WEAK-TYPE INEQUALITY FOR THE MARTINGALE SQUARE FUNCTION AND A RELATED CHARACTERIZATION OF HILBERT SPACES∗

BY

ADAM OŚKOWSKI (WARSZAWA)

Abstract. Let f be a martingale taking values in a Banach space B and let $S(f)$ be its square function. We show that if B is a Hilbert space, then

$$P(S(f) \geq 1) \leq \sqrt{e}\|f\|_1,$$

and the constant \sqrt{e} is the best possible. This extends the result of Cox, who established this bound in the real case. Next, we show that this inequality characterizes Hilbert spaces in the following sense: if B is not a Hilbert space, then there is a martingale f for which the above weak-type estimate does not hold.

2000 AMS Mathematics Subject Classification: Primary: 60G42; Secondary: 46C15.

Key words and phrases: Martingale, square function, weak type inequality, Banach space, Hilbert space.

1. INTRODUCTION

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, filtered by $(\mathcal{F}_n)_{n \geq 0}$, a non-decreasing sequence of sub-σ-fields of \mathcal{F}. Let $f = (f_n)_{n \geq 0}$ and $g = (g_n)_{n \geq 0}$ be adapted martingales taking values in a certain separable Banach space $(B, \| \cdot \|)$. The difference sequences $df = (df_n)_{n \geq 0}$ and $dg = (dg_n)_{n \geq 0}$ of the martingales f and g are defined by $df_0 = f_0$ and $df_n = f_n - f_{n-1}$ for $n \geq 1$, and similarly for dg_n. We say that g is a ± 1-transform of f if there is a deterministic sequence $\varepsilon = (\varepsilon_n)_{n \geq 0}$ of signs such that $dg_n = \varepsilon_n df_n$ for each n.

It is well-known that martingale inequalities reflect the geometry of Banach spaces in which the martingales take values: see e.g. [1]–[4] and [7]. We shall mention here only one fact, closely related to the result studied in the present paper. As proved by Burkholder in [2], if f takes values in a separable Hilbert space and
g is its ± 1-transform, then

\begin{equation}
\mathbb{P}(\sup_n \|g_n\| \geq 1) \leq 2\|f\|_1
\end{equation}

and the constant 2 is the best possible (here, as usual, $\|f\|_1 = \sup_n \|f_n\|_1$). In fact, the implication can be reversed: if B is a separable Banach space with the property that (1.1) holds for any B-valued martingale f and its ± 1-transform g, then B is a Hilbert space. For details, see Burkholder [2] and Lee [6].

In this paper we shall study a related problem and characterize the class of Hilbert spaces by another weak-type estimate. Let us introduce the square function of f by the formula

$$S(f) = \left(\sum_{k=0}^{\infty} \|df_k\|^2 \right)^{1/2}.$$

We shall also use the notation

$$S_n(f) = \left(\sum_{k=0}^{n} \|df_k\|^2 \right)^{1/2}$$

for the truncated square function, $n = 0, 1, 2, \ldots$. Suppose that B is a given and fixed separable Banach space and let $\beta(B)$ denote the least extended real number β such that, for any martingale f taking values in B,

$$\mathbb{P}(S(f) \geq 1) \leq \beta(B)\|f\|_1.$$

Using the method of moments, Cox [5] showed that $\beta(\mathbb{R}) = \sqrt{e}$: consequently, $\beta(B) \geq \sqrt{e}$ for any non-degenerate B. We will extend this result to the following.

Theorem 1.1. We have $\beta(B) = \sqrt{e}$ if and only if B is a Hilbert space.

Let us sketch the proof. To show that for any martingale f taking values in a Hilbert space $(\mathcal{H}, \| \cdot \|)$ we have

\begin{equation}
\mathbb{P}(S(f) \geq 1) \leq \sqrt{e}\|f\|_1,
\end{equation}

we may restrict ourselves to the class of simple martingales. Recall that f is simple if for any n the random variable f_n takes only a finite number of values and there is a deterministic N such that $f_N = f_{N+1} = f_{N+2} = \ldots$ We must prove that

$$\text{EV}(f_n, S_n(f)) \leq 0, \quad n = 0, 1, 2, \ldots,$$

where $V(x, y) = 1_{\{y \geq 1\}} - \sqrt{e}|y|$ for $x \in \mathcal{H}$ and $y \in [0, \infty)$.

