
PROBABILITY
AND

MATHEMATICAL STATISTICS

Vol. 30, Fasc. 1 (2010), pp. 103–120

THE SUPERPOSITION MARKOV CHAIN: FINITE OCCUPANCY
WITH COUPLING, AND THE ASYMPTOTICS THEREOF

BY

BERND G Ü N T H E R (MÜHLHEIM)

Abstract. Picking up a lottery example by Markov we analyze a variant
of the finite occupancy problem that assumes complete symmetry among the
target cells but drops the customary assumptions about independence. As-
suming that the distribution of the number of non-empty cells approaches a
non-trivial asymptotic limit for large state space sizes the limit time evolu-
tion is studied.
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1. INTRODUCTION

The classical occupancy problem in its most simple form distributes a finite
number of particles among a finite number of equivalent cells and studies the ensu-
ing patterns. A vast number of generalizations has been developed weakening the
assumptions of equivalence or of finiteness or similar; see [5] and [8] for recent
overviews. However, the assumption of independence is almost always adhered to.
There are a few exceptions: Markoff [7], Section 21, counts the numbers that have
shown up at least once in so many drawings of a lottery and provides some special
results. In [4], Chapter VII, allocation by complexes is investigated, but the authors
assume that the size of their complexes is asymptotically small (of order o ( 4

√
n))

compared to the state space size n, which is an obstacle to practical applications.
In our paper, rather than enforcing a particular asymptotic behaviour by whatever
kind of assumptions it is our philosophy to consider prescribed asymptotics as ini-
tial conditions and investigate their time evolution, and to expect the limit to reflect
as many properties of the finite case as possible.

As an example for the kind of application we have in mind we present the
following problem from coding theory: Given a database containing a large number
of records, certain properties of the records shall be encoded in bitstrings, one for
each record, to facilitate searches [9], [2]. Each property is encoded in a randomly
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chosen bit pattern, and each record is assigned the superposition of the bit patterns
for all properties it satisfies. An error may occur if one of the codes is covered
by other code patterns, and this irregularity must be minimized. Best results are
achieved if the number of 1-bits in each code pattern is fixed.

In our exposition we will adhere to complete symmetry of the cells but will
dispense with their independence; we are interested in the number of non-empty
cells. Using the image of the urn model we are going to study the following game:
in each round a fixed number of equivalent balls is distributed among a finite num-
ber of equivalent urns, each urn receiving at most one ball. In the following rounds,
the same number of balls is distributed without knowledge of the previous distri-
butions. Each urn may hold as many balls as you like, but has only two externally
observable states: empty or non-empty.

This scheme may be generalized by choosing the number of balls at random,
using the same random variable in each round. Thus we include the classical, bi-
nomial occupancy scheme, but not its multinomial extensions.

Let n denote the number of urns. By an isotropic allocation scheme we mean a
random variable X assuming subsets of {1, . . . , n} as values, whose distribution is
invariant under any permutation of {1, . . . , n}. Thus the distribution of X is com-
pletely determined by that of #X , the number of elements of X . From independent
repetitions X1, X2, . . . of X we can construct a Markov chain X(1), X(2), . . . by
X(m) := X1 ∪ . . . ∪Xm, our superposition Markov chain. Urn number k is con-
sidered non-empty at Markov time m if k ∈ X(m). Observe that the assumption of
independence of the urns would immediately enforce binomial distribution.

We will start our paper with a preparatory section on isotropic allocation
schemes, then our Markov chain and its combinatorial aspect will be described.
In studying its asymptotic aspects for large numbers of urns n it will be assumed
that the expected number of balls E#X = n(1− q) allocated in one round scales
proportionally with n, and we will study the asymptotic distribution of the normal-
ized random variables

X̃m =
1

qm
√

n
[#X(m) − n(1− qm)].

It will be shown that, if X̃1 is asymptotically distributed like a random variable Y
satisfying some mild regularity conditions, then the whole process X̃1, X̃2, . . . is
asymptotically distributed like Y1 + Z1, . . . ,

∑m
k=1 (Yk + Zk) , . . ., where Yk are

independent versions of Y and Zk are independent N (
0, σ2

k

)
-distributed random

variables with variance σ2
k = (1/q − 1)(1/qk−1 − 1), a non-stationary Markov

chain with independent increments. This raises the question of asymptotic inde-
pendence of the urns. In our concluding section we will show that significant
coupling is discernible in the asymptotic limit of all cases except the binomial
case, that is already independent in finite context.

Special consideration will be given to the classical binomial case and to the
fixed weight case, where the generating random variable #X is constant. It will
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be seen that the former is not a permissible approximation to the latter, they are
asymptotically distinct.

