HERZ–SCHUR MULTIPLIERS AND NON-UNIFORMLY BOUNDED REPRESENTATIONS OF LOCALLY COMPACT GROUPS

BY

TROELS STEENSTRUP (ODENSE)

Abstract. Let \(G \) be a second countable, locally compact group and let \(\varphi \) be a continuous Herz–Schur multiplier on \(G \). Our main result gives the existence of a (not necessarily uniformly bounded) strongly continuous representation \(\pi \) of \(G \) on a Hilbert space \(H \), together with vectors \(\xi, \eta \in H \), such that
\[
\varphi(y^{-1}x) = \langle \pi(x)\xi, \pi(y^{-1})^*\eta \rangle \quad \text{for } x, y \in G.
\]
Moreover, we obtain control over the growth of the representation in the sense that
\[
\|\pi(g)\| \lesssim \exp(c_2d(g,e))
\]
for \(g \in G \), where \(e \in G \) is the identity element, \(c \) is a constant, and \(d \) is a metric on \(G \).

2000 AMS Mathematics Subject Classification: Primary: 46L07; Secondary: 22D12.

Key words and phrases: Herz–Schur multipliers, non-uniformly bounded representations, free groups.

1. INTRODUCTION

Let us assume that \(Y \) is a non-empty set. A function \(\psi : Y \times Y \to \mathbb{C} \) is called a Schur multiplier if for every operator \(A = (a_{x,y})_{x,y \in Y} \in B(\ell^2(Y)) \) the matrix \((\psi(x,y)a_{x,y})_{x,y \in Y} \) represents an operator from \(B(\ell^2(Y)) \) (this operator is denoted by \(M_\psi A \)). If \(\psi \) is a Schur multiplier it follows from the closed graph theorem that \(M_\psi \in B(B(\ell^2(Y))) \), and one refers to \(\|M_\psi\| \) as the Schur norm of \(\psi \) and denotes it by \(\|\psi\|_S \).

Let \(G \) be a locally compact group. In [6], Herz introduced a class of functions on \(G \), which was later called the class of Herz–Schur multipliers on \(G \). By the introduction to [1], a continuous function \(\varphi : G \to \mathbb{C} \) is a Herz–Schur multiplier if and only if the function
\[
\hat{\varphi}(x, y) = \varphi(y^{-1}x) \quad (x, y \in G)
\]
is a Schur multiplier, and the Herz–Schur norm of \(\varphi \) is given by
\[
\|\varphi\|_{HS} = \|\hat{\varphi}\|_S.
\]
In [3] De Cannière and Haagerup introduced the Banach algebra $MA(G)$ of Fourier multipliers of G, consisting of functions $\varphi : G \to \mathbb{C}$ such that

$$\varphi \psi \in A(G) \quad (\psi \in A(G)),$$

where $A(G)$ is the Fourier algebra of G as introduced by Eymard in [4]. The norm of φ (denoted by $\|\varphi\|_{MA(G)}$) is given by considering φ as an operator on $A(G)$. According to Proposition 1.2 in [3] a Fourier multiplier of G can also be characterized as a continuous function $\varphi : G \to \mathbb{C}$ such that

$$\lambda(g) \Mapsto \varphi(g)\lambda(g) \quad (g \in G)$$

extends to a σ-weakly continuous operator (still denoted by M_φ) on the group von Neumann algebra ($\lambda : G \to B(L^2(G))$ is the left regular representation and the group von Neumann algebra is the closure of the span of $\lambda(G)$ in the weak operator topology). Moreover, one has $\|\varphi\|_{MA(G)} = \|M_\varphi\|$. The Banach algebra $M_0A(G)$ of completely bounded Fourier multipliers of G consists of the Fourier multipliers φ of G, for which M_φ is completely bounded. Let $\|\varphi\|_{M_0A(G)} = \|M_\varphi\|_{cb}$.

In [1] Bożejko and Fendler show that the completely bounded Fourier multipliers coincide isometrically with the continuous Herz–Schur multipliers. In [7] Jolissaint gives a short and self-contained proof of this result in the following form.

Proposition 1.1 ([1], [7]). Let G be a locally compact group and assume that $\varphi : G \to \mathbb{C}$ and $k \geq 0$ are given. Then the following are equivalent:

(i) φ is a completely bounded Fourier multiplier of G with $\|\varphi\|_{M_0A(G)} \leq k$.