To do this, we will use Burkholder’s method and construct a function $U: \mathcal{H} \times [0, \infty) \to \mathbb{R}$, which satisfies the following three conditions:

1° We have the majorization $U \geq V$.

2° For any \(x \in \mathcal{H}, y \geq 0 \) and any simple mean-zero random variable \(T \) taking values in \(\mathcal{H} \) we have \(\mathbb{E}U(x + T, \sqrt{y^2 + |T|^2}) \leq U(x, y) \).

3° For any \(x \in \mathcal{H} \) we have \(\mathbb{E}(x, |x|) \leq 0 \).

Then (1.2) follows.

To see this, apply 2° conditionally on \(\mathcal{F}_n \), with \(x = f_n, y = S_n(f) \) and \(T = df_{n+1}. \) As the result, we obtain the inequality

\[
\mathbb{E}[U(f_{n+1}, S_{n+1}(f)) | \mathcal{F}_n] \leq U(f_n, S_n(f)),
\]

so, in other words, the process \(\{U(f_n, S_n(f))\}_{n \geq 0} \) is a supermartingale. Hence, by 1° and 3°,

\[
\mathbb{E}V(f_n, S_n(f)) \leq \mathbb{E}U(f_n, S_n(f)) \leq \mathbb{E}U(f_0, |f_0|) \leq 0
\]

and we are done.

The special function \(U \) is constructed and studied in the next section. In Section 3 we prove the remaining part of Theorem 1.1: we shall show that the validity of (1.2) for all \(B \)-valued martingales implies the parallelogram identity.

2. A SPECIAL FUNCTION

Let \(\mathcal{H} \) be a separable Hilbert space: in fact, we may and do assume that \(\mathcal{H} = \ell^2 \). The corresponding norm and scalar product will be denoted by \(| \cdot | \) and \(\cdot, \cdot \), respectively. Introduce \(U : \mathcal{H} \times [0, \infty) \to \mathbb{R} \) by the formula

\[
U(x, y) = \begin{cases}
1 - (1 - y^2)^{1/2} \exp\left(\frac{|x|^2}{2(1 - y^2)}\right) & \text{if } |x|^2 + y^2 < 1, \\
1 - \sqrt{e} |x| & \text{if } |x|^2 + y^2 \geq 1.
\end{cases}
\]

In the lemma below, we study the properties of \(U \) and \(V \).

Lemma 2.1. The function \(U \) satisfies the conditions 1°, 2° and 3°.

Proof. To show the majorization, we may assume that \(|x|^2 + y^2 < 1 \). Then the inequality takes the form

\[
\exp\left(\frac{|x|^2}{2(1 - y^2)}\right) \leq \sqrt{e} \frac{|x|}{\sqrt{1 - y^2}} + \frac{1}{\sqrt{1 - y^2}}
\]

and follows immediately from an elementary bound \(\exp(s^2/2) \leq \sqrt{e}s + 1, s \in [0, 1], \) applied to \(s = |x|/\sqrt{1 - y^2} \). To check 2°, we introduce an auxiliary function

\[
A(x, y) = \begin{cases}
-x(1 - y^2)^{-1/2} \exp\left(\frac{|x|^2}{2(1 - y^2)}\right) & \text{if } |x|^2 + y^2 < 1, \\
-\sqrt{e}x & \text{if } |x|^2 + y^2 \geq 1,
\end{cases}
\]
where \(x' = x/|x| \) for \(x \neq 0 \), and \(x' = 0 \) otherwise. We shall establish a pointwise estimate

\[
U(x + d, \sqrt{y^2 + |d|^2}) \leq U(x, y) + A(x, y) \cdot d
\]

for all \(x, d \in \mathcal{H} \) and \(y \geq 0 \). Observe that this inequality immediately yields \(2^0 \), simply by putting \(d = T \) and taking expectation of both sides.