2. ISOTROPIC ALLOCATION SCHEMES

For any isotropic allocation scheme X with values in {1, . . . , n} and any sub-
set A ⊆ {1, . . . , n} the probabilities

pk := P (X = A),(2.1)
Fk := P (X ⊆ A),(2.2)
Gk := P (X ⊇ A)(2.3)

depend only on the size k := #A. They satisfy the conditions

n∑

k=0

(
n

k

)
pk = 1, Fk =

k∑

j=0

(
k

j

)
pj and Gk =

n∑

j=k

(
n− k

j − k

)
pj

and are most conveniently handled via generating functions:

f(t) :=
n∑

k=0

(
n

k

)
pkt

k,(2.4)

F (t) :=
n∑

k=0

(
n

k

)
Fkt

k,(2.5)

G(t) :=
n∑

k=0

(
n

k

)
Gn−kt

k,(2.6)

F (t) = (1 + t)nf

(
t

1 + t

)
,(2.7)

G(t) = (−1)nF (−1− t),(2.8)

G(t) = tnf

(
1 + t

t

)
.(2.9)

This allows easy conversion between the three sets of parameters pk, Fk and Gk,
for instance we have

pk =
k∑

j=0

(−1)j+k

(
k

j

)
Fj .

Moments µr = E
(
(#X)r

)
and central moments µ∗r = E

(
(#X − µ1)r

)
are given

by the formulas

µr =
r∑

k=0

k!
(

n

k

)
S(k)

r Gk,(2.10)
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µ∗r =
r∑

k=0

k∑

j=0

(−1)k

(
r

k

)
S

(j)
k (n)j (n− µ1)

r−k Fn−j ,(2.11)

Fn−r =
1

(n)r

r∑

k=0

k∑

j=0

(−1)j

(
k

j

)
S(k)

r (n− µ1)
k−j µ∗j .(2.12)

Here S
(k)
r denote the Stirling numbers of the second kind, S(k)

r Stirling numbers of
the first kind and (n)r the falling factorial power (n)r = n(n− 1) . . . (n− r + 1).
We notice in particular that

µ1 = n (1− Fn−1) and µ∗2 = nFn−1 − n2F 2
n−1 + n(n− 1)Fn−2.

The most important examples for isotropic distributions will be:
1. The binomial distribution pk = (1− q)kqk, Fk = qk for 0 ¬ q ¬ 1.
2. The fixed weight distribution with weight w,

pk = 0 for k 6= w and pw =
(

n

w

)−1

,

Fk = 0 for k < w and Fk =
(

k

w

)(
n

w

)−1

for k  w,

where w is an integer, 0 ¬ w ¬ n. We observe that

Fk =
(

n

k

)−1(nFn−1

n− k

)
and Gk =

(
n

k

)−1(nG1

k

)
for k  w.

3. Two weight distributions with parameters w1 < ϑ < w2, where wi ∈ N0,
ϑ ∈ R, and

(2.13) pk =





(w2 − ϑ) (w2 − w1)
−1

(
n

w1

)−1

for k = w1,

(ϑ− w1) (w2 − w1)
−1

(
n

w2

)−1

for k = w2,

0 elsewhere.

Evidently, this is a convex combination of two fixed weight distributions and the
parameters are chosen such that the expectation is ϑ.

The isotropic distributions constitute a convex space whose extreme points are
the fixed weight distributions. The isotropic distributions with given expectation ϑ
constitute a convex space whose extreme points are the two weight distributions
for parameters w1 < ϑ < w2 plus, if ϑ is an integer, the fixed weight distribution
with weight ϑ. Therefore fixed weight and two weight distributions will frequently
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occur as solutions of optimization problems. For instance, it is an easy application
of Jensen’s inequality to show

Fk 
(

n

k

)−1(nFn−1

n− k

)
for k  n (1− Fn−1)− 1,

where nFn−1 is not required to be an integer, and

Gk 
(

n

k

)−1(nG1

k

)
for k ¬ nG1 + 1.

As long as the right-hand sides of these two inequalities are positive, they coincide
with the parameters Fk, Gk, respectively, in case of fixed weight distributions.
This means that fixed weight distributions minimize the parameters Fk and Gk for
any given expectation. It now follows from (2.10) that fixed weight distributions
minimize all moments.

