CLASSICAL METHOD OF CONSTRUCTING A COMPLETE SET OF IRREDUCIBLE REPRESENTATIONS OF SEMIDIRECT PRODUCT OF A COMPACT GROUP WITH A FINITE GROUP

Takeshi Hirai

Abstract: Let $G = U \rtimes S$ be a group of semidirect product of U compact and S finite. For an irreducible representation (= IR) ρ of U, let $S([\rho])$ be the stationary subgroup in S of the equivalence class $[\rho] \in \hat{U}$. Intertwining operators $J_\rho(s)$ $(s \in S([\rho]))$ between ρ and $s^{-1}\rho$ gives in general a spin (= projective) representation of $S([\rho])$, which is lifted up to a linear representation J_ρ' of a covering group $\tilde{S}([\rho])$ of $S([\rho])$. Put $\pi^0 := \rho \cdot J_\rho'$, and take a spin representation π^1 of $\tilde{S}([\rho])$ corresponding to the factor set inverse to that of J_ρ, and put $\Pi(\pi^0, \pi^1) = \text{Ind}_{S([\rho])}^{\hat{U} \rtimes S([\rho])}(\pi^0 \boxtimes \pi^1)$. We give a simple proof that $\Pi(\pi^0, \pi^1)$ is irreducible and that any IR of G is equivalent to some of $\Pi(\pi^0, \pi^1)$.

2000 AMS Mathematics Subject Classification: Primary: 20C99; Secondary: 20C15, 20C25.

Keywords and phrases: Semidirect product group, construction of irreducible representations, projective representation, finite group and compact group.

THE FULL TEXT IS AVAILABLE HERE