(ii) φ is a continuous Herz–Schur multiplier on G with $\|\varphi\|_{HS} \leq k$.

(iii) There exist a Hilbert space \mathcal{H} and two bounded, continuous maps $P, Q : G \to \mathcal{H}$ such that

$$\varphi(y^{-1}x) = \langle P(x), Q(y) \rangle \quad (x, y \in G)$$

and

$$\|P\|_\infty \|Q\|_\infty \leq k,$$

where

$$\|P\|_\infty = \sup_{x \in G} \|P(x)\| \quad \text{and} \quad \|Q\|_\infty = \sup_{y \in G} \|Q(y)\|.$$

By a representation (π, \mathcal{H}) of a locally compact group G on a Hilbert space \mathcal{H} we mean a homomorphism of G into the invertible elements of $B(\mathcal{H})$. A representation (π, \mathcal{H}) of G is said to be uniformly bounded if

$$\sup_{g \in G} \|\pi(g)\| < \infty.$$
and one usually writes $\|\pi\|$ for $\sup_{g \in G} \|\pi(g)\|$. If $g \mapsto \pi(g)$ is continuous with respect to the strong operator topology on $B(H)$ then we say that (π, H) is strongly continuous. Let (π, H) be a strongly continuous, uniformly bounded representation of G. Then, according to Theorem 2.2 of [3], any coefficient of (π, H) is a continuous Herz–Schur multiplier, i.e.,

$$g \mapsto \langle \pi(g)\xi, \eta \rangle \quad (g \in G)$$

is a continuous Herz–Schur multiplier with

$$\|\varphi\|_{M_0A(G)} \leq \|\pi\|^2\|\xi\|\|\eta\|$$

for any $\xi, \eta \in H$ (note that this result also follows as a corollary to Proposition 1.1). U. Haagerup has shown that on the non-abelian free groups there are Herz–Schur multipliers which cannot be realized as coefficients of uniformly bounded representations. The proof by Haagerup has remained unpublished, but Pisier has later given a different proof, cf. [8]. Haagerup’s proof can be modified to prove the corresponding result for the connected, real rank one, simple Lie groups with finite center; cf. [9], Theorem 3.6.

Strictly speaking, the requirement that the above representations be uniformly bounded is not fully needed in order to construct a continuous Herz–Schur multiplier. From Proposition 1.1 it follows that it is enough to require that

$$(1.2) \quad \sup_{x \in G} \|\pi(x)\xi\| < \infty \quad \text{and} \quad \sup_{y \in G} \|\pi(y^{-1})^*\eta\| < \infty.$$

In Theorem 1.1 of [2] Bożejko and Fendler show that for countable discrete groups all Herz–Schur multipliers can be realized as coefficients of representations satisfying a condition similar to (1.2). More specifically, they show that if φ is a Hermitian Herz–Schur multiplier on a countable discrete group Γ, then there exist a representation (π, H) and vectors $\xi, \eta \in H$ such that

$$\varphi(y^{-1}x) = \langle \pi(x)\xi, \pi(y)\eta \rangle \quad (x, y \in \Gamma)$$

with

$$\sup_{x \in \Gamma} \|\pi(x)\xi\| \leq \|\varphi\|_{M_0A(\Gamma)}^{1/2} \quad \text{and} \quad \sup_{y \in \Gamma} \|\pi(y)\eta\| \leq \|\varphi\|_{M_0A(\Gamma)}^{1/2}.$$

Furthermore, they give a quantitative bound on $\|\pi(g)\|$ for $g \in \Gamma$ and note that the same holds for non-Hermitian Herz–Schur multipliers by including a $\sqrt{2}$ factor in the bound for $\sup_{x \in \Gamma} \|\pi(x)\xi\|$ and $\sup_{y \in \Gamma} \|\pi(y)\eta\|$. In Section 2 we present a generalization of the result by Bożejko and Fendler to second countable, locally compact groups (Theorem 2.1 and Corollary 2.1) and prove our main result, which is the following
Theorem 1.1. Let G be a second countable, locally compact group and let d be a proper, left invariant metric on G which has at most exponential growth, i.e.,

