the following ideal property, which is implied by Anderson's in- 
equality: if S, : H ,  + H and S ,  : E + El are bounded and T: H + E is y-rado- 
nifying, then S2 TS1: HI +El is y-radonifying and 

As an application of Lemma 2.1 we obtain the following Fatou lemma for 
y-radonifying operators. 

THEOREM 4.1. Let H be a separable real Hilbert space, E a real Banach 
space not containing an isomorphic copy of c o ,  and F a norming subspace of E*. 
Let (T,) be a bounded sequence in y(H, E )  and let T E ~ ( H ,  E)  be such that 

Then T E y ( H ,  I?) and 
. - 

P r o  of, Since the operators T, and T have separable ranges, there is no 
loss of generality by assuming that E is separable. 

Fix a sequence (x;) of norm-one vectors in F such that llxll = supjI(x, x,">l 
for all X E E .  Also fix an integer k $ 1. Noting that by (4.1) we have 
limn,, T,*xT = T*xT weakly in H for all j 2 1 ,  we choose a sequence of 
convex combinations of the form 
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such that 

(4.4) lim IISLk)* xi* - T* xj*H = 0 for all j = 1, . . ., k. 
n - m  

By (4.31, the inequality I 1 . I I  < I l . l ly (H,E) ,  and the boundedness of (T,) in Y ( H ,  El, 

(4.5) SUP IISik'II < sup [lsik)llycB,s < sup (sup lITmlly(~,~)) < 
n n " m a n  

From the estimates 
-. . -. .. N?) 

l.ccsLk)-n~*x;, X;)I 6 ~CI((T.-T)T*X;, 
m = n  

G sup I{(T,- T) T* x;, xT)l 
man 

and (4.1) it follows that 

Therefore, by (4.4H4.6) we obtain 

= lim (SLk) T* xT , xi*) + lim ( S f '  (Sik)* xj* - T *  xj*), x;) = ( T T *  xy , xj*) 
n + m  n+ m 

for all j = 1, . .., k. 
For every k 2 1 we use (4.7) to choose an index nk such that 

I ( S ~ ~ S ~ ~ * x ~ , x ~ ) - ( T T * x ~ , x T } J < l / k  for a l l j = l , , . . 9 k .  

Then 

(4.8) l i m < S ~ ~ ) S ~ A , ' * x ~ , x ~ > = { T T * x ~ , x ~ )  for a l l j 2 1 ,  
k+ a; 

By polarization we infer from (4.8) that 
- 

(4.9) l i m ( S ~ ~ S ~ ~ * x * , x * ) = < T T * x * , x * )  for all x*€FO, 
k-tm 

where Fo denotes the linear span of the sequence (x:). It follows from (4.5), (4.9), 
and Lemma 2.1 that T E y (H, E) and 

By applying (4.10) to suitable subsequences of (T,) the estimate (4.2) follows. 

Under the stronger assumption that limn,, T, h = Th for all h E H this 
result is contained in [5], Proposition 4.10, where it is proved with the fol- 
lowing concise argument. Fix an orthonormal basis (h3 of H and an integer k. 
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Then, by the Fatou lemma, 

Hence 

This means that T is -. almost summing in the sense of [4], Chapter 12. Since 
E does fi$ contain c,, the Hoflmann-JmrgensenKwapien theorem implies that 
T E y (H, E) and (4.2) follows from (4.1 1). 