3. THE MARKOV CHAIN

Given two independent isotropic allocation schemes X and X ′ we can con-
struct a third one by superposition X ′′ := X ∪X ′. For any subset A ⊆ {0, . . . , n}
with a = #A we obtain F ′′a = P (X ∪X ′ ⊆ A) = P (X ⊆ A) P (X ′ ⊆ A) =
FaF

′
a. Moreover,

P (X ′′ = A) =
∑

B⊆A

P (X ′ = B,A \B ⊆ X ⊆ A)

=
∑

B⊆A

{ b∑

j=0

(
b

j

)
pa−j

}
P (X ′ = B),

(3.1)

where b = #B, as can be seen by setting j = #X ∩ B. Thus passage from state
X ′ = B to state X ′′ = A is described by a 2n×2n-dimensional transition matrix
P = (PAB),

(3.2) PAB =





b∑

j=0

(
b

j

)
pa−j if A ⊇ B,

0 elsewhere.

Notice that P is a triangular matrix containing our friends, the parameters Fa =
PAA as diagonal elements, and therefore as eigenvalues. We also recognize the first
column as Ga = PA∅.
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Diagonalization is easy: we define a (non-orthogonal) transformation matrix
T = (TAB) by

TAB :=

{
(−1)a−b for A ⊇ B,

0 elsewhere,
(3.3)

T−1
AB =

{
1 for A ⊇ B,

0 elsewhere.
(3.4)

Then a short computation shows that TPT−1 = F equals the diagonal matrix
F = (FAB) with FAA = Fa.

Using a sequence of independent repetitions X1, X2, . . . of an isotropic alloca-
tion scheme X we set up a Markov chain X(1), X(2), . . . with stationary transition
probabilities PAB by X(m) = X1 ∪ . . .∪Xm. Observe that X(m) is an isotropic al-
location scheme with parameters Fm

k . In particular, setting1 q := Fn−1, 0 ¬ q ¬ 1,
the expectation is given by EX(m) = n(1−Fm

n−1) = n (1− qm) and the variance

by µ
∗(m)
2 = nqm − n2q2m + n(n− 1)Fm

n−2.

EXAMPLE 3.1. The classical case of independent urns, where the generat-
ing random variable X is of binomial distribution with parameter 1 − q. Then
Fm

k = qmk and therefore X(m) is binomially distributed with parameter 1 − qm.
The variance is σ2 = nqm (1− qm) = n(1− q)qm

∑m−1
j=0 qj .

EXAMPLE 3.2. The fixed weight case: Suppose X has fixed weight distribu-
tion with weight w and set q := 1− w/n. At Markov time m > 1 our distribution
is no longer of fixed weight but is determined by the parameters

Fm
k =

(
k

w

)m(
n

w

)−m

,

in particular

Fm
n−1 = qm and Fm

n−2 =
(

nq(nq − 1)
n(n− 1)

)m

,

and therefore EX(m) = n (1− qm), and

σ2 = nqm (1− qm)− n(n− 1)qm

[
qm −

(
q − 1/n

1− 1/n

)m]
.

This case is significantly more complicated than the binomial case and its inves-
tigation is one of the main objectives of this paper. Expanding the variance in a
power series over 1/n one obtains

σ2 = n[qm (1− qm)−m(1− q)q2m−1] +
m(m− 1)

2
(1− q)2q2m−2 ± . . . ,

1In our paper, the letter q will always denote q = 1− n−1EX , n will be reserved for the size
of our state space, and m for the Markov time.
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neglecting terms of higher order. In practical applications q will be close to 1, and
then the leading term

n[qm (1− qm)−m(1− q)q2m−1] = n(1− q)2qm
m−2∑

j=0

(j + 1)qj

is of quadratic order in 1 − q, and hence much smaller than the binomial value,
which is of linear order. It should already be clear right now that the binomial
distribution cannot be used as an approximation for the fixed weight case.

4. THE COMBINATORIAL ASPECT

The probability p
(m)
k = P (X(m) = A), where #A = k, can be computed by

the following symbolic theorem:

THEOREM 4.1. The probability generating function

f(t) =
n∑

k=0

(
n

k

)
p
(m)
k tk

at Markov time m is generated by the function

(4.1) f̃ (t;x1, . . . , xm) =
{
1 + t

[ m∏
j=1

(1 + xj)− 1
]}n

.