$$\mu(B_n(e)) \leq a \cdot e^{bn} \quad (n \in \mathbb{N})$$

for some constants $a, b > 0$, where μ is a left invariant Haar measure on G and $B_n(e) = \{g \in G : d(g, e) < n\}$ is the open ball of radius n centered at the identity element $e \in G$. Then for any continuous Herz–Schur multiplier φ on G there exist a strongly continuous representation (π, \mathcal{H}) and vectors $\xi, \eta \in \mathcal{H}$ such that

$$\varphi(y^{-1}x) = \langle \pi(x)\xi, \pi(y^{-1})^*\eta \rangle \quad (x, y \in G)$$

with

$$\sup_{x \in G} \|\pi(x)\xi\| = \|\varphi\|_{M_0A(G)}^{1/2} \quad \text{and} \quad \sup_{y \in G} \|\pi(y^{-1})^*\eta\| = \|\varphi\|_{M_0A(G)}^{1/2}.$$

Moreover, for every fixed $c > b$, (π, \mathcal{H}) can be chosen such that

$$\|\pi(g)\| \leq e^{c^2d(g, e)} \quad (g \in G).$$

Note that the existence of a proper, left invariant metric with at most exponential growth on a second countable, locally compact group is guaranteed by [5].

2. Coefficients of non-uniformly bounded representations

Second countability guarantees the existence of a proper, left invariant metric, cf. the Theorem in [10]. Actually, according to Haagerup and Przybyszewska [5] one can choose this metric, d, to have at most exponential growth, i.e.,

$$\mu(B_n(e)) \leq a \cdot e^{bn} \quad (n \in \mathbb{N})$$

for some constants $a, b > 0$, where μ is a left invariant Haar measure on G.

Inspired by the proof of Theorem 1.1 in [2], we state and prove Theorem 2.1 for Hermitian Herz–Schur multipliers, i.e., Herz–Schur multipliers φ for which $\varphi^* = \varphi$, where

$$\varphi^*(g) = \overline{\varphi(g^{-1})} \quad (g \in G).$$

The non-Hermitian case is treated in Corollary 2.1.

Theorem 2.1. If φ is a continuous Hermitian Herz–Schur multiplier on a second countable, locally compact group G, and d is a proper, left invariant metric on G satisfying (2.1) for some $a, b > 0$ (which exists according to [5]), then there exist a strongly continuous representation (π, \mathcal{H}) and vectors $\xi, \eta \in \mathcal{H}$ such that

$$\varphi(y^{-1}x) = \langle \pi(x)\xi, \pi(y)\eta \rangle \quad (x, y \in G).$$
with
\[\sup_{x \in G} \| \pi(x) \xi \| = \| \varphi \|_{M_0 A(G)}^{1/2} \quad \text{and} \quad \sup_{y \in G} \| \pi(y) \eta \| = \| \varphi \|_{M_0 A(G)}^{1/2}. \]

Moreover, for every fixed \(c > b \), \((\pi, \mathcal{H})\) can be chosen such that
\[\| \pi(g) \| \leq e^{c \cdot d(g, e)} \quad (g \in G). \]

Before we proceed with the proof of Theorems 1.1 and 2.1 we need the following application of [5], which was communicated to us by Haagerup.

Lemma 2.1. If \(G \) is a second countable, locally compact group, then there exist a positive function \(h \in L^1(G) \) with \(\| h \|_1 = 1 \), and a positive function \(c \) on \(G \) such that
\[\frac{1}{\| h \|} \int_G e^{-c \cdot d(z, e)} dz \leq \| f \| \leq \int_G e^{-c \cdot d(z, e)} dz \]
for \(g \in G \) and any positive \(f \in L^\infty(G) \), where \(\mu \) is the Haar measure on \(G \). Moreover, we may use
\[h(g) = \frac{e^{-c \cdot d(g, e)}}{\int_G e^{-c \cdot d(x, e)} d\mu(x)} \quad \text{and} \quad c(g) = e^{c \cdot d(g, e)} \quad (g \in G) \]
for \(c > b \), when \(d \) is a proper, left invariant metric on \(G \) satisfying (2.1).