Let (X, A) be a separable a-finite measure space. We call an operator 
T E y (I? (a, E)  representable if there exists a function 4:  X + E such that for 
all x * E E *  we have T * x *  = (4 ,  x * } .  Here ( 4 ,  x*)~l?(X) is defined by 
(4, x*) ({) : = {#I(), x*) for { EX. In this situation we say that 4 represents T 
We write y (X; E) for the vector space of all functions 4 :  X -+ E representing 
an element T of y (E(X), E). For such a function we write Il$lly(x;E):= 
IITllr(~,m- 

Our interest in the class y (X; E) is explained by the following result 
from [8]: 

If 4: (0, T )  + E is a function such that (4,  x*) E I? (0, T )  for aII x* E E* 
and if W =  (W(t)),20 is a real-valued Brownian motion, then 4 is stochastically 
integrable with respect to W i f  and only if # E  y ((0, T); E), and in this case we 
have 

Theorem 4.1 implies a Fatou lemma for functions in y (X; E). It generalizes 
Proposition 4.11 in [a, where stronger measurability and convergence assump- 
tions were imposed. As in [5] the proof is based on Egoroffs theorem, but the 
details are more intricate. By the result from [8] just quoted, for X = (0, T) it 
provides a sufficient condition for stochastic integrability of certah E-valued 
functions. 

THEOREM 4.2. Let (X, A) be a separable cr-finite measure space and let E be 
a real Banach space not containing an isomorphic copy of co. k t  (4,) be a se- 
quence of functions in y (X; E) satisfying 

and let 4 :  X + E be a function such that 

lim (4,, x*} = (4, x*) p-almost euerywhere 
n+ cc 
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for all x*EE*. If # is Pettis integrable, then #EY(X; E) and 

Proof.  For all n and all X*E E* we have II(4,, x*)112 d I14nllrr~;s Ilx'll. 
Hence, by Fatou's lemma, (4, x*) E fi (X) and 

I I ( # ,  x*>lla < liminfll<$,, x*)l12 < Ilx*ll liminfIl#nl]ycx;E, for all x * ~  E*. 
n+m n-ro 

S tep  1. The- separability of (X, A) implies that L2(X) is separable. Let 
T,: I.? (X) + E and T :  J? (X) + E be the operators represented by 4, and 4, 
respectively. Note that T is well defined since 4 is Pettis intep-able. That the 
operators T, are well defined follows immediately from the assumption that 
$n E Y (Xi E). 

Let E ,  be a separable closed subspace of E containing the ranges of the 
operators T, and T Let ($1 be a sequence of norm-one vectors in E* such that 
llxll = supjl{x, xy)l for all X E E ~ .  

We construct a sequence of measurable subsets (X(k)) of X with the fol- 
lowing properties: 

(1) I(X(k)) < m for all k ;  
(2) I (X\Uk X'k') = 0; 
(3) limn,, <#,, xy ) = (4 ,  xy ) uniformly on xtk) for all j and k. 
We start by selecting a sequence of measurable subsets (Ack)) of X with 

A.(A(k)) < CQ and X = Uk Aik); this is possible since (X, I) is 0-finite. Next we 
use Egoroffs theorem to choose measurable subsets A$) G A(k) such that 
rl(A(k)\AE)) < 2 - m  and limn,, ($I,, xi*) = ( 4 ,  x;) uniformly on Ag) for all 
j =  1, ..., m. Let 

  hen Blk) c A(k), l(Atk)\Bfk)) < 2-', and limn,, (#,, xT) = (4 ,  x?) uniformly 
on Bfk) for all j 2 1. The sets 

have the desired properties. 
S tep  2. Put #ik) : = l,(k) 4, and q!~(~) : = lX(k) 4. Let T,(O): Lz (X) + E and 

Pk): LZ(X) -+ E be the operators represented by #kk) and 4"), respectively. 
From Ek) f = T, (lx{r) f) and T(k) f = T,, (lxck) f) it follows that Ek) and T(k) 
take their values in E,. 

Let f EJ? (X) be fixed. From the estimate 
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it follows that limn,, {Ck)  f - Ttk) f, x;) = 0 for all j and k. Theorem 4.1, 
applied to the Banach space Eo and the norming subspace of E$ spanned by 
the restrictions of the x; to Eo,  implies that ~! I (~)E  y (X; E )  and 

where the second inequality is a consequence of Anderson's inequality. Next, 
for all f EJ? (X) we have, by Fatou's lemma, . . 