To apply this theorem one must expand f̃ ∈ R [x1, . . . , xm] as polynomial in
the variables xj :

(4.2) f̃ (t;x1, . . . , xm) =
∑

k,a1,...,am

(
n

k

)
B(k)

a1,...,am
tkxa1

1 . . . xam
m ,

and then make the formal replacement xr
j → pr to obtain the customary generating

function

(4.3) f(t) =
∑

k,a1,...,am

(
n

k

)
B(k)

a1,...,am
tkpa1 . . . pam ,

thus expressing the probabilities p
(m)
k at Markov time m in terms of those at

Markov time 1. For example, in the binomial situation we have to perform the
formal replacement xr

j → qn(1/q − 1)r that amounts essentially to a variable sub-
stitution and leads to

f(t) = qmnf̃

(
t;

1
q
− 1, . . . ,

1
q
− 1

)
= {qm + t [1− qm]}n,

the familiar generating function for binomial probabilities with parameter 1− qm.
We will see below that the numbers B

(k)
a1,...,am are quite familiar combinatorial ob-

jects.
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P r o o f. Observing that the summand −1 cancels the constant term of the
product

∏m
j=1 (1 + xj) in (4.1) we see that the coefficients B

(k)
a1,...,am are non-

negative and we can therefore define numbers

p′k :=
∑

a1,...,am

B(k)
a1,...,am

pa1 . . . pam  0, i.e. f(t) =
n∑

k=0

(
n

k

)
p′kt

k.

Then
∑n

k=0

(
n
k

)
p′k is obtained by the symbolic replacement from

f̃ (1;x1, . . . , xm) =
{ m∏

j=1

(1 + xj)
}n =

m∏
j=1

(1 + xj)
n.

Replacing x
aj

j by paj turns the factor

(1 + xj)
n =

n∑

k=0

(
n

k

)
xk

j

into
n∑

k=0

(
n

k

)
pk = 1,

and therefore
n∑

k=0

(
n

k

)
p′k = 1.

Hence the numbers p′k define isotropic allocation probabilities and in order to show
that they are the correct ones it suffices to compare the parameters

F ′k =
k∑

j=0

(
k

j

)
p′j

to Fm
k . But

n∑

k=0

(
n

k

)
F ′kt

k = (1 + t)nf

(
t

1 + t

)

is obtained by the symbolic replacement from

(1 + t)nf̃

(
t

1 + t
; x1, . . . , xm

)

=
{
1 + t

m∏
j=1

(1 + xj)
}n =

n∑

k=0

(
n

k

)
tk

m∏
j=1

(1 + xj)
k.

The factor (1 + xj)
k is turned into

k∑

i=0

(
k

i

)
pi = Fk,
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therefore
n∑

k=0

(
n

k

)
F ′kt

k =
n∑

k=0

(
n

k

)
tkFm

k

and a fortiori F ′k = Fm
k . ¥

The numbers B
(k)
a1,...,am are determined by

(4.4)
[ m∏

j=1

(1 + xj)− 1
]k =

∑

a1,...,ak

B(k)
a1,...,am

xa1
1 . . . xam

m ,

and this provides clues for their evaluation and combinatorial interpretation. The
first of the following equations holds by a direct application of the binomial theo-
rem, the second one can be shown by induction on m:

B(k)
a1,...,am

=
k∑

j=0

(−1)j−k

(
k

j

)
m∏

i=1

(
j

ai

)
,(4.5)

B(k)
a1,...,am

=
∑

0=j0¬j1¬···¬jm=k

m∏
i=1

(
ai

ji − ji−1

)(
ji

ai

)
.(4.6)

To reveal the combinatorial meaning we follow MacMahon [6] (Vol. I, Section I,
Chapter II.18) and consider

(4.7)
∑

a1,...,am

B(k)
a1,...,am

(tx1)
a1 . . . (txm)am =

[ m∏
j=1

(1 + txj)− 1
]k

,

that is

(4.8)
∑

a1,...,am

B(k)
a1,...,am

(tx1)
a1 . . . (txm)am =

[ m∑

j=1

tjσj (x1, . . . , xm)
]k

,

where σj are the elementary symmetric polynomials. Now suppose we are given a
totality of a1 + . . . + am objects of m different categories, aj objects of type j. For
short, one speaks of objects of specification a1, . . . , am. By comparing coefficients
with those of MacMahon it follows that B

(k)
a1,...,am is the number of ways objects of

specification a1, . . . , am can be distributed among k distinct parcels such that no
parcel remains empty and no parcel receives more than one object of a kind.

5. THE LIMIT PROCESS MODEL

In order to give meaning to asymptotic limits we consider a family of isotropic
allocation schemes Xn, one for each state space size n or at least for n ranging over
a cofinal subsequence of integers. When there is a risk of ambiguity, the letter n
will be affixed as subscript to the parameter under consideration; so for instance
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µ
∗(m)
nr will denote the r-th central moment at Markov time m in a state space of

size n. The expectation will scale proportionally to n, that means, if at state space
size n we have E#Xn = n (1− qn), we assume

(5.1) lim
n→∞ qn = q with 0 < q < 1.