To prove (2.2), note first that

\[
U(x, y) \leq 1 - \sqrt{e}|x| \text{ for all } x \in \mathcal{H} \text{ and } y \geq 0.
\]

This is trivial for \(|x|^2 + y^2 \geq 1 \), while for the remaining pairs \((x, y)\) it can be transformed into the equivalent inequality:

\[
\frac{|x|^2}{1 - y^2} \leq \exp \left(\frac{|x|^2}{1 - y^2} - 1 \right),
\]

which is obvious. Consequently, when \(|x|^2 + y^2 \geq 1 \), we have

\[
U(x + d, \sqrt{y^2 + |d|^2}) \leq 1 - \sqrt{e}|x + d| \leq 1 - \sqrt{e}|x| + A(x, y) \cdot d = U(x, y) + A(x, y) \cdot d.
\]

Now suppose that \(|x|^2 + y^2 < 1 \) and \(|x + d|^2 + y^2 + |d|^2 \leq 1 \). Observe that for \(X, D \in \mathcal{H} \) with \(|D| < 1 \) we have

\[
\exp \left(\frac{|D|^2|X|^2 + 2X \cdot D + |D|^2}{1 - |D|^2} \right) \geq \exp \left(\frac{(X \cdot D)^2 + 2X \cdot D + |D|^2}{1 - |D|^2} \right)
\]

\[
\geq \frac{(X \cdot D)^2 + 2X \cdot D + |D|^2}{1 - |D|^2} + 1
\]

\[
= \frac{(1 + X \cdot D)^2}{1 - |D|^2}.
\]

It suffices to plug \(X = x/\sqrt{1 - y^2} \) and \(D = d/\sqrt{1 - y^2} \) to obtain (2.2). Finally, if \(|x|^2 + y^2 < 1 < |x + d|^2 + y^2 + |d|^2 \), then substituting \(X \) and \(D \) as previously, we have \(|X| < 1 \), \(|X + D|^2 + |D|^2 > 1 \) and (2.2) can be written in the form

\[
\exp \left(\frac{|X|^2 - 1}{2} \right) (1 + X \cdot D) \leq |X + D|,
\]

or

\[
\exp \left(\frac{|X|^2 - 1}{2} \right) \left(1 + \frac{|X + D|^2 - |X|^2 - |D|^2}{2} \right) \leq |X + D|.
\]

Now we fix \(|X|, |X + D| \) and maximize the left-hand side over \(D \). Let us consider two cases. If \(|X + D|^2 + (|X + D| - |X|)^2 < 1 \), then there is \(D' \in \mathcal{H} \) satisfying
\[|X + D| = |X + D'| \text{ and } |X + D'|^2 + |D'|^2 = 1. \text{ Consequently,} \]
\[
\exp \left(\frac{|X|^2 - 1}{2} \right) \left(1 + \frac{|X + D|^2 - |X|^2 - |D|^2}{2} \right) \\
\leq \exp \left(\frac{|X|^2 - 1}{2} \right) \left(1 + \frac{|X + D'|^2 - |X|^2 - |D'|^2}{2} \right) \leq |X + D'| = |X + D|. \]

Here the first passage is due to \(|D'| < |D|\), while in the second we have applied (2,2) to \(x = X, y = 0\) and \(d = D'\) (for these \(x, y\) and \(d\) we have already established the bound). Suppose, then, that \(|X + D|^2 + (|X + D| - |X|)^2 \geq 1\). This inequality is equivalent to
\[
|X + D| \geq \frac{1 - |X|^2}{\sqrt{2 - |X|^2 - |X|}},
\]
and hence
\[
\exp \left(\frac{|X|^2 - 1}{2} \right) \left(1 + \frac{|X + D|^2 - |X|^2 - |D|^2}{2} \right) - |X + D| \\
\leq \exp \left(\frac{|X|^2 - 1}{2} \right) \left(1 + \frac{|X + D|^2 - |X|^2 - (|X + D| - |X|)^2}{2} \right) - |X + D| \\
= \exp \left(\frac{|X|^2 - 1}{2} \right) \left(1 - |X|^2 \right) + \left\{ \exp \left(\frac{|X|^2 - 1}{2} \right) |X| - 1 \right\} |X + D| \\
\leq \frac{1 - |X|^2}{\sqrt{2 - |X|^2 - |X|}} \left[\exp \left(\frac{|X|^2 - 1}{2} \right) \sqrt{2 - |X|^2 - 1} \right].
\]

It suffices to observe that the expression in the square brackets is nonpositive, which follows from the estimate \(\exp(1 - |X|^2) \geq 2 - |X|^2\). This completes the proof of 2\(^o\). Finally, 3\(^o\) is a consequence of the inequality (2.2): \(U(x, |x|) \leq U(0, 0) + A(0, 0) \cdot x = 0\). \(\blacksquare\)

Thus, by the reasoning presented in the Introduction, the inequality (1.2) holds true. The constant \(\sqrt{c}\) is optimal even in the real case; see Cox [5]. In fact, we shall reprove this in the next section: see Remark 3.1 below.