1 1  T'" f_ TLII .= s~p-\(-T(~)  f - Tf, xXjk}l 
b 

.i 

G sup J If ( 4 ,  x,*)l < Illcx(k1f llzll<4, x7>112 
j CXrk) 

By dominated convergence it follows that lim,,, IITIk) f - Tf 11 = 0. Another 
appJication of Theorem 4.1 (or its special case discussed after the proof) implies 
that i $ ~ y  (X; E) and 

lim inf I14(k)[ly(X;E) 
k +  cc 

< liminffliminfl14,11Y~X;~~) = liminf l14nlly(~;~). 
k - r m  n-+m n+ w 

5. WEAK INTEGRALS OF 1/-RADONIFYING OPERATORS IN SPACES WITB TYPE 2 

In this section we will prove an analogue of Theorem 3.4 for functions 
with values in y ( H ,  E). Throughout we assume E to be separable. 

Let (X, A) be a probability space and let T :  X -+ 2 ( H ,  E) be a function 
such that T ( t )  E y (H, E) for A-almost a11 5 EX, and for all h E H the function 
5 H T  ( 5 )  h is strongly measurable. A standard argument involving the Pettis 
measurability theorem and the separability of y ( H ,  E) (which follows from the 
separability of H  and E) shows that T is strongly measurable as a y (H, E)- 
valued function. If 

then for all f E I.? (X; II) the integraI 

converges as a Bochner integral, and the resulting operator I T :  L2 (X; H) + E is 
bounded. To see this, note that from the inequality llT(t)ll < IIT(t)llycH,s it 
follows that 5 w T (5) f (t) is strongly measurable, and the Cauchy-Schwarz 
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inequality then gives 

It follows that the function {H T(<)  f (c) is Bochner integrable. Hence the 
operator IT is well defined and satisfies IIIrl[ < IITIILqX;y(H,P)). For later con- 
siderations we note that I"",* = T* (.) x* for all x* E E*. 

THEOREM 5.1. I f  E has type 2, then under the above assumptions the opera- 
tor IT: LZ ( X ;  H )  + E i s  y-radon$ying and -- . 

Proof.  Since T: X + y (If, E) is strongly measurable, there exists a se- 
quence (T,) of y (H, E)-valued step functions with the following properties: 

(i) for all n 3 1 we have 1, llT,ll;w,E) dm < 1, IITII&,E~ dl; 

(ii) limn+, jx I I  T, - TII?(H,E) d l  = 0. 
N 

Let us write T, = C," lBks,@T,,, with the Bk,n measurable and disjoint 
and with T,,, E y ( H ,  E). For each n 2 1 let 

where Q,,, = T,,, 0 7'&. Let in: H, c, E denote the reproducing kernel Hilbert 
space associated with Qn. Then Q, = in o  i,*. By Lemma 3.1, in is y-radonifjing 
and 

N" 

(5.1) Ilinll;(H,,E) C$ A ( B k , n )  IlTk,nll;(B,E) 
k = l  

Let Q : = l T o  1; and note that 

Therefore for all x*, y*€E* we have 

which tends to 0 as n + co by (i), (ii), the Cauchy-Schwarz inequality, and the 
1 I ' I I  I l * l l y [ ~ , ~ ) -  
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By (5.1) and (5.2) we may apply Theorem 3.2 to the operators Q, and 
Q and infer that I, is y-radonifying with 

COROLLARY 5.2. Under the assumptions of Theorem 5.1 ,  the operator 
T :  H + E defined by 

T h : =  S T(<)hdA(t )  , . 

z .  -- .. X - .  

is y-radonifying and 

Proof.  This follows by restricting the operator IT of Theorem 5.1 to the 
closed subspace of I? (X; H )  consisting of all functions of the form l @ h  with 
h € N  and noting that IITII,(H,E, 6 I I J T I I ~ ~ H , E ) -  

