A PROOF OF GRABINER'S THEOREM ON NON-COLLIDING PARTICLES

BY
ZBIGNIEW PUCHALA (Wroclaw)

Abstract. A detailed proof of Grabiner's theorem [1] on the exact asymptotics of the time to collision for n independent Brownian motions is given.

2000 Mathematics Subject Classification: 60J65.
Key words and phrases: Brownian motion, non-colliding particles.

1. INTRODUCTION

Let $X_{t}=\left(X_{t}^{1}, \ldots, X_{t}^{n}\right)$ be a standard n-dimensional Brownian motion, and let $\boldsymbol{X}_{0}=\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$. For simplicity, assume that \boldsymbol{x} has ordered components, so $x \in W$, where

$$
W=\left\{\boldsymbol{x} \in \boldsymbol{R}^{n}: x_{1}<x_{2}<\ldots<x_{n}\right\} .
$$

We define collision time

$$
\tau=\inf \left\{t \geqslant 0: X_{t}^{i}=X_{t}^{j} ; i \neq j\right\} .
$$

Denote the Vandermonde determinant $h(x)$ by

$$
h(\boldsymbol{x})=\operatorname{det}\left[\left\{x_{i}^{j-1}\right\}_{i, j=1}^{n}\right] .
$$

Grabiner in his work [1], Theorem 1, stated the following theorem, with a short descriptive proof using the reflection argument. In this note we give an elementary proof of this theorem.

Theorem 1. We have

$$
\begin{equation*}
\lim _{t \rightarrow \infty} P_{x}(\tau>t) t^{n(n-1) / 4}=C h(x), \tag{1}
\end{equation*}
$$

where

$$
C=\frac{(2 \pi)^{-n / 2}}{\prod_{j=0}^{n-1}!!} \int_{W} \exp \left(-\frac{|y|^{2}}{2}\right) h(y) d y .
$$

2. PROOF

We divide the proof into parts.
Following Karlin and McGregor [2] the density function for the Brownian motion starting at \boldsymbol{x} to be at \boldsymbol{y} at time t without having left W is

$$
b_{t}(\boldsymbol{x}, \boldsymbol{y})=\operatorname{det}\left[\left\{\phi_{t}\left(x_{i}-y_{j}\right)\right\}_{i, j=1}^{n}\right]
$$

where

$$
\phi_{t}(x)=\frac{1}{\sqrt{2 \pi t}} \exp \left(-\frac{x^{2}}{2 t}\right)
$$

We can factor out $b_{t}(\boldsymbol{x}, \boldsymbol{y})$ by

$$
\begin{equation*}
b_{t}(\boldsymbol{x}, \boldsymbol{y})=(2 \pi t)^{-n / 2} \exp \left(-\frac{|\boldsymbol{x}|^{2}+|\boldsymbol{y}|^{2}}{2 t}\right) \operatorname{det}\left[\left\{\exp \left(\frac{x_{i} y_{j}}{t}\right)\right\}\right] \tag{2}
\end{equation*}
$$

For the asymptotics of (2) as $t \rightarrow \infty$ we need to study the asymptotic of the determinant

$$
\begin{equation*}
\operatorname{det}\left[\left\{\exp \left(\frac{x_{i} y_{j}}{t}\right)\right\}_{i, j=1}^{n}\right] \tag{3}
\end{equation*}
$$

By writing every element of the matrix into an exponential series we get

$$
\begin{equation*}
\operatorname{det}\left[\left\{\exp \left(\frac{x_{i} y_{j}}{t}\right)\right\}_{i, j=1}^{n}\right]=\sum_{k=0}^{\infty} T_{k} t^{-k} \tag{4}
\end{equation*}
$$

where

$$
T_{k}=\sum_{\sigma \in S_{n}} \frac{\operatorname{sgn}(\sigma)}{k!}\left(x_{1} y_{\sigma(1)}+\ldots+x_{n} y_{\sigma(n)}\right)^{k}
$$

As usual, S_{n} denotes the set of permutations of $\{1,2, \ldots, n\}$ and $\operatorname{sgn}(\sigma)$ is the sign of permutation σ. The following lemma holds true:

