CONTRACTIONS AND CENTRAL EXTENSIONS OF QUANTUM WHITE NOISE LIE ALGEBRAS

Luigi Accardi
Andreas Boukas

Abstract: We show that the Renormalized Powers of Quantum White Noise Lie algebra $RPQ WN$, with the convolution type renormalization $\delta^n(t - s) = \delta(s) \delta(t - s)$ of the $n \geq 2$ powers of the Dirac delta function, can be obtained through a contraction of the Renormalized Powers of Quantum White Noise Lie algebra $RPQ WN_c$ with the scalar renormalization $\delta^n(t) = c^{n-1} \delta(t)$, $c > 0$. Using this renormalization, we also obtain a Lie algebra $W_\infty(c)$ which contains the w_∞ Lie algebra of Bakas and the Witt algebra as contractions. Motivated by the W_∞ algebra of Pope, Romans and Shen, we show that $W_\infty(c)$ can also be centrally extended in a non-trivial fashion. In the case of the Witt subalgebra of W_∞, the central extension coincides with that of the Virasoro algebra.

2000 AMS Mathematics Subject Classification: Primary: 60B15; Secondary: 60H40.

Keywords and phrases: Contraction of a Lie algebra, renormalized powers of quantum white noise, Virasoro algebra, W-algebras.

The full text is available here.