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Abstract. Let X(t) be a fractional Lbvy motion ol B e -  
mann-Liouville type and let Y(t) be a corresponding fractional stable 
Ornstein-Uhlenbeck process obtained through the Lamperti trans- 
formation of X (t). We investigate the asymptotic dependence structure 
of the stationary process Y(tj as t + co and we show that Y (t) does 
not have the long-memory property. 
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1. INTRODUCTION 

For a stationary process {Z(t), ~ E R )  with finite second moment, it is 
possible to characterize its dependence structure by the covariance function 
Cov(Z(s), Z(t)). However, when the process is stable with index of stability 
0 < a < 2, the covariance function is not defined. Instead, we can use other 
functions characterizing the dependence structure. In this paper we will focus 
on the following measure of dependence: 

(1) r (el ; ez; t) : = E [exp ( i  (8, Z (t) + 0, Z (o)))] - 

- E [exp {i 8, Z (t)}] E [exp (i0, Z (O))] , el, OZ E R .  

Unlike the covariance, r ( 0 , ;  8,; t) is always well defined and shares the fol- 
lowing properties: it is asymptotically proportional to the covariance (if the 
process has finite variance), and it is equal to zero for independent Z(t) and 
Z(0). The function r(el; 8,; t) was extensively used in [2] and [7], where the 
authors analyzed the asymptotic dependence structure of some stationary sta- 
ble processes. It also appeared in the recent work of Maejima and Yamamoto 
141, where the long-range dependence (LRD) of the solution of the fractional 
Langevin equation was proved. In [4] the authors introduced the following 
definition of long memory: 
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DEFINITION. A symmetric a-stable stationary process Z(t) has long merno- 
ry if r (0,; 02;  t )  defined in (1) satisfies 

The main purpose of this paper is to analyze the dependence structure of 
the fractional stable Ornstein-Uhlenbeck process defined in Section 2. We 
adopt the function r ( O 1 ;  B z ;  t )  as the measure of dependence for stable proces- 
ses a n e i n  Section 3; we investigate its asymptotic behavior for the discussed 
0rnsteinkJhlenbeck process. Obtained results give an answer to the question 
of long memory in the sense of the above definition for the examined stationary 
process. 

2. FRACTIONAL STABLE ORNSTEXN-UHLENBECK PROCESS 

First we introduce the fvactionaI Lhuy motion of RiemunnLiounille type 
(FLM-RL) as the following Riemann-Liouville fractional integral (see [6]): 

where H > 0, a E (0, 21, r(.) is the gamma function and La (s) is the standard 
symmetric ol-stable Lkvy motion. Observe that (t  - s j H - l i a ~  E (0, t); thus L,,, ( t)  
is a well-defined a-stable process. Additionally, for H = l/a we get the standard 
a-stable Lkvy motion. 

It should be noted that in the Gaussian case (i.e. for ct = 2) L2,H(t)  was 
extensively studied by many authors; see [3] and [5]. Motivated by that fact, 
we consider here the more general stable case. Since for every a > 0 

L,,, (at)  = 
1 J (at - s ) ~  - ' l a  dLL (s) r(H- l/a+ 1j 0 - 

1 t 
d - - ! a H - l / a f  lta (t - u ) ~  - ' I u  d La (u) = aH La,H ( t )  , T(H-l/a+ 

the FLM-RL process is clearly H-self-similar, but unlike the linear fractional 
Livy motion (see [7j), it does not have stationary increments. 

The Lamperti transformation [I] provides a one-to-one correspondence 
between self-similar and stationary processes. A classical stationary Orn- 
stein-Uhlenbeck process can be derived through the Lamperti transformation 
from the Brownian motion. Following the same line, we define a fractional 
stable Ornstein-Uhlenbeck (FSOU) process as the Lamperti transformation 
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from the FLM-RL, namely 

(4) ( t )  : = e-'H La,H (et) 

For LY = 2, Y,,,(t)  reduces to the process considered in 131. 
In the next section we will investigate the dependence structure of this 

stationary a-stable process. 
.. .. . 
3. DEPENDENCE STRUCTURE 

We focus now on the asymptotic behavior of the measure of dependence 
for the FSOU process, that is 

We exclude the case O,0, = 0, since then trivially r (el; 0 2 ;  t )  = 0. We start 
with the following theorem: 

THEOREM 1 .  If 0 < u < 1 ,  H > 0, then 

where 

and 

C(O1; f12) = exp 

. To establish the proof of Theorem 1, we begin with a lemma.- 

LEMMA 1 .  If 0 < u < 1 ,  then for every a ,  b E R we have 

Proof .  For 0 < a < 1 we have lala < la - bla t lbIa, which gives 

lala- [bla < la- bl" 

and conversely 

Ibla - lala < la - bla. 

This completes the. proof. rn 
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We will also use repeatedIy the formula (see [7]) 

for 3 c R and f E L" (B). 

Proof  of Theorem 1. We put for dl, B z € R  

1 (ol ; QZ ; t )  : = -log E [exp {i (01 K ,  ( t }  t 0, X,, (o)))] 

-- = .  ..+log E Cexp (iB1 K,B ( t ) ) ]  +log E Cexp (id2 Y,,, (0))l. 