Lemma 2. For $i=0,1, \ldots, n(n-1) / 2-1$ we have $T_{i}=0$ and

Proof. Note that

$$
T_{n(n-1) / 2}=\frac{h(x) h(y)}{\prod_{j=0}^{n-1} j!}
$$

$$
\begin{aligned}
T_{k} & =\sum_{\sigma \in S_{n}} \frac{\operatorname{sgn}(\sigma)}{k!}\left(x_{1} y_{\sigma(1)}+\ldots+x_{n} y_{\sigma(n)}\right)^{k} \\
& =\sum_{\sigma \in S_{n}} \frac{\operatorname{sgn}(\sigma)}{k!} \sum_{\substack{k_{1}, \ldots, k_{n} \\
k_{1}+\ldots+k_{n}=k}} \frac{k!}{k_{1}!\ldots k_{n}!}\left(x_{1} y_{\sigma(1)}\right)^{k_{1}} \ldots\left(x_{n} y_{\sigma(n)}\right)^{k_{n}} \\
& =\sum_{\substack{k_{1}, \ldots, k_{n} \\
k_{1}+\ldots+k_{n}=k}} \frac{1}{k_{1}!\ldots k_{n}!} \sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma)\left(x_{1} y_{\left.\sigma(1))^{\prime}\right)^{k_{1}} \ldots\left(x_{n} y_{\sigma(n)}\right)^{k_{n}} .} .\right.
\end{aligned}
$$

Now we use the observation that if $k_{i}=k_{j}$ for $i \neq j$, then the pairs of permutations $(\sigma,(i, j) \circ \sigma)$ will cancel the inner sum above. This happens because signs of these permutations are opposite and factors are the same. Using this remark we infer that the coefficient T_{k} vanishes unless there exists a decomposition of the number k into a sum of n nonnegative integers k_{1}, \ldots, k_{n} such that $k=k_{1}+\ldots+k_{n}$, and $k_{i} \neq k_{j}$ for $i \neq j$. The smallest number for which such a decomposition exists is $n(n-1) / 2=0+1+\ldots+n-1$. This completes the proof of the first part.

To compute the coefficient $T_{n(n-1) / 2}$, we must notice that decompositions of the number $n(n-1) / 2$ into a sum of nonnegative integers are only permutations of the set $\{0,1, \ldots, n-1\}$. Thus

$$
\begin{aligned}
T_{n(n-1) / 2} & =\sum_{\substack{k_{1}, \ldots, k_{n} \\
\Sigma k_{i}=n(n-1) / 2}} \frac{1}{k_{1}!\ldots k_{n}!} \sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma)\left(x_{1} y_{\sigma(1)}\right)^{k_{1}} \ldots\left(x_{n} y_{\sigma(n))^{k_{n}}}^{k_{n}}\right. \\
& =\frac{1}{\prod_{j=0}^{n-1} j!} \sum_{\theta \in S_{n}} \sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma)\left(x_{1} y_{\sigma(1)}\right)^{\theta(1)-1} \ldots\left(x_{1} y_{\sigma(n)}\right)^{\theta(n)-1} \\
& =\frac{1}{\prod_{j=0}^{n-1} j!} \sum_{\theta \in S_{n}} x_{1}^{\theta(1)-1} \ldots x_{n}^{\theta(n)-1} \sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) y_{\sigma(1)}^{\theta(1)-1} \ldots y_{\sigma(n)}^{\theta(n)-1} .
\end{aligned}
$$

In the last expression we recognize a determinant, so we obtain

$$
\begin{aligned}
T_{n(n-1) / 2} & =\frac{1}{\prod_{j=0}^{n-1} j!} \sum_{\theta \in S_{n}} x_{1}^{\theta(1)-1} \ldots x_{n}^{\theta(n)-1} \operatorname{det}\left[\left\{y_{i}^{\theta(j)-1}\right\}_{i, j=1}^{n}\right] \\
& =\frac{1}{\prod_{j=0}^{n-1} j!} \sum_{\theta \in S_{n}} x_{1}^{\theta(1)-1} \ldots x_{n}^{\theta(n)-1} \operatorname{sgn}(\theta) \operatorname{det}\left[\left\{y_{i}^{j-1}\right\}_{i, j=1}^{n}\right]
\end{aligned}
$$