3. Characterization of Hilbert Spaces

Let \((B, \| \cdot \|)\) be a separable Banach space and recall the number \(\beta(B)\) defined in the first section. Thus, for any \(B\)-valued martingale \(f\) we have
\[
\mathbb{P}\left(S(f) \geq 1 \right) \leq \beta(B) \|f\|_1.
\]

For \(x \in B\) and \(y \geq 0\), let \(M(x, y)\) denote the class of all simple martingales \(f\) given on the probability space \(([0, 1], \mathbb{B}(0, 1), \cdot, \cdot)\), such that \(f\) is \(B\)-valued, \(f_0 \equiv x\) and
\[
y^2 - \|x\|^2 + S^2(f) \geq 1 \text{ almost surely.}
\]
The function $U^0 : \mathcal{B} \times [0, \infty) \to \mathbb{R}$ given by

$$U^0(x, y) = \inf \{ \mathbb{E} \| f_n \| \},$$

where the infimum is taken over all n and all $f \in M(x, y)$. We will prove that U^0 satisfies appropriate versions of the conditions 1o–3o.

Lemma 3.1. The function U^0 satisfies the following conditions:

1o For any $x \in \mathcal{B}$ and $y \geq 0$ we have $U^0(x, y) \geq \| x \|$.

2o For any $x \in \mathcal{B}$, $y \geq 0$ and any simple centered \mathcal{B}-valued random variable T,

$$\mathbb{E}U^0(x + T, \sqrt{y^2 + \| T \|^2}) \geq U^0(x, y).$$

3o For any $x \in \mathcal{B}$ we have $U^0(x, \| x \|) \geq \beta(\mathcal{B})^{-1}$.

Proof. The property 1o is obvious: when $f \in M(x, y)$, then it follows that $\| f_n \|_1 \geq \| f_0 \|_1 = \| x \|$ for all n. To establish 2o, we use a modification of the so-called “splicing argument”: see e.g. [1]. Let T be as in the statement and let $\{x_1, x_2, \ldots, x_k\}$ be the set of its values: $\mathbb{P}(T = x_j) = p_j > 0$, $\sum_{j=1}^{k} p_j = 1$. For any $1 \leq j \leq k$, pick a martingale f^j from the class $M(x + x_j, \sqrt{y^2 + \| x_j \|^2})$. Let $a_0 = 0$ and $a_j = \sum_{t=1}^{j} p_t$, $j = 1, 2, \ldots, k$. Define a simple sequence f on $([0, 1], \mathcal{B}(0, 1), | \cdot |)$ by $f_0 \equiv x$ and

$$f_n(\omega) = f^j_{n-1}(\omega/(a_j - a_{j-1})), \quad n \geq 1,$$

when $\omega \in (a_{j-1}, a_j]$. Then f is a martingale with respect to its natural filtration and, when $\omega \in (a_{j-1}, a_j]$,

$$y^2 - \| x \|^2 + S^2(f)(\omega) = y^2 + \| x_j \|^2 - \| x + x_j \|^2 + S^2(f^j)(\omega/(a_j - a_{j-1})) \geq 1,$$

unless ω belongs to a set of measure zero. Therefore (3.2) holds, so by the definition of U^0 we get

$$\| f_n \|_1 \geq U^0(x, y).$$

However, the left-hand side equals

$$\sum_{j=1}^{k} \int_{a_{j-1}}^{a_j} | f_n(\omega) | d\omega = \sum_{j=1}^{k} p_j \int_{0}^{1} | f^j_{n-1}(\omega) | d\omega,$$

which, by the proper choice of n and f^j, $j = 1, 2, \ldots, k$, can be made arbitrarily close to $\sum_{j=1}^{k} p_j U^0(x + x_j, \sqrt{y^2 + \| x_j \|^2}) = \mathbb{E}U^0(x + T, \sqrt{y^2 + \| T \|^2})$. This gives 2o. Finally, the condition 3o follows immediately from (3.1) and the definition of U^0. □
The further properties of U^0 are described in the next lemma.