6. THE SPACES @ (X; y (N, E))  AND y (I? (X; H), E) 

In this section we take an operator-theoretical look at Theorem 5.1. With 
the notation of the previous section, for simple functions T: X + y (H, E) we 
have 

where the right-hand side can be defined in an elementary way. We claim that 
the operators IT belong to y (I.? (X; H ) ,  E) regardless whether E has type 2 or 
not. By Iinearity it is enough to prove this for simple functions of the form 
T = 1, @ S ,  where 3 s X has finite measure and S E y (H, E). But then we have 
I, = S 0 i B ,  where ig: L? (X; H) 4 H is defined by 

Hence I ,  is y-radodying by the right ideal property. The contents of Theorem 
5.1 may be summarized by saying that if E has type 2, the mapping I: T H IT  
has a unique extension to a bounded operator 

of norm llIrll < C z .  In line with the development so far, we derived this result 
from the Fatou lemma for Gaussian covariances. We proceed with an indepen- 
dent and considerably more elementary proof of this result. The reason for 
including this argument will become apparent in the sequel when we prove 
a converse for spaces with cotype 2. 
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LEMMA 6.1. If E has type 2, the mapping I :  T w l T  defined b y  (6.1) has 
a unique extension to a continuous embedding 

of norm 11111 < C z .  

P r o  of. Consider a simple function T = zf=, 1 Bm@ Tm, where the 3. r X 
are disjoint and have finite positive measure, and Tm E y (H, E )  for all 
m = 1, . . ., M. Choose an orthonormal basis (h,),, , for H .  By the separability 
of (X, A), the space @(X) is separable and we may choose an orthonormal 
basis (f;)m31b for C(X), the first M elements of which are given by f, := I 

1 
I 

1 / 4 1 ( B , )  I,=. Then the doubly indexed sequence (fm@h,),,n3 is an orthonor- 
ma1 basis in C(X; H). Finally, choose a doubly indexed orthogaussian se- 
quence (gm,),,n a and an independent Rademacher sequence (E",):=,. Then, 
using orthogonality, the symmetry of the g,,, Fubini's theorem, and the type 2 
property, we estimate: 

m=l nbl 

This proves that I :  TI+ I, is bounded of norm 11111 < C2 on the dense subspace 
of all simple functions in 2(X; y (H, E)), and the unique extendability fol- 
lows. 

To check that I  is an embedding, suppose that I,, = IT2  for cer- 
tain Tl,T2 (X; y (H, E)). Then from ( I T I  f, x*) = (IT2 f, x*) for all f E 

L2 ( X ;  H) and x* E Ek it follows that T: x* = T '  x* in I? (X; H) for all x* E E*, 
and hence <TI h, x * )  = (T2 h, x*) in L? (X) for all ~ E H  and x* E E*. BY strong 
measurability this implies TI h = T, h in L2 (X; E) for all h E H. Since H is sepa- 
rable, we obtain TI = T, A-almost everywhere. E 
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We proceed with an anaIogue of Lemma 6.1 for spaces with cotype 2. 
RecaIIing that I :  T t-t I ,  is injective on the simple functions, we can infer that 
the inverse mapping I - ' :  I T w T  is well defined on the subspace 
yo (I.? (X; H), E) of all operators I E y (2 (X; H ) ,  E) of the form I = IT with 
T simple. 

LEMMA 6.2. If E has cotype 2, the mapping I-'  has a unique extension to 
a continuous embedding 

of normbllI-'11 < c 2 ,  where c2 is the cotype 2 constant of E. 

P r o  of, By reversing the estimates in (6.2) we see that the operator I-' is 
bounded from yo (LZ (X; H), E) into LZ ( X ;  y (H, El) of norm III-')I < cz (E). By 
an easy approximation argument, yo (I? {X; H), E) is dense in y (L2 (X; H), E) 
and the unique extendability follows. 