We will study the weak limit (i.e. limit in distribution) of the normalized random
variable

1
qn
√

n
[Xn − n (1− qn)],

and we will assume from now on that the limit distribution Y has finite moments
E|Y |r <∞ and that its characteristic function

χ(t) = EeitY =
∞∑

r=0

irµr

r!
tr

is analytic in a neighborhood of 0.
Our main tool will be Stirling polynomials Sk(x) (see [10], [3], [1]), defined

by the generating function

(5.2)
∞∑

k=0

1
k!
Sk(x)tk =

(
t

1− e−t

)x+1

.

Sk(x) is a polynomial of degree k with leading coefficient 2−k, and the Stirling
numbers are given by

S(m)
n = (−1)n−m

(
n

m

)
Sn−m(−m− 1),(5.3)

S(m)
n = (−1)n−m

(
n− 1
m− 1

)
Sn−m(n− 1).(5.4)

Unfortunately, authors disagree about normalization conventions for Stirling poly-
nomials; we prefer to follow Roman [10] (Chapter 4, Section 4.8). Jordan [3] uses

ψk(x) =
Sk+1(x)

(k + 1)!(x + 1)
,

whereas Graham et al. [1] consider the “polynomials”

σk(x) =
Sk(x− 1)

k!x
.

The devil played tricks and placed a misprint on Jordan’s formula in [3], p. 225,
where the leading coefficient of ψm(x) should correctly be given as

1/(m + 1)!2m+1.
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Thus armed, we can prove:

THEOREM 5.1. Let us consider two independent isotropic allocation schemes
X and X ′ in {1, . . . , n} with expectations n(1 − q) and n(1 − q′), respectively.
Then X ′′ = X∪X ′ is an isotropic allocation scheme with expectation n(1− qq′).
If asymptotic approximations Y for (q

√
n)−1 [#X − n(1− q)] and Y ′ for

(q′
√

n)−1 [#X ′ − n(1− q′)] are given, then the independent sum Y + Y ′ + Z
is an asymptotic approximation for (qq′

√
n)−1 [#X ′′ − n(1− qq′)], where Z is

an N (
0, σ2

)
-distributed random variable with σ2 = (1/q′ − 1) (1/q − 1).

P r o o f. We intend to express the central moments of X ∪ X ′ in terms of
those of X and X ′ and start by rewriting equation (2.12) with the aid of Stirling
polynomials:

(n)jFn−j = njqj ∑

i,`

Pi`(j)µ∗i n
−i−`,(5.5)

(n)jF
′
n−j = njq′j

∑

i,`

P ′i`(j)µ
′∗
i n−i−`,(5.6)

Pi`(x) := (−1)i+`

(
x− `

i

)(
x− 1

`

)
S`(x− 1)q−`−i,(5.7)

P ′i`(x) := (−1)i+`

(
x− `

i

)(
x− 1

`

)
S`(x− 1)q′−`−i.(5.8)

Notice that Pi`(x) is a polynomial in x of degree 2` + i with leading coefficient
(−1)i+`/(i!`!2`qi+`) and P ′i`(x) is a polynomial in x of degree 2` + i with leading
coefficient (−1)i+`/(i!`!2`q′i+`). Consequently,

(n)j(n)jF
′′
n−j = n2j

(
qq′

)j ∑

i1,i2,`

P ′′i1i2`(j)µ
∗
i1µ
′∗
i2n
−i1−i2−`,(5.9)

P ′′i1i2`(x) =
∑

`1+`2=`

Pi1`1(x)P ′i2`2(x),(5.10)

where P ′′i1i2`(x) is a polynomial of degree 2` + i1 + i2 with leading coefficient

(5.11)
(−1)i1+i2+`

i1!i2!`!2`qi1q′i2

(
1
q

+
1
q′

)`

.

We have to cancel one of the factors (n)j :

[(n)j ]
−1 =

∞∑

u=j−1

S(j−1)
u n−u−1(5.12)

= n−j
∞∑

u=0

(−1)u

(
u + j − 1

u

)
Su(−j)n−u(5.13)

= n−j ∑

u

Qu(j)n−u,(5.14)
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where

(5.15) Qu(x) := (−1)u

(
x + u− 1

u

)
Su(−x)

is a polynomial of degree 2u with leading coefficient 1/(u!2u).
Now, by equations (5.9) and (5.14),

(n)jF
′′
n−j =

(
nqq′

)j ∑

i1,i2,v

Ti1i2v(j)µ∗i1µ
′∗
i2n
−i1−i2−v,(5.16)

Ti1i2v(x) :=
∑

`+u=v

P ′′i1i2`(x)Qu(x),(5.17)

where Ti1i2v(x) is a polynomial of degree 2v + i1 + i2 with leading coefficient

(5.18)
(−1)i1+i2+v

v!i1!i2!2vqi1q′i2

(
1
q

+
1
q′
− 1

)v

.