LEMMA 3.2. (i) The function U^0 satisfies the symmetry condition

$$U^0(x, y) = U^0(-x, y)$$

for all $x \in B$ and $y \geq 0$.

(ii) The function U^0 has the homogeneity-type property

$$U^0(x, y) = \sqrt{1 - y^2} U^0(\frac{x}{\sqrt{1 - y^2}}, 0)$$

for all $x \in B$ and $y \in [0, 1)$.

(iii) If $z \in B$ satisfies $\|z\| = 1$ and $0 \leq s < t \leq 1$, then

$$U^0(sz, 0) \leq U^0(tz, 0) \exp\left((s^2 - t^2)\|z\|^2/2\right).$$

Proof. (i) It is sufficient to use the equivalence $f \in M(x, y)$ if and only if $-f \in M(-x, y)$.

(ii) This follows immediately from the fact that $f \in M(x, y)$ if and only if $f/\sqrt{1 - y^2} \in M(x/\sqrt{1 - y^2}, 0)$.

(iii) Fix $x \in B$ with $0 < \|x\| < 1$ and $\delta > 0$ such that $\|x + \delta x\| \leq 1$. Apply 2σ to $y = 0$ and a centered random variable T which takes two values: δx and $-2x/(1 + \|x\|^2)$. We get

$$U^0(x, 0) \leq \frac{\delta \|x\|(1 + \|x\|^2)}{2\|x\| + \delta \|x\|(1 + \|x\|^2)} U^0\left(-\frac{x(1 - \|x\|^2)}{1 + \|x\|^2}, \frac{2\|x\|}{1 + \|x\|^2}\right) + \frac{2\|x\|}{2\|x\| + \delta \|x\|(1 + \|x\|^2)} U^0(\delta x, 0).$$

By (i) and (ii), the first term on the right equals

$$\frac{\delta \|x\|(1 - \|x\|^2)}{2\|x\| + \delta \|x\|(1 + \|x\|^2)} U^0(x, 0).$$

The second summand can be bounded from above by

$$\frac{2\|x\|}{2\|x\| + \delta \|x\|(1 + \|x\|^2)} U^0(\delta x, 0),$$

because $M(\delta x, 0) \subset M(\delta x, \delta \|x\|)$. Plugging these two facts into the inequality above yields

$$(3.4) \quad \frac{U^0(x + \delta x, 0)}{U^0(x, 0)} \geq 1 + \delta \|x\|^2.$$
This gives
\[
\frac{U^0(x(1 + k\delta), 0)}{U^0(x(1 + (k - 1)\delta), 0)} \geq 1 + \delta(1 + (k - 1)\delta)\|x\|^2,
\]
provided \(\|x(1 + k\delta)\| \leq 1\). Consequently, if \(N\) is an integer such that the condition \(\|x(1 + N\delta)\| \leq 1\) holds true, then
\[
(3.5) \quad \frac{U^0(x(1 + N\delta), 0)}{U^0(x, 0)} \geq \prod_{k=1}^{N} \left(1 + \delta(1 + (k - 1)\delta)\|x\|^2 \right).
\]

Now we turn to (3.3). Assume first that \(s > 0\). Put \(x = sz\), \(\delta = (t/s - 1)/N\) and let \(N \to \infty\) in the inequality above to obtain
\[
U^0(tz, 0)/U^0(sz, 0) \geq \exp\left(\frac{1}{2} \|z\|^2 (t^2 - s^2) \right),
\]
which is the claim. Next, suppose that \(s = 0\). For any \(0 < s' < t\) we have, by \(2^{s'}\),
\[
U^0(0, 0) \leq \frac{1}{2} U^0(s'z, \|s'z\|) + \frac{1}{2} U^0(-s'z, \|s'z\|) = U^0(s'z, \|s'z\|) \leq U^0(s'z, 0),
\]
where in the latter passage we have used the inclusion \(M(s'z, 0) \subset M(s'z, \|s'z\|)\). Thus,
\[
\frac{U^0(tz, 0)}{U^0(0, 0)} \geq \frac{U^0(tz, 0)}{U^0(s'z, 0)} \geq \exp\left(\frac{1}{2} \|z\|^2 (t^2 - (s')^2) \right)
\]
and it remains to let \(s' \to 0\).