The relationship 

r(B1; BZ;  t)  = C(O1; U2)-(exp ( - I (O1;  Oa;  t ) > - l )  
holds with 

C (0,; 0,) = E [exp (i01 Y,,, to)]] E texp { i e z  K,H (0))l 

where in the last equality we used (8). Thus, if I (el; 0,; t) + 0 as t + a, then 

which shows that r ( . )  and I( . )  are asymptotically equal. 
Formula (8) and some standard calculations give the following 

where 

and c,,, is given by (7). 
- Since for every s E (0,  1) - 

and 

I which belongs to L1 (0, I), from (10) and the dominated convergence theorem 
we get 

1 
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Similarly, for every s E (0 ,  1) we have 

et .12(t ,  s)+O as t + m,  

and from Lemma 1 we obtain 

which also belongs to L1(O, 1). Therefore, the dominated convergence theorem 
implies that A . -. .- 

0 

and finally from (11) and (12) we get 

which completes the proof. a 

THEOREM 2. For a = 1, H > 0 we have 

I (i) i f  S 1  O2 > 0,  then r (el ; B z ;  t) = 0 ;  
(ii) i f  81 O2 < 0, then r(O1; 02;  t )  2. c l , ~ .  l f l l l .  C(0,; 6,) . e l f  as t -+ m, 

where C(B1; B2) and cl., are given by (6) and (71, respectively. 

P r o  of. For a = 1 formula (9) yields 
1 1 

I ( & ;  02; t) = c1,a-( j  11 ( t ,  s )ds+ j  12 ( t ,  s)ds),  
0 0 

where 
1, ( t ,  sf = -lOl[e-ta(ef-s)H-l,  

(i) I f  O 1  d2 > 0 ,  then clearly I ,  (t, s) + 1, ( t ,  s) = 0,  and therefore 

r(O1; 82; t) = 0. 

(ii) For 19, Q2 < 0 we show as in Theorem 1 that 

Further, for every s ~ ( 0 ,  1) we have 

Taking advantage of Lemma 1 and the dominated convergence theorem we 
conclude that 

1 

(14) J 1 2 ( t ,  s)ds - -1811.e-t as t  + co 
0 
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and finally from (13) and (14) we obtain 

To prove the next theorem, we need the following lemma: 

LEMMA 2. If 1 1 a 01 2, then for every a 2 0,  b 3 0 we haue 
(i) la-b(" < aa+ba; 

{ii) ]la-br-b"] d ~ " + c l a b " - ~ ;  
' .  (iii) /la+ bla- b"l < aa+aab"-I. 

Pr+of.; (i) We -put f, (a) = la- bl" -aQ - ba. Then for a 2 b we get . 
f b ( O ) = O  and f , ' ( ~ ) = a ( a - b ) " - ~ - a a ~ - ~ < O ,  

and for a < b we obtain 

&(O) = 0 and fd (a) = - ~ ( b - ~ ) ° - ' - ~ ~ " - l  < 0 ,  

which gives $,(a) < 0. 
(ii) From (i) we have 

la-blQ-ba ,< a" < aa+crab-l. 

We put g, (a) = la - bla - ba+ au + ctaba-I. Then for a 2 b we get 

gb(0) = 0 and gb(a) = a(a-b)"-l+aa"l+olba-l 2 0,  

and for a < b we obtain 

gb(0) = 0 and gb(a) = - a ( b - ~ p - ~ + a a ~ - ~ + a b ~ - ~  3 0 ,  

which implies gb(a) 2 0. 

(iii) We put hb (a) = a" + b" + aaba- -la + bl". Since 

hb(0)=O and hb(a)=ola5-1+olba-1-a(a+b)"-130, 

-we get hb(a) 2 0. This completes the proof of the lemma. FA 

THEOREM 3. If 1 < a < 2 and H > 0, then 

where 
- a  

da,H = H (a - 1 )  + l/a' 

C(0,; 6 2 )  and C a , ~  are given by (6 )  and (7), respectively. 

Proof. From (9) for 1 < a < 2 we obtain 
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For every ss(0, 1) we have 

and, following the same lines as in Theorem 1, we obtain 

Further, for s E (0,  1) 

and from Lemma 2 we get 

< sup ( l O , l a ( l - s e - t ) H a - l + ~ -  le,l lf3,1a-l ( l -~e~' )"-~J"( l - s ) ("-~j"~("'~  
t >  1 

1 

1'311 le2lu-l if H u - l >  0, 
l l a + ~ - J B i J  JO,Ja-l)(l -s)"'-l if Ha-1 <0, 

which belongs to L1 (0, 1). Thus, the dominated convergence theorem yields 

Finally, from (15H17) we get 

which completes the proof. EI 

COROLLARY 1. The FSOU process does not have the long-memory property 
in the sense of (2). - 

Proof.  From Theorems 1, 2 and 3 we have 

which proves the statement. FA 

We have shown that, similarly to the Gaussian case [3], the examined 
generalization of the classical Ornstein-Uhlenbeck process does not have the 
long-memory property. Obtained results in connection with the ones presented 
in [4] confirm that the function r(.)  is the right candidate to examine the LRD 
phenomenon for stationary stable processes. 
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