Proof. Let \(\mu \) be a left invariant Haar measure on \(G \) and let \(d \) be a proper, left invariant metric on \(G \) satisfying (2.1). We claim that
\[0 < \int_G e^{-c \cdot d(g, e)} d\mu(g) < \infty. \]
Put \(E_1 = B_1(e) \) and define inductively
\[E_n = B_n(e) \setminus B_{n-1}(e) \quad (n \geq 2). \]
Then \(G \) is the disjoint union of \(E_n \) for \(n \in \mathbb{N} \) and
\[e^{-cn} \leq e^{-c \cdot d(g, e)} \leq e^{-c(n-1)} \quad (g \in E_n). \]

Hence,
\[\int_G e^{-c \cdot d(g, e)} d\mu(g) = \sum_{n=1}^{\infty} \int_{E_n} e^{-c \cdot d(g, e)} d\mu(g) \leq \sum_{n=1}^{\infty} e^{-c(n-1)} \mu(E_n) \leq e^c \sum_{n=1}^{\infty} e^{(b-c)n} < \infty \]
because \(c > b \).
By the reverse triangle inequality we see that
\[|d(z, g^{-1}) - d(z, e)| \leq d(e, g^{-1}) \quad (g, z \in G). \]

Using left invariance of the metric one finds that
\[|d(gz, e) - d(z, e)| \leq d(g, e) \quad (g, z \in G). \]

This implies
\[\frac{1}{c(g)} e^{-c \cdot d(z, e)} \leq e^{-c \cdot d(gz, e)} \leq c(g) e^{-c \cdot d(z, e)} \quad (g, z \in G), \]

which is easily seen to complete the proof. ■

Lemma 2.2. Assume that G is a second countable, locally compact group, that \mathcal{H} is a Hilbert space, and $R : G \to \mathcal{H}$ is bounded and continuous. Let $R' : G \to L^2(G, \mathcal{H}, \mu)$ be given by
\[R'(x)(z) = \sqrt{h(z)} R(z^{-1} x) \quad (x, z \in G), \]
where $h \in L^{-1}(G)$ is chosen as in Lemma 2.1. Then R' is bounded and continuous, with $\|R'(x)\|_2 \leq \|R\|_\infty$ for all $x \in G$. Also, let $\mathcal{K}_R = \text{span}\{R'(x) : x \in G\}$ be a sub-Hilbert space of $L^2(G, \mathcal{H}, \mu)$. Then there exists a unique representation (π_R, \mathcal{K}_R) such that
\[\pi_R(g) R'(x) = R'(g x) \quad (g, x \in G). \]

Moreover,
\[\|\pi_R(g)\| \leq e^{c \cdot d(g, e)} \quad (g \in G) \]
and the representation is strongly continuous.

Proof. From Lebesgue’s dominated convergence theorem it follows easily that R' is continuous. To see that R' is bounded, note that
\[\|R'(x)\|_2^2 = \int_G h(z) \|R(z^{-1} x)\|^2 d\mu(z) \leq \|R\|_\infty^2 \quad (x \in G). \]

If $n \in \mathbb{N}$, $x_1, \ldots, x_n \in G$, and $c_1, \ldots, c_n \in \mathbb{C}$, then Lemma 2.1 implies that
\[\int_G \| \sum_{i=1}^n c_i R(z^{-1} x_i) \|^2 h(gz) d\mu(z) \leq c(g) \int_G \| \sum_{i=1}^n c_i R(z^{-1} x_i) \|^2 h(z) d\mu(z) \]
for $g \in G$, where
\[c(g) = e^{c \cdot d(g, e)} \quad (g \in G). \]

It follows that
\[\| \sum_{i=1}^n c_i R'(g x_i) \|_2^2 \leq c(g) \| \sum_{i=1}^n c_i R'(x_i) \|_2^2 \quad (g \in G), \]
from which we conclude that there exists a unique representation \((\pi_R, \mathcal{H}_R)\) of \(G\) such that
\[
\pi_R(g)R'(x) = R'(gx) \quad (g, x \in G).
\]
Furthermore,
\[
\|\pi_R(g)\| \leq \sqrt{c(g)} \quad (g \in G).
\]

We proceed to show that the representation is strongly continuous. Since \(\text{span}\{R'(x) : x \in G\}\) is total in \(\mathcal{H}_R\) and \(\|\pi_R(g)\| \leq \sqrt{c(g)}\), where \(g \mapsto \sqrt{c(g)}\) is a continuous function, it is enough to show that
\[
\lim_{n \to \infty} \pi_R(g_n)R'(x) = R'(x)
\]
for \(x \in G\), when \((g_n)_{n \in \mathbb{N}}\) is a sequence converging to the identity \(e \in G\) (since \(G\) is second countable, we do not have to consider nets). But \(\pi_R(g_n)R'(x) = R'(g_nx)\), so this follows simply from continuity of \(R'\).