Hence we get

$$
T_{n(n-1) / 2}=\frac{h(x) h(y)}{\prod_{j=0}^{n-1} j!}
$$

Proof of Theorem 1. Using Lemma 2 we write

$$
\begin{aligned}
P_{\boldsymbol{x}}(\tau & >t) t^{n(n-1) / 4}=\int_{W} b_{t}(\boldsymbol{x}, \boldsymbol{y}) d \boldsymbol{y} \\
& =t^{n(n-1) / 4} \int_{W}(2 \pi t)^{-n / 2} \exp \left(-\frac{|\boldsymbol{x}|^{2}+|\boldsymbol{y}|^{2}}{2 t}\right) \operatorname{det}\left[\left\{\exp \left(\frac{x_{i} y_{j}}{t}\right)\right\}_{i, j=1}^{n}\right] d \boldsymbol{y} \\
& =\frac{t^{n(n-3) / 4}}{(2 \pi)^{n / 2}} \int_{W} \exp \left(-\frac{|\boldsymbol{x}|^{2}+|\boldsymbol{y}|^{2}}{2 t}\right) \sum_{k=0}^{\infty} T_{k} t^{-k} d \boldsymbol{y} .
\end{aligned}
$$

Since the first coefficients vanish, we get

$$
\begin{align*}
P_{x}(\tau>t) t^{n(n-1) / 4}= & \frac{t^{n(n-3) / 4}}{(2 \pi)^{n / 2}} \int_{W} \exp \left(-\frac{|x|^{2}+|y|^{2}}{2 t}\right) \sum_{k=n(n-1) / 2}^{\infty} T_{k} t^{-k} d y \\
= & \frac{t^{n(n-3) / 4}}{(2 \pi)^{n / 2}} \int_{W} \exp \left(-\frac{|x|^{2}+|\boldsymbol{y}|^{2}}{2 t}\right) T_{n(n-1) / 2} t^{-n(n-1) / 2} d y \tag{5}\\
& +\frac{t^{n(n-3) / 4}}{(2 \pi)^{n / 2}} \int_{W} \exp \left(-\frac{|x|^{2}+|y|^{2}}{2 t}\right) \sum_{k=n(n-1) / 2+1}^{\infty} T_{k} t^{-k} d \boldsymbol{y} .
\end{align*}
$$

Consider the first element (5) of the sum above:

$$
\begin{align*}
\frac{t^{n(n-3) / 4}}{(2 \pi)^{n / 2}} \int_{W} \exp (& \left.-\frac{|x|^{2}+|\boldsymbol{y}|^{2}}{2 t}\right) \frac{t^{-n(n-1) / 2}}{\prod_{j=0}^{n-1} j!} h(x) h(y) d y \tag{7}\\
& =\frac{t^{-n(n+1) / 4}}{(2 \pi)^{n / 2}} \frac{h(x)}{\prod_{j=0}^{n-1} j!} \exp \left(-\frac{|x|^{2}}{2 t}\right) \int_{W} \exp \left(-\frac{|\boldsymbol{y}|^{2}}{2 t}\right) h(y) d y
\end{align*}
$$

Since $h(\alpha x)=\alpha^{n(n-1) / 2} h(x)$, we see that (7) is of the form

$$
\frac{1}{(2 \pi)^{n / 2}} \frac{h(x)}{\prod_{j=0}^{n-1} j!} \exp \left(-\frac{|x|^{2}}{2 t}\right) \int_{W} \exp \left(-\frac{|y|^{2}}{2 t}\right) h(y) d y
$$

We now show that (6) tends to 0 as $t \rightarrow \infty$. After some simple calculations we infer that (6) is equal to

$$
\frac{1}{(2 \pi)^{n / 2}} \sum_{k=n(n-1) / 2+1}^{\infty} t^{-n(n-1) / 4-k / 2} \exp \left(-\frac{|\boldsymbol{x}|^{2}}{2 t}\right) \int_{W} \exp \left(-\frac{|\boldsymbol{y}|^{2}}{2}\right) T_{k} d \boldsymbol{y}
$$

and it tends to 0 as $t \rightarrow \infty$. Thus we have (1).

REFERENCES

[1] D. J. Grabiner, Brownian motion in a Weyl chamber, non-colliding particles, and random matrices, Ann. Inst. H. Poincaré. Probab. Statist. 35 (1999), pp. 177-204.
[2] S. Karlin and J. McGregor, Coincidence probabilities, Pacific J. Math. 9 (1959), pp. 1141-1164.

Mathematical Institute
University of Wrocław
pl. Grunwaldzki $2 / 4$
50-384 Wrocław, Poland
E-mail:〈zbigniew.puchala@math.uni.wroc.pl〉

Received on 15.1.2005;
revised version on 7.6.2005