To see that I -  ' is injective, define J: I? (X; Y ( H ,  E)) + 9 (L2 ( X ;  H ) ,  E) by 

and let j: y (L' (X; H), E) c, dp (I? (X; H), E) be the natural inclusion mapping. 
On yo (I? (X; H), E) we have J o  I -  ' = j and by continuity this identity extends 
to all of (I? (x; H), E). Hence if I-' S ,  = I-' S ,  for certain S , ,  S2 E 

y (E (X; I f ) ,  E), then jS1 = jS2 as elements of 9 (I.? (X; H), E), and therefore 
S1 = Sz. Ea 

By Theorems 6.1 and 6.2 one expects that the inclusion 

is proper when E is a space with type 2 but not with cotype 2, and similarly 
.that the inclusion 

r (I.? (X; If), E) Q I? (X; r ( H ,  E))  

is proper when E is a space with cotype 2 but not with type 2. The fol- 
lowing examples confirm this for the spaces lP in the appropriate ranges 
of p. 

In fact, the first example shows that in case of type 2 it may even happen 
that I ,  is y-radonifying while none of the integrated operators T(5)  has this 
property. 

EXAMPLE 6.3. Let H = i2 and E = l p  with 2 < p < m. For k = 1 ,  2 ,  . . . we 
choose sets A, c [O, 11 of Lebesgue measure l/k in such a way that for a11 
t E [ O ,  11 we have 
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Define the operators T (t): E2 + 1P as coordinatewise multiplication with the 
sequence (al (t), a2 (t), . . .), where 

1 i f t € A k ,  
= 0 otherwise. 

Then IIT(tjll = 1 for all t E LO, 11 and none of the operators T (t) is y-radonify- 
ing. Indeed, by Theorem V.5.6 in [9], Q (t) := T (t)o T* (t) is a Gaussian co- 
variance operator if and only if 

where u,$ denotes the k-th unit vector of 1q (f/p+l/g = I). From 
Q ( t )  U? = a; ( t )  uk, where uk is the k-th unit vector of lP, and from (6.3) and (6.4) 
we see that this sum diverges for all t€[O,  11. 

The operator I,: I? ( [ O ,  11; 1') + P, I ,  f : = T (t) f (t) dt, is well defined 
and bounded. Putting Q, : = l T o l $ ,  we have 

Consequently, 
1 

It follows that QT is a Gaussian covariance operator and IT is y-radonifying. 
Note that by the first identity in (6.5) and polarization we have 

1 

QTu* = S ~ ( t ) ~ * d t  
0 

for all u* E P, i.e., QT is the integral of the function t~ Q (t). 

The next example shows that in case of cotype 2 there exist functions in 
L" ([0, 11; y (12, lP)) which do not represent an element of y (@ ([O; 11; 12), lP): 

EXAMPLE 6.4. L ~ ~ H = E ~  and E =   with I < p < 2 . ~ o r k  = l ,2,-  ... we 
now choose sets A, G 10, 11 of Lebesgue measure 1/kzip in such a way that for 
all t E [0, 11 we have . 

where N is an arbitrary fixed integer greater than zk,, l/kzJp. As before we 
define the operators T( t ) :  1' + IP as coordinatewise rnuk~~lication with the se- 
quence (a ,  (t), a, (t), . . .) defined as in (6.4). For all t E [0, ll, T (t) is y-radonify- 
ing and 

IIT ~ ~ H Y ( P , I P ,  4 Cp N2Ip, 
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where the constant C, depends on g only. For each h E 1' the function t I+ T ((t) h 
is strongly measurable, and by the separability of y (lZ, lP)  this easily implies 
the strong measurability of t I+ T (t). Consequently we obtain T E Lm ( [ O ,  11; 
y ( I 2 ,  IP)). However, the corresponding operator I ,  E Y (I? (10, 11; 1 2 ) ,  l p )  fails to 
be y-radonifying. Indeed, with the notation of the previous example we have 
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