Proof of Theorem 2.1. Let us assume that \(\varphi\) is a continuous Hermitian Herz–Schur multiplier and use Proposition 1.1 to find a Hilbert space \(\mathcal{H}\) and bounded, continuous maps \(P, Q : G \to \mathcal{H}\) such that
\[
\varphi(y^{-1}x) = \langle P(x), Q(y) \rangle \quad (x, y \in G)
\]
and
\[
\|P\|_{\infty} = \|Q\|_{\infty} = \|\varphi\|_{M_b A(G)}^{1/2}.
\]
Define
\[
a_{\pm}(x, y) = \frac{1}{4}(P(x) \pm Q(x), P(y) \pm Q(y)) \quad (x, y \in G).
\]
This gives rise to two positive definite, bounded kernels on \(G \times G\) satisfying
\[
a_+(x, y) - a_-(x, y) = \frac{1}{2}\varphi(y^{-1}x) + \frac{1}{2}\varphi^*(y^{-1}x) = \varphi(y^{-1}x) \quad (x, y \in G)
\]
and
\[
a_+(x, x) + a_-(x, x) = \frac{1}{2}\|P(x)\|^2 + \frac{1}{2}\|Q(x)\|^2 \leq \|\varphi\|_{M_b A(G)} (x \in G).
\]
Let
\[
h(g) = \int_G \frac{e^{-c d(g, e)}}{\int_G e^{-c d(x, e)} d\mu(x)} \quad (g \in G)
\]
for some \(c > b\), when \(d\) is a proper, left invariant metric on \(G\) satisfying (2.1) (cf. Lemma 2.1). Define \((P \pm Q)' : G \to L^2(G, \mathcal{H}, \mu)\) by
\[
(P \pm Q)'(x)(z) = \sqrt{h(z)}(P \pm Q)(z^{-1}x) \quad (x, z \in G).
\]
By Lemma 2.2 there exist strongly continuous representations \((\pi_{P\pm Q}, \mathcal{K}_{P\pm Q})\), where \(\mathcal{K}_{P\pm Q} = \bigoplus \{(P' \pm Q')(x) : x \in G\}\) and \(\pi_{P\pm Q}(g)(P \pm Q)'(x) = (P \pm Q)'(gx)\) for \(g, x \in G\). Furthermore, these representations satisfy

\[
\|\pi_{P\pm Q}(g)\| \leq e^{\frac{C}{2} d(g,e)} \quad (g \in G).
\]

Put

\[
A_\pm(x, y) = \langle (P \pm Q)'(x), (P \pm Q)'(y)\rangle_{\mathcal{K}_{P\pm Q}} \quad (x, y \in G).
\]

Then \(A_\pm\) are positive definite, bounded kernels on \(G \times G\) satisfying

\[
A_+(x, y) - A_-(x, y) = \varphi(y^{-1}x) \quad (x, y \in G)
\]

and

\[
A_+(x, x) + A_-(x, x) \leq \|\varphi\|_{\mathcal{M}_0A(G)} \quad (x \in G).
\]

To make the notation less cumbersome, let \(\pi_\pm = \pi_{P\pm Q}\) and \(\mathcal{K}_\pm = \mathcal{K}_{P\pm Q}\) and define \(\xi_\pm = (P \pm Q)'(e)\). Notice that

\[
\langle \pi_\pm(x)\xi, \pi_\pm(y)\eta \rangle_{\mathcal{K}_\pm} = A_\pm(x, y) \quad (x, y \in G),
\]

and that (2.2) now reads

\[
\|\pi_\pm(g)\| \leq e^{\frac{C}{2} d(g,e)} \quad (g \in G).
\]

