A TWO-PARAMETER EXTENSION OF URBANIK’S PRODUCT CONVOLUTION SEMIGROUP

Christian Berg

Abstract: We prove that \(s_n(a, b) = \frac{\Gamma(an + b)}{\Gamma(b)} \), \(n = 0, 1, \ldots \), is an infinitely divisible Stieltjes moment sequence for arbitrary \(a, b > 0 \). Its powers \(s_n(a, b)^c \), \(c > 0 \), are Stieltjes determinate if and only if \(ac \leq 2 \). The latter was conjectured in a paper by Lin (2019) in the case \(b = 1 \). We describe a product convolution semigroup \(\tau_c(a, b) \), \(c > 0 \), of probability measures on the positive half-line with densities \(e_c(a, b) \) and having the moments \(s_n(a, b)^c \). We determine the asymptotic behavior of \(e_c(a, b)(t) \) for \(t \to 0 \) and for \(t \to \infty \), and the latter implies the Stieltjes indeterminacy when \(ac > 2 \). The results extend the previous work of the author and López (2015) and lead to a convolution semigroup of probability densities \((g_c(a, b)(x))_{c>0} \) on the real line. The special case \((g_c(a, 1)(x))_{c>0} \) are the convolution roots of the Gumbel distribution with scale parameter \(a > 0 \). All the densities \(g_c(a, b)(x) \) lead to determinate Hamburger moment problems.

2000 AMS Mathematics Subject Classification: Primary: 60E07; Secondary: 60B15, 44A60.

Keywords and phrases: Infinitely divisible Stieltjes moment sequence, product convolution semigroup, asymptotic approximation of integrals, Gumbel distribution.

THE FULL TEXT IS AVAILABLE HERE