Then we obtain consecutively

µ′′∗r =
r∑

k=0

k∑

j=0

(−1)k

(
r

k

)
S

(j)
k

(
nqq′

)r−k (n)jF
′′
n−j ,(5.19)

µ′′∗r =
(
nqq′

)r ∑

j,k,i1,i2,v

(−1)j

(
r

k

)(
k

j

)
Sk−j(−j − 1)

(
qq′

)−k+j

× Ti1i2v(j)µ∗i1µ
′∗
i2n
−i1−i2−v−k+j ,

(5.20)

µ′′∗r =
(
nqq′

)r ∑

i1,i2,w

[ ∑

k

(−1)k

(
r

k

)
Ri1,i2,w(k)

]
µ∗i1µ

′∗
i2n
−w,(5.21)

µ′′∗r = (−1)r
(
nqq′

)r ∑

i1,i2,w

[∆r
kRi1,i2,w(k)]µ∗i1µ

′∗
i2n
−w,(5.22)

where

(5.23) Ri1,i2,w(x) =

=
w−i1−i2∑

j=0

(−1)j

j!
(x)jSj(−x + j − 1)Ti1,i2,w−i1−i2−j(x− j)

(
qq′

)−j
.

Here ∆x is the difference operator applied to argument x, ∆xf(x) = f(x + 1)−
f(x). We observe that ∆r

xf(x) =
∑r

k=0(−1)r+kf(x + k). Ri1,i2,w(x) is a poly-
nomial of degree 2w − i1 − i2 with leading coefficient

(5.24)
(−1)i1+i2(1− q)w−i1−i2(1− q′)w−i1−i2

(w − i1 − i2)!i1!i2!2w−i1−i2qw−i2q′w−i1
.
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For r > 2w − i1 − i2 the polynomial ∆r
xRi1,i2,w(x) is zero, and for r ¬ 2w −

i1 − i2 it is a polynomial of degree 2w − i1 − i2 − r with leading coefficient

(5.25)
(−1)i1+i2(2w − i1 − i2)r(1− q)w−i1−i2(1− q′)w−i1−i2

(w − i1 − i2)!i1!i2!2w−i1−i2qw−i2q′w−i1
.

Therefore

(5.26)
µ′′∗r

(qq′)r√nr
= (−1)r ∑

i1,i2,w

[∆r
kRi1,i2,w(k)]

µ∗i1√
ni1

µ′∗i2√
ni2

n−w+(i1+i2+r)/2.

By assumption of weak convergence of the random variables

1
q
√

n
[#X − n(1− q)] and

1
q′
√

n

[
#X ′ − n(1− q′)

]

the central moments of Y and Y ′ are given by

µ∗∞,i1 = lim
n→∞

µ∗n,i1

qi1
√

ni1
and µ′∗∞,i2 = lim

n→∞
µ′∗n,i2

q′i2
√

ni2
.

In equation (5.26) all summands except those with w = (i1 + i2 + r)/2 vanish for
n→∞. Hence there must be a limit

µ′′∗∞,r = lim
n→∞

µ
′′(∗)
n,r

(qq′)r√nr

satisfying the equation

(5.27)
µ′′∗∞,r

r!
=

=
∑

i1,i2
i1+i2¬r

i1+i2≡r(mod 2)

1(
(r − i1 − i2)/2

)
!

(
(1− q)(1− q′)

2qq′

)(r−i1−i2)/2 µ∗∞,i1

i1!
µ′∗∞,i2

i2!
,

which is a convolution equation for the Taylor coefficients of the characteristic
functions:

(5.28) χ′′(t) = χ(t)χ′(t) exp
(
−1

2

(
1
q
− 1

)(
1
q′
− 1

)
t2

)
.

This immediately implies our theorem. ¥
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THEOREM 5.2. If the normalized variable (q
√

n)−1[#X(1)−n(1− q)] taken
at Markov time m = 1 is for large state space size n asymptotically distributed like
a random variable Y, then the whole Markov chain

1
q
√

n
[#X(1) − n(1− q)], . . . ,

1
qm
√

n
[#X(m) − n (1− qm)], . . .

is asymptotically distributed like Y1, . . . ,
∑m

k=1 (Yk + Zk) , . . . , where Yk are co-
pies of Y and Zk are N (

0, σ2
k

)
-distributed random variables with variance σ2

k =
(1/q − 1)

(
1/qk−1 − 1

)
, all independent.

Notice that the limit process is a non-stationary Markov chain with indepen-
dent increments Ym + Zm.