Remark 3.1. Suppose that \(B = \mathbb{R}\). It is easy to see that \(U^0(1, 0) \leq 1\): consider \(f\) starting from 1 and satisfying \(\mathbb{P}(df_1 = -1) = \mathbb{P}(df_1 = 1) = 1/2, df_2 = df_3 = \ldots = 0\). Thus, by \(3^{s'}\) and (3.3), we have
\[
\beta(\mathbb{R})^{-1} \leq U^0(0, 0) \leq U^0(1, 0)/\sqrt{e} \leq 1/\sqrt{e},
\]
that is, \(\beta(\mathbb{R}) \geq \sqrt{e}\). This implies the sharpness of (1.2) in the Hilbert-space-valued setting.

Now we will work under the assumption \(\beta(B) = \sqrt{e}\). Then we are able to derive the explicit formula for \(U^0\).

Lemma 3.3. If \(\beta(B) = \sqrt{e}\), then
\[
U^0(x, y) = \begin{cases}
\sqrt{1 - y^2} \exp\left(\|x\|^2/[2(1 - y^2)] - \frac{1}{2}\right) & \text{if } \|x\|^2 + y^2 < 1, \\
\|x\| & \text{if } \|x\|^2 + y^2 \geq 1.
\end{cases}
\]
First let us focus on the set \(\{(x, y) : \|x\|^2 + y^2 \geq 1\} \). By 1’’ we have \(U^0(x, y) \geq \|x\| \). To get the reverse estimate, consider a martingale \(f \) such that \(f_0 = x \), \(df_1 \) takes values \(-x\) and \(x \), and \(df_2 = df_3 = \ldots = 0 \). Then \(y^2 - \|x\|^2 + S^2(f) = y^2 + \|x\|^2 \geq 1 \) (so \(f \in M(x, y) \)) and \(\|f\|_1 = \|x\| \), which implies \(U^0(x, y) \leq \|x\| \) by the definition of \(U^0 \). Now suppose that \(\|x\|^2 + y^2 < 1 \). Using the second and third part of the previous lemma, we may write

\[
U^0(x, y) = \sqrt{1 - y^2}U^0\left(\frac{x}{\sqrt{1 - y^2}}, 0\right) \geq \sqrt{1 - y^2} \exp\left(\frac{\|x\|^2}{2(1 - y^2)}\right),
\]

so, by 3’’,

\[
U^0(x, y) \geq \sqrt{1 - y^2} \exp\left(\frac{\|x\|^2}{2(1 - y^2)} - \frac{1}{2}\right).
\]

To get the reverse bound, we use the homogeneity of \(U^0 \) and (3.3) again:

\[
U^0(x, y) = \sqrt{1 - y^2}U^0\left(\frac{x}{\sqrt{1 - y^2}}, 0\right) \\
\leq \sqrt{1 - y^2}U^0\left(\frac{x}{|x|}, 0\right) \exp\left(\frac{1}{2} \left(\frac{\|x\|^2}{1 - y^2} - 1\right)\right) \\
= \sqrt{1 - y^2} \exp\left(\frac{\|x\|^2}{2(1 - y^2)} - \frac{1}{2}\right),
\]

where in the last line we have used the equality \(U^0(\pi, 0) = \|\pi\| \) valid for \(\pi \) of norm one (we have just established this in the first part of the proof). For completeness, let us mention here that if \(x = 0 \), then \(x/|x| \) should be replaced above by any vector of norm one. ■

Lemma 3.4. Suppose that \(\beta(B) = \sqrt{e} \) and let us assume that \(x, y \in B \) and \(\alpha > 0 \) satisfy \(\|x\| < 1 \), \(\|x + \alpha x + y\|^2 + \|\alpha x + y\|^2 < 1 \) and \(\|x + \alpha x - y\|^2 + \|\alpha x - y\|^2 < 1 \). Then

\[
2 + 2\alpha\|x\|^2 \leq \sqrt{1 - \|\alpha x + y\|^2} \exp\left(\frac{|x + \alpha x + y|^2}{2(1 - \|\alpha x + y\|^2)} - \frac{|x|^2}{2}\right) \\
+ \sqrt{1 - \|\alpha x - y\|^2} \exp\left(\frac{|x + \alpha x - y|^2}{2(1 - \|\alpha x - y\|^2)} - \frac{|x|^2}{2}\right).
\]

