CONTINUOUS CONVOLUTION HEMIGROUPS
INTEGRATING A SUBMULTIPLICATIVE FUNCTION

Wilfried Hazod

Abstract: Unifying and generalizing previous investigations for vector spaces and for locally compact groups, E. Siebert obtained the following remarkable result: A Lévy process on a completely metrizable topological group \(G \), resp. a continuous convolution semigroup \((\mu_t)_{t \geq 0} \) of probabilities, satisfies a moment condition \(\int f \, d\mu_t < \infty \) for some submultiplicative function \(f > 0 \) if and only if the jump measure of the process, resp. the Lévy measure \(\eta \) of the continuous convolution semigroup, satisfies \(\int_{U} f \, d\eta < \infty \) for some neighbourhood \(U \) of the unit \(e \). Here we generalize this result to additive processes, resp. convolution hemigroups \((\mu_{s,t})_{s \leq t} \), on (second countable) locally compact groups.

2000 AMS Mathematics Subject Classification: Primary: 60B15; Secondary: 60G51, 43A05, 47D06.

Keywords and phrases: Additive processes, convolution hemigroups, moment conditions, submultiplicative functions, operator hemigroups, evolution families.

The full text is available [here](#).