P r o o f. We have to show that the joint distribution of the finite sections

#̃X
(1)

, . . . , #̃X
(m)

converges weakly to that of Y1 + Z1, . . . ,
∑m

k=1 (Yk + Zk),
where

#̃Xk =
1

qk
√

n
[#X(k) − n(1− qk)].

By the Markov property it suffices to check the distribution for m = 1, which holds
by assumption, and to check the transition probabilities. For the latter we restrict

our probability space to the condition #̃X
(m)

= t, i.e. to #X(m) = n (1− qm) +
tqm√n. This is equivalent to a fixed weight distribution with parameter qn =
qm(1 − t/

√
n) → qm. The limit distribution is independent of t. An application

of Theorem 5.1 now concludes the proof. ¥

EXAMPLE 5.1. Let us see how the classical binomial case fits. In this context
(q
√

n)−1[#X(1) − n(1 − q)] is asymptotically N (
0, σ2

)
-distributed with σ2 =

1/q − 1. Then Yk + Zk is normally distributed with variance (1/q − 1)(qk−1)−1

and Theorem 5.2 states that (qm√n)−1[#X(m) − n (1− qm)] is asymptotically
normal with variance q−m − 1, as one might have guessed!

EXAMPLE 5.2. The fixed weight case with weight w. Let us set q = 1−w/n.
Here #X is constant, and therefore Y ≡ 0. From Theorem 5.2 it follows that
(qm√n)−1[#X(m) − n (1− qm)] is asymptotically normal with variance

m∑

k=1

(1/q − 1) (1/qk−1 − 1) = 1/qm − 1−m (1/q − 1) .

We emphasize again that the variance is much smaller than in the binomial situation
with the same parameter q.

EXAMPLE 5.3. The case above requires rational q. For irrational q we con-
sider fixed weight distributions with weight w such that n(1 − q) − 1 < w <
n(1− q). The asymptotics coincide with those of Example 5.3.
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EXAMPLE 5.4. Of course, not all limit distributions are normal, since Theo-
rem 5.2 leaves us almost complete freedom of construction. Consider for instance
0 < q < 1 and β ∈ R and assume

√
n >

|β|
min(q, 1− q)

.

Set q1 := q + β/
√

n, q2 := q − β/
√

n and let w1, w2 ∈ {0, . . . , n} be the inte-
gers closest to nq1, nq2, that means |wi − nqi| < 1. Now apply the two weight
allocation schemes with weights w1, w2, selecting weight wi with probability

pi :=
1
2

(
n

wi

)−1

.

The expectation is nq, and the normalized variable assumes each of the values
(wi − nq)/

√
n with probability 1

2 , where

∣∣∣∣
w1 − nq√

n
− β

∣∣∣∣ <
1√
n

and
∣∣∣∣
w2 − nq√

n
+ β

∣∣∣∣ <
1√
n

.

This converges in distribution to the random variable that assumes the two values
±β with probability 1

2 each. By Theorem 5.2, (qm√n)−1[#X(m) − n (1− qm)]
is asymptotically distributed like the independent sum of a binomial random vari-
able distributed on the lattice βZ and a normally distributed variable with variance
1/qm − 1−m (1/q − 1).

6. COUPLING

Since our limit process has independent increments in contrast to the finite
case, we might ask what happens to the coupling of our cells in the asymptotic
limit. As it turns out, it is just as strong as in the finite setting.

For any subset A ⊆ {1, . . . , n}, a := #A, the restriction X|A := A ∩ X of
our isotropic allocation scheme to A is an isotropic allocation scheme on A, whose
distribution depends only on the number a. The original scheme can be recon-
structed by the formula

(6.1) #X = #X|A + #X|{A,

and we say that our scheme is independent if for all A the decomposition (6.1) is
an independent sum. Otherwise we speak of coupling.

In finite context the question is not very exciting, because it is easy to see that
the binomial case is the only independent one. We will now investigate the limit
case, and have to work out the asymptotic distribution of X|A.
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LEMMA 6.1. #X|A has expectation a(1 − q), and if the random variable
(q
√

n)−1[#X − n(1− q)] is asymptotically distributed like a random variable Y,
if the size a = #A scales proportionally with n, a = ϑn with 0 < ϑ < 1, then
the restricted random variable (q

√
a)−1[#X|A − a(1− q)] is asymptotically dis-

tributed like Yϑ =
√

ϑ (Y + Z), where Z is independent normally distributed with
variance (1/ϑ− 1) (1/q − 1) and mean 0.

P r o o f. For any B ⊆ A we have P̃ (X|A ⊆ B) = P (X ⊆ B ∪ {A), and
therefore X|A is characterized by the parameters F ′b = Fb+n−a. In particular, the
expectation is a(1− F ′a−1) = a(1− Fn−1) = a(1− q).