Put

\[
\mathcal{K} = \mathcal{K}_+ \oplus \mathcal{K}_-, \quad \xi = \xi_+ \oplus \xi_-, \quad \eta = \xi_+ \oplus -\xi_-, \quad \text{and} \quad \pi = \pi_+ \oplus \pi_-.
\]

Observe that \(\pi\) is a strongly continuous representation such that

\[
\|\pi(g)\| \leq e^{\frac{C}{2} d(g,e)} \quad (g \in G)
\]

and

\[
\langle \pi(x)\xi, \pi(y)\eta \rangle_{\mathcal{K}} = \varphi(y^{-1}x) \quad (x, y \in G).
\]

Finally, observe that

\[
\|\pi(x)\xi\|^2 = \|\pi_+(x)\xi_+\|^2 + \|\pi_-(x)\xi_-\|^2 = A_+(x, x) + A_-(x, x) \leq \|\varphi\|_{\mathcal{M}_0A(G)}
\]

for \(x \in G\), and similarly

\[
\|\pi(y)\eta\|^2 \leq \|\varphi\|_{\mathcal{M}_0A(G)}
\]

for \(y \in G\). This completes the proof. \(\blacksquare\)
Corollary 2.1. If φ is a continuous Herz–Schur multiplier on a second countable, locally compact group G, and d is a proper, left invariant metric on G satisfying (2.1) for some $a, b > 0$ (which exist according to [5]), then there exist a strongly continuous representation (π, \mathcal{H}) and vectors $\xi, \eta \in \mathcal{H}$ such that

$$\varphi(y^{-1}x) = \langle \pi(x)\xi, \pi(y)\eta \rangle \quad (x, y \in G)$$

with

$$\sup_{x \in G} \|\pi(x)\xi\| \leq \sqrt{2}\|\varphi\|_{M_0A(G)}^{1/2} \quad \text{and} \quad \sup_{y \in G} \|\pi(y)\eta\| \leq \sqrt{2}\|\varphi\|_{M_0A(G)}^{1/2}.$$

Moreover, for every fixed $c > b$, (π, \mathcal{H}) can be chosen such that

$$\|\pi(g)\| \leq e^{2c}d(g,e) \quad (g \in G).$$

Proof. This follows from Theorem 2.1 since

$$\varphi = \Re(\varphi) + i\Im(\varphi),$$

where

$$\Re(\varphi) = \frac{\varphi + \varphi^*}{2} \quad \text{and} \quad \Im(\varphi) = \frac{\varphi - \varphi^*}{2i}$$

are continuous Hermitian Herz–Schur multipliers with

$$\|\Re(\varphi)\|_{M_0A(G)} \leq \|\varphi\|_{M_0A(G)} \quad \text{and} \quad \||\Im(\varphi)\|_{M_0A(G)} \leq \|\varphi\|_{M_0A(G)}.$$

Thus the proof is complete.

Proof of Theorem 1.1. Assume that φ is a continuous Herz–Schur multiplier and use Proposition 1.1 to find a Hilbert space \mathcal{H} and bounded, continuous maps $P, Q : G \to \mathcal{H}$ such that

$$\varphi(y^{-1}x) = \langle P(x), Q(y) \rangle \quad (x, y \in G)$$

and

$$\|P\|_{\infty} = \|Q\|_{\infty} = \|\varphi\|_{M_0A(G)}^{1/2}. $$

Let

$$h(g) = \int_G e^{-c\cdot d(g,e)}d\mu(x) \quad (g \in G)$$

for some $c > b$, when d is a proper, left invariant metric on G satisfying (2.1) (cf. Lemma 2.1). Define $P', Q' : G \to L^2(G, \mathcal{H}, \mu)$ by

$$P'(x)(z) = \sqrt{h(z)}P(z^{-1}x) \quad \text{and} \quad Q'(y)(z) = \sqrt{h(z)}Q(z^{-1}y) \quad (z \in G)$$

for some $c > b$, when d is a proper, left invariant metric on G satisfying (2.1) (cf. Lemma 2.1). Define $P', Q' : G \to L^2(G, \mathcal{H}, \mu)$ by

$$P'(x)(z) = \sqrt{h(z)}P(z^{-1}x) \quad \text{and} \quad Q'(y)(z) = \sqrt{h(z)}Q(z^{-1}y) \quad (z \in G)$$

