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ON THE-ALMOST SURE CONVERGENCE 
I OF T - m  SQUARE VARIATION OF THE BROWMAN MOTION 

Abstract. The paper deals with the problem d almost sure (as.) 
convergence of the square variation of the Brownian motion when the 
hiameters d, of partitions of the time interval tend to zero. It is known 
that if the diameters converge fast enougb namely if dm is of order less 
ihan I g l  n, then as. convergence takes place. On the other hand, we 
show that there exlsts a sequence of partitions with diameters d, of 
order less than lg-"n for any 0 < cc < 1 such that the Brownian 
square variation diverges as .  

1. Notation. In this paper (w,), t E [0, 11, is a standard Brownian motion on 
a probability space (B, F, P) (i.e. the increment w,,, - w, has mean 0 and 
variance h). If a = (tr),"=, is an interval partition of [0, 11 (i.e. t, E [0, 11 for 
r = 1, . . . , m) and f is a real-valued function on LO, 11, then the expression 

denotes the square variation off corresponding to a. The random variable 
VZ(w, z) is called the Brownian square variation and denoted, shortly, by 
v2(n). Next, d(n) denotes the diameter of the partition a. A sequence of 
interval partitions of [0, 11 with diameters tending to zero is simply called a 
partition sequence. The integer part of a number x is denoted by [x]. 

2. Introduction. It is well known that for a.e. Brownian path there exists a 
descending partition sequence for which the square variation of the given path 
diverges to infinity (see [2], p. 48-49). Note that this sequence must really 
depend on the path, since (see [3], p. 243-244) for every descending partition 
sequence the Brownian square variation converges a.s. (to 1). It also converges 
in p-th mean for any p 2 1 and any (not necessarily descending) partition 
sequence. 
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For non-descending partition sequences, the a.s. convergence depends o n  
the rate of convergence to zero of the diameters of partitions. If they are of 
order o(lg-I n), then (as shown in 111) a.s. convergence takes place. We show 
that there exists a partition sequence with diameters ~ (Tc , , )  of order less than 
lg-"n for all 0 < a < 1 such that the Brownian square variation is a.s. 
divergent. Note that in a similar theorem in [l] the partitions consist of 
measurable sets - not of intervals. 

The author is grateful to Professor S. Kwapieli of Warsaw University who 
communicated the-problem to him and made helpful suggestions. 

3. Divergence of square Brownian variation. We shall use an idea of 
Freedman (see [2 ] ,  p. 48-49) to establish a divergence result in the case where 
'the diameters of partitions do not converge as fast as required in Theorem 4.5 
of [I]. 

THEOREM. For every C E R ,  there exists a partition sequence (x,) with 
d (R,) = 0(1g-' n) for all 0 < o: < 1 such that v 2  (n,) 2 c as, for infinitely 
many indices n. 

Proof.  1 We shall sketch the idea first. We shall find (for a fixed c ,  any 
natural number m, and positive E )  a finite set of partitions S with the following 
properties : 

d(n) < l/m for all x ES, 

P ( ( ~ E P I  3neS v 2 ( w ( o ) ,  n) 2 c ) )  3 1-6 

Such a set will be called an (m, &)-set. We shall derive an estimate of the 
minimal number of partitions in this set. Then we shall make 8 dependent on rn 
so that c0 

and construct a partition sequence by putting elements of successive (m, ~(m))- 
sets (rn = 1, 2, . . .) one after another. The Borel-Cantelli lemma will give the 
required divergence result. At the same time we shall be able to estimate how 
fast the diameters of partitions tend to zero. 

Now we shall show how to find an (m, €)-set. Let OEO. Like in [2], we say 
that an inderval [a, b] has o-weight c if 

(wa lo) - wh (4)' 2 2c (b - a) .  
Note that 

P((wl [a, b] has o-weight c)) = p > 0 

and that this number does not depend on the interval [a, b ] .  
Denote by J ( n ,  [a, b ] )  the set of all intervals obtained from the partition of 

[a, bj  into n equal parts. For natural n ,  M, j (j < M- 1) define sets 
I 

A ( n ,  j ,  M, o) = { I I I E  ~ ( n ,  W M ,  (j+l)/M]), I has co-weight c] .  