Proof. Consider a random variable \(T \) such that

\[
P\left(T = \alpha x + y\right) = P(T = \alpha x - y) = \frac{1 - p}{2},
\]

where \(p \in (0, 1) \) is chosen so that \(ET = 0 \). That is,

\[
p = \frac{\alpha(1 + \|x\|^2)}{2 + \alpha(1 + \|x\|^2)}.
\]
By 2", we have \(U^0(x, 0) \leq \mathbb{E} f^0(x + T, ||T||) \). Since \(||x + T||^2 + ||T||^2 < 1 \) almost surely, the previous lemma implies that this can be rewritten in the equivalent form:

\[
\exp \left(\frac{||x||^2}{2} \right) \leq p \sqrt{1 - \left(\frac{2||x||}{1 + ||x||^2} \right)^2} \exp \left(\frac{||x((-1 + ||x||^2)/(1 + ||x||^2))^2}{2(1 - (2||x||/(1 + ||x||^2))^2)} \right) + \frac{1 - p}{2} \sqrt{1 - \|\alpha x + y\|^2} \exp \left(\frac{||x + \alpha x + y\|^2}{2(1 - \|\alpha x + y\|^2)} \right) + \frac{1 - p}{2} \sqrt{1 - \|\alpha x - y\|^2} \exp \left(\frac{||x + \alpha x - y\|^2}{2(1 - \|\alpha x - y\|^2)} \right).
\]

However, the first term on the right equals

\[
\frac{\alpha(1 - ||x||^2)}{2 + \alpha(1 + ||x||^2)} \exp \left(\frac{||x||^2}{2} \right)
\]

and, in addition, \((1 - p)/2 = \left(2 + \alpha(1 + ||x||^2)\right)^{-1} \). Consequently, it suffices to multiply both sides of the inequality above by \((2 + \alpha(1 + ||x||^2)) \exp(-||x||^2/2)\); the claim follows.

Now we are ready to complete the proof of Theorem 1.1. Suppose that \(a, b \) belong to the unit ball \(K \) of \(B \) and take \(\varepsilon \in (0, 1/2) \). Applying (3.6) to \(x = \varepsilon a, y = \varepsilon^2 b \) and \(\alpha = \varepsilon \) gives

\[
2 + 2\varepsilon^3 ||a||^2 \leq \sqrt{1 - \varepsilon^4 ||a + b||^2} \exp \left(m(a, b) \right) + \sqrt{1 - \varepsilon^4 ||a - b||^2} \exp \left(m(a, -b) \right),
\]

where

\[
m(a, b) = \frac{\varepsilon^2 ||a + \varepsilon(a + b)||^2}{2(1 - \varepsilon^4 ||a + b||^2)} - \frac{\varepsilon^2 ||a||^2}{2} = \frac{\varepsilon^2}{2} (||a + \varepsilon(a + b)||^2 - ||a||^2) + \frac{\varepsilon^6 ||a + \varepsilon(a + b)||^2 ||a + b||^2}{2(1 - \varepsilon^4 ||a + b||^2)}.
\]

It is easy to see that there exists an absolute constant \(M_1 \) such that

\[
\sup_{a, b \in K} |m(a, b)| \leq M_1 \varepsilon^3.
\]

Consequently, there is a universal \(M_2 > 0 \) such that if \(\varepsilon \) is sufficiently small, then

\[
\exp (m(a, b)) \leq 1 + m(a, b) + m(a, b)^2 \\
\leq 1 + \frac{\varepsilon^2}{2} (||a + \varepsilon(a + b)||^2 - ||a||^2) + M_2 \varepsilon^6
\]
for any $a, b \in K$. Since $\sqrt{1 - x} \leq 1 - x/2$ for $x \in (0, 1)$, the inequality (3.7) implies

$$2 + 2\varepsilon^3 \|a\|^2 \leq (1 - \varepsilon^4 \|a + b\|^2/2) \left(1 + \frac{\varepsilon^2}{2} \left(\|a + \varepsilon(a + b)\|^2 - \|a\|^2\right) + M_3 \varepsilon^6\right) + (1 - \varepsilon^4 \|a - b\|^2/2) \left(1 + \frac{\varepsilon^2}{2} \left(\|a + \varepsilon(a - b)\|^2 - \|a\|^2\right) + M_3 \varepsilon^6\right).$$