Now let X ′′ ⊆ {0, . . . , n} be the fixed weight allocation scheme with weight
n − a and consider the independent union X ′ = X ∪ X ′′. Then for any subset
B ⊆ {0, . . . , n} and b = #B  n− a:

P (X ′ = B) =
∑

#C=n−a

P (X ∪ C = B)P (X ′′ = C)

=
(

n

n− a

)−1 ∑

#C=n−a

P (X ∪ C = B),

P (#X ′ = b) =
(

n

n− a

)−1 ∑

#C=n−a

P
(
#(X ∪ C) = b

)

=
(

n

n− a

)−1 ∑

#C=n−a

P
(
#(X|{C) + n− a = b

)

= P (#X|A + n− a = b).

Now our lemma follows from Theorem 5.1. ¥

Asymptotically the decomposition (6.1) is replaced by a decomposition of the
limits:

(6.2) Y =
√

ϑYϑ +
√

1− ϑY1−ϑ,

where Yϑ and Y1−ϑ are determined by Lemma 6.1. The factor
√

ϑ serves to adjust
the (
√

a)−1-normalization of the restriction to the whole state space. We say that
our isotropic allocation scheme is asymptotically independent if the decomposi-
tion (6.2) is an independent sum for all 0 < ϑ < 1. This is the case if and only if
the characteristic functions are related by

χ(t) = χϑ(
√

ϑt)χ1−ϑ(
√

1− ϑt).

By Lemma 6.1 the characteristic functions of the restrictions are given by

χϑ

(
t√
ϑ

)
= χ (t) exp

[
−1

2

(
1
ϑ
− 1

)(
1
q
− 1

)
t2

]
.
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Therefore asymptotic independence is equivalent to

χ(t) = χ(ϑt)χ
(
(1− ϑ)t

)
exp

[
−ϑ(1− ϑ)

(
1
q
− 1

)
t2

]

for all 0 < ϑ < 1. Since χ(0) = 1 and since χ(t) is assumed analytic in a neighbor-
hood of 0, we may pass to logarithms. Hence asymptotic independence is equiv-
alent to lnχ(t) = ln χ(ϑt) + lnχ

(
(1 − ϑ)t

) − ϑ(1 − ϑ)(1/q − 1)t2. Comparing
power series coefficients this can happen only if lnχ(t) = −(1/2)(1/q − 1)t2.
Thus we have proved:

THEOREM 6.1. An isotropic allocation scheme X with expectation n(1− q)
is asymptotically independent if and only if (q

√
n)−1[#X − n(1 − q)] is asymp-

totically normal with mean 0 and variance 1/q − 1.

We emphasize that asymptotic normality alone is not sufficient for indepen-
dence, in addition the variance must have a very specific value. This value happens
to be the asymptotic limit of a binomially distributed random variable for param-
eter q, so we end up with the limit of a case that is already independent in finite
context. In contrast, the asymptotic limit of a fixed weight distribution does not
qualify, neither does its evolution at later Markov times.

In many cases there is linear correlation. Recall that the linear correlation co-
efficient c of two random variables X and Y is defined by

c =
E

(
(X − X̄)(Y − Ȳ )

)
√

E(X − X̄)2E(Y − Ȳ )2

=
E(X + Y − X̄ − Ȳ )2 − E(X − X̄)2 −E(Y − Ȳ )2

2
√

E(X − X̄)2E(Y − Ȳ )2
.

We are going to compute the correlation coefficient cϑ of the random variables√
ϑYϑ and

√
1− ϑY1−ϑ from (6.2). If the variance of the original variable is

(asymptotically) denoted by σ2, then it follows from the above that
√

ϑYϑ has
variance σ2

ϑ = ϑ2σ2 + ϑ(1− ϑ)(1/q − 1), and
√

1− ϑY1−ϑ has variance σ2
1−ϑ =

(1− ϑ)2σ2 + ϑ(1− ϑ)(1/q − 1). Therefore

cϑ =
σ2 − (1/q − 1)√

σ2 + (1/ϑ− 1)(1/q − 1)
√

σ2 +
(
1/(1− ϑ)− 1

)
(1/q − 1)

.

The absolute value of cϑ is maximal for ϑ = 1
2 with

c1/2 =
σ2 − (1/q − 1)
σ2 + (1/q − 1)

.
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In general, we expect a negative correlation, because an increase of your own
share of balls can be achieved by stealing out of your opponents urns. But positive
correlations can also occur:

EXAMPLE 6.1. Example 5.4 in Section 5 has σ2 = β2, and therefore cϑ > 0
if β >

√
1/q − 1. Here the dominating influence on the correlation is the total

number of balls.
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