Brownian motion 99 

Take a natural number N such that (1 -p/2IN < 1/2. For sufficiently large 
m, we have 

( 1  P(.(wIcardA(m,,j,m,w) 2 pml/2 for a l l j  = 0 , 1 ,  ..., m-1)) 

= ( l - ~ ( r n ~ ) ) "  2 1-E/N, 

where, for a natural number n, Q (n) is the probability that the total number of 
successes in a Bernoulli scheme of n trials with probability of success p is 
smaller than half of its expected value, i.e. smaller than p n / 2 .  

Once m, , . . ., mi have been chosen, choose mi,, so large that 

(2) P ( ( ~ ~ c a r d A ( ~ n ~ + , , j , M ~ , u ) 2 p m ~ + ~ / 2 f o r  a I I j = 0 , 1 ,  ..., Mi-11) 

= (1 - Q ( ~ I ~ + , ) ) ~ '  P 1 - c / N ,  
where 

After N steps we have defined m,, . .., m,. 
Now put 

M i - l - l  

Bi(w)= IJ A(mi , j ,Mi- , ,o ) ,  i = l , . . , ,  N ,  
j=  0 

and U,(o) = El(#), C:?, are these intervals in B:",', which are not 
1 

subintervals of the intervals in U Cj(w). 
j= 1 N 

Finally, define n(w) to consist of the endpoints of the intervals in U Ci (w) 
i =  1 

and of the points j /m for j = 0, 1 ,  . . . , m. From the choice of N and mi's it is 
clear that with probability at least l - r  we have 

The diameters of all n (o) are clearly not greater than l/m. Thus we have 
constructed a finite (m, &)-set (consisting of all n(o)  defined above). 

Put 
K (m, E )  = min [card S 1 S is an (m, &)-set) . 

To estimate this number note that Q (n) decreases exponentially, i.e. there 
exists a positive number r such that 

(4) Q (n) < exp ( - n/r). 

Write q = ( l -~ /N) l~" .  By (4), to make (1) hold it suffices to put 

( 5 )  m1 = -[rlg(l-q)]. 

Once m,, . . ., mi have been chosen, to prove (2) it suffices to put 



where M, is defined by (3). It is easy to calculate from (5) and (6) that 

(7) - + g i  i = 1, ..., N-1. 
From (31, (51, and (7) we get 

(8) 
- 

M ,  < Pmmf 

for some 8 > 1, all m large enough and E small enough. 
- NOW put 

. . 

(91. s(m) = N/mZ . .. 
Fix any y ~ ( 0 ,  1). For large m we have 

By (5) and (8)-(10) we obtain 

.(11) 
> ,  I K ( m ,  e(nr)) < Z ~ N  < amflgrnlN 
for a11 m ldrge enough and some constant a. By (ll), for large rn and some 
constant b > a we have 

Now take any 6 > 0 and put 

(13) m(n) = max {ml bm(lgmlN < n), 

(14) ~ ( n )  = max (ml brn1+& < n) . 
I 

For large n we have 

(15) I m(n) > iii(n). 

I Now construct a partition sequence by putting elements of successive 
(m, E (m))-sets (m = 1 , 2, . . .) one after another. For large n it follows from (12) 
and (13) that n, does not belong to any of the (j, @)-sets, j = 1, . . . , m(n). 
By (14) and (15), this implies 

1 1 
d(%l G h(nl+l  G - 

< ( lg  n)-l/(l for all n large enough, 
m(n)+ 1 

! which is equivalent to 

d(n,) = o(lg-" n) for all a (0 < u < 1). 
! 
I 
I From the Borel-Cantelli lemma, the definition of an (m, ~(m))-set, and the 
1 choice of E (m) it readily follows that with probability 1 the inequality vZ (n,) ~ 2 c holds for infinitely many indices n. Thus the proof of the theorem is 

complete. 
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Remark. We have used (15) to simphfy the calculation. It is easy to see 
that, in fact, 
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