for some $c > b$, when d is a proper, left invariant metric on G satisfying (2.1) (cf. Lemma 2.1). Define $P', Q' : G \to L^2(G, \mathcal{H}, \mu)$ by
for \(x, y \in G\). According to Lemma 2.2 there exists a strongly continuous representation \((\pi_P, \mathcal{K}_P)\), where \(\mathcal{K}_P = \mathcal{K} \mathcal{M}_G\{P'(x) : x \in G\}\) and \(\pi_P(g)P'(x) = P'(gx)\) for \(g, x \in G\). Furthermore, this representation satisfies

\[
\|\pi_P(g)\| \leq e^{\frac{c}{2}d(g, e)} \quad (g \in G).
\]

Observe that

\[
\|P'(x)\|_2^2, \|Q'(y)\|_2^2 \leq \|\varphi\|_{M_0A(G)}
\]

and

\[
\langle P'(x), Q'(y) \rangle_{L^2(G, \mathcal{K}_P))} = \int_G h(z)\langle P(z^{-1}x), Q(z^{-1}y) \rangle_{\mathcal{K}}d\mu(z) = \varphi(y^{-1}x)
\]

for \(x, y \in G\). Put \(\xi = P'(e)\) and \(\eta = P_{\mathcal{K}_P}Q'(e)\), where \(P_{\mathcal{K}_P}\) is the orthogonal projection on \(\mathcal{K}_P\). Note that \(\xi, \eta \in \mathcal{K}_P\) and

\[
\varphi(y^{-1}x) = \langle \pi_P(y^{-1}x)\xi, \eta \rangle_{\mathcal{K}_P} = \langle \pi_P(x)\xi, \pi_P(y^{-1})^*\eta \rangle_{\mathcal{K}_P}, \quad (x, y \in G).
\]

It is clear that \(\|\pi_P(x)\xi\|_{\mathcal{K}_P}^2 = \|P'(x)\|_2^2 \leq \|\varphi\|_{M_0A(G)}\). The corresponding result for \(\|\pi_P(y^{-1})^*\eta\|_{\mathcal{K}_P}^2\) requires more work. For \(x \in G\) arbitrary we find that

\[
\langle \pi_P(y^{-1})P'(x), P_{\mathcal{K}_P}Q'(e) \rangle_{\mathcal{K}_P} = \langle P'(y^{-1}x), P_{\mathcal{K}_P}Q'(e) \rangle_{\mathcal{K}_P} = \langle P'(y^{-1}x), Q'(e) \rangle_{\mathcal{K}} = \varphi(y^{-1}x)
\]

\[
= \langle P'(x), Q'(y) \rangle_{\mathcal{K}} = \langle P'(x), P_{\mathcal{K}_P}Q'(y) \rangle_{\mathcal{K}_P}
\]

from which we conclude that \(\pi_P(y^{-1})^*P_{\mathcal{K}_P}Q'(e) = P_{\mathcal{K}_P}Q'(y)\), and therefore

\[
\|\pi_P(y^{-1})^*\eta\|_{\mathcal{K}_P}^2 = \|P_{\mathcal{K}_P}Q'(y)\|_{\mathcal{K}_P}^2 \leq \|Q'(y)\|_2^2 \leq \|\varphi\|_{M_0A(G)}.
\]

Thus the proof is complete. \(\blacksquare\)

Remark 2.1. For the free group on \(N\) generators \((2 \leq N < \infty)\) the constants \(a, b\) in (2.1) may be chosen as

\[
a = \frac{N}{(N - 1)(2N - 1)} \quad \text{and} \quad b = \ln(2N - 1).
\]

This implies that for \(r > \sqrt{2N - 1}\) the representations \((\pi, \mathcal{K})\) from Theorems 1.1 and 2.1 and Corollary 2.1 may be chosen to satisfy \(\|\pi(g)\| \leq r^\delta(g, e)\) for all \(g \in G\).
REFERENCES

Department of Mathematics and Computer Science
University of Southern Denmark
Campusvej 55, DK–5230 Odense M, Denmark
E-mail: pms@troelssj.dk

Received on 31.3.2013;
revised version on 6.5.2013