This, after some manipulations, leads to

$$\|a + \varepsilon(a + b)\|^2 + \|a + \varepsilon(a - b)\|^2 - 2\|a(1 + \varepsilon)\|^2 \geq \varepsilon^2 \left(\|a + b\|^2 + \|a - b\|^2 - 2\|a\|^2\right) - 2\varepsilon \|a\|^2 - 2\varepsilon M_3,$$

where M_3 is a positive constant not depending on ε, a and b. Equivalently,

$$\left\|a + \frac{\varepsilon}{1 + \varepsilon} b\right\|^2 + \left\|a - \frac{\varepsilon}{1 + \varepsilon} b\right\|^2 - 2\|a\|^2 - 2\left\|\frac{\varepsilon}{1 + \varepsilon} b\right\|^2 \geq \frac{\varepsilon^2}{(1 + \varepsilon)^2} \left(\|a + b\|^2 + \|a - b\|^2 - 2\|a\|^2 - 2\|b\|^2\right) - 2\frac{\varepsilon^4}{(1 + \varepsilon)^2} M_3.$$

Next, let $c \in B$, $\gamma > 0$ and substitute $a = \gamma c$; we assume that γ is small enough to ensure that $a \in K$. If we divide both sides by γ^2 and substitute $\delta = \varepsilon(1 + \varepsilon)^{-1}/\gamma^{-1}$, we obtain

$$\|c + \delta b\|^2 + \|c - \delta b\|^2 - 2\|c\|^2 - 2\|\delta b\|^2 \geq \delta^2 (\|\gamma c + b\|^2 + \|\gamma c - b\|^2 - 2\|\gamma c\|^2 - 2\|b\|^2) - 2\varepsilon \|\gamma c\|^2 - 2\|b\|^2 - 2\delta^4 M_3.$$

Let γ and ε go to 0 so that δ remains fixed. As the result, we infer that, for any $\delta > 0$, $b \in K$ and $c \in B$,

$$(3.8) \quad \|c + \delta b\|^2 + \|c - \delta b\|^2 - 2\|c\|^2 - 2\|\delta b\|^2 \geq -2\delta^4 M_3.$$

Now, let N be a large positive integer and consider a symmetric random walk $(g_n)_{n \geq 0}$ over integers, starting from 0. Let $\tau = \inf\{n : |g_n| = N\}$. The inequality (3.8), applied to $\delta = N^{-1}$, implies that for any $a \in B$ and $b \in K$ the process

$$(\xi_n)_{n \geq 0} = \left(\left\|a + \frac{b g_{\tau \wedge n}}{N}\right\|^2 - \left\{\frac{\|b\|^2}{N^2} - \frac{M_3}{N^4}\right\} (\tau \wedge n)\right)_{n \geq 0}$$

is a submartingale. Since $E(\tau \wedge n) = E g_{\tau \wedge n}^2$, we obtain

$$E\left(\left\|a + \frac{b g_{\tau \wedge n}}{N}\right\|^2 - \left\{\frac{\|b\|^2}{N^2} - \frac{M_3}{N^4}\right\} g_{\tau \wedge n}^2\right) = E \xi_n \geq E \xi_0 = \|a\|^2.$$
Letting $n \to \infty$ and using Lebesgue’s dominated convergence theorem gives

$$\frac{1}{2}(\|a + b\|^2 + \|a - b\|^2) - \|b\|^2 + \frac{M_3}{N^2} \geq \|a\|^2.$$

It suffices to let N go to ∞ to obtain

$$\|a + b\|^2 + \|a - b\|^2 \geq 2\|a\|^2 + 2\|b\|^2.$$

We have assumed that b belongs to the unit ball K, but, by homogeneity, the above estimate extends to any $b \in B$. Putting $a + b$ and $a - b$ in the place of a and b, respectively, we obtain the reverse estimate

$$\|a + b\|^2 + \|a - b\|^2 \leq 2\|a\|^2 + 2\|b\|^2.$$

This implies that the parallelogram identity is satisfied, and hence B is a Hilbert space.

Acknowledgments. The author would like to thank an anonymous referee for the careful reading of the first version of the manuscript and helpful suggestions.

REFERENCES

Department of Mathematics,
Informatics and Mechanics
University of Warsaw
Banacha 2
02-097 Warsaw, Poland
E-mail: ados@mimuw.edu.pl

Received on 28.12.2010;
revised version on 8.4.2011