WEAK CONVERGENCE
OF AN EMPIRICAL MONOTONIC DEPENDENCE FUNCTION
UNDER DEPENDENCE

BY

T. BEDNARSKI AND T. LEDWINA (WROCLAW)

Abstract. The weak convergence of a consistent estimator of a
monotonic dependence function of two random variables X and Y is
studied. The estimator is treated as a random element of $D[0, 1]$ and
of $L_2([0, 1], \lambda)$, where λ stands for the Lebesgue measure. Its
asymptotic distribution is derived for the two spaces in the following
cases: independence of X and Y, distributions contiguous to inde-
pendence, and dependence of X and Y. Except for the case of
independence the asymptotic distributions depend strongly on the
marginals of X and Y. Therefore, the asymptotic distribution of rank
counterpart of the estimator is also considered. The obtained results
extend the possibility of practical applications of the measure of
monotonic dependence and its consistent estimator.

1. Introduction. Consider a two-dimensional random vector (X, Y) with
continuous marginal distributions and finite expectations. A functional
measure of monotonic dependence $\mu_{X,Y}(p), p \in (0, 1)$, was introduced and
discussed in detail in [11] and [9]. Under the above assumptions the
monotonic dependence function $\mu_{X,Y}(p)$ is defined as

$$\mu_{X,Y}(p) = \begin{cases} \mu_{X,Y}^+(p) & \text{if } \mu_{X,Y}^+(p) \geq 0, \\ \mu_{X,Y}^-(p) & \text{if } \mu_{X,Y}^+(p) \leq 0, \end{cases}$$

where

$$\mu_{X,Y}^+(p) = \frac{\mathbb{E}(X | Y > y_p) - \mathbb{E}X}{\mathbb{E}(X | X > x_p) - \mathbb{E}X}$$

and

$$\mu_{X,Y}^-(p) = -\mu_{X,Y}^+(p),$$
while x_p and y_p denote the p-th quantiles of X and Y, respectively. The function $\mu_{XY}(p)$ can be estimated via $\mu_n(p)$, the analogue of $\mu_{XY}(p)$ for the sample distribution. Kowalczyk [9] proved that, for every fixed $p \in (0, 1)$, $\mu_n(p) \to \mu_{XY}(p)$ a.e. The practical usefulness of the measure of monotonic dependence is conditioned by the possibility of calculation of asymptotic distributions of μ_n under various circumstances. The most important of them are: independence of X and Y, alternatives contiguous to independence, and dependence of X and Y. The availability of the asymptotic distributions and their properties usually give the basis for construction of optimal tests and confidence regions. In this paper we deal with the first of the mentioned problems and study the asymptotic distributions of μ_n^+, a consistent estimator of μ_{XY}.

If $(X_1, Y_1), \ldots, (X_n, Y_n)$ is a sample, then $\mu_n^+(p) = L_n(p)/M_n(p)$, for

$$L_n(p) = \sum_{i=1}^n X_i(1 [Y_i \leq y_{p,n}]-p) + (np - [np] - 1) \sum_{i=1}^n X_i(1 [Y_i = y_{p,n}]),$$

$$M_n(p) = \sum_{i=1}^n X_i(1 [X_i < x_{p,n}]-p) + x_{p,n}(np - [np]),$$

and $x_{p,n}, y_{p,n}$ are the p-th quantiles of the empirical marginal distributions chosen as the k-th order statistics for $k = [np] + 1$. The function $1[A]$ stands for the indicator of the set A. We put additionally $L_n(1) = L_n(1)$ and $M_n(1) = M_n(1)$. The estimator μ_n^+ of μ_{XY} can be defined analogously.

The asymptotic behaviour of μ_n^+, where μ_n^+ is treated as a random element of $D[0, 1]$, is (under independence of X and Y) given by the following three results (see [1]).

Lemma 1.1. If X and Y are independent and $EX^2 < +\infty$, then

$$L_n(n^{1/2} \sigma_n) \overset{D}{\to} W^0,$$

where σ_n stands for a consistent estimator of the standard deviation of X while W^0 denotes the Brownian bridge on $D[0, 1]$.

The convergence of M_n is established by

Lemma 1.2. If the quantiles of X are uniquely determined, then

$$n^{-1}M_n \overset{D}{\to} f \text{ in } D[0, 1],$$

where $f(p) = EX(1[X < x_p]-p)$.

Theorem 1.1. Assume X and Y are independent, $EX^2 < +\infty$, and the quantiles of X are uniquely determined. Then

$$n^{1/2} \mu_n^+ / \sigma_n \overset{D}{\to} \mu^+ \text{ on } D[\varepsilon, 1-\varepsilon],$$

where $\varepsilon \in (0, 1/2)$ and μ^+ is a Gaussian process such that

$$E\mu_p^+ = 0, \quad E\mu_p^+ \mu_q^+ = p(1-q)/f(p)f(q) \text{ for } p \leq q, p, q \in [\varepsilon, 1-\varepsilon].$$
In Section 2 of this paper we prove, using a central limit theorem in $D[0,1]$, that a suitably normalized L_n converges to a Gaussian process under dependence of X and Y.

In Section 3 we study the asymptotic behaviour of L_n in $D[0,1]$ under sequence of distributions alternative to the hypothesis of independence of X and Y. As in [2], [3] and [13], [14] the sequence of alternatives is

$$P^n_1 = \prod_{i=1}^n P_n,$$

where $dP_n/dP_0 = 1 + n^{-1/2}a_n$ while P_0 is a fixed product distribution of X and Y, and $\{a_n\}_{n \geq 1}$ is a convergent sequence of measurable functions having the property $\int a_n dP_0 = 0$ for every $n \geq 1$. We prove that if $\{P^n_1\}$ is contiguous to $\{P^n_0\}$, then $L_n/(n^{1/2}\sigma_n)$ converges under P^n_1 to the Brownian bridge shifted by a deterministic function $a^*(p) (a^*(1) = a^*(0) = 0)$.

Sections 4 and 5 contain results analogous to those obtained in Sections 2 and 3 but concerning the convergence in $L_2([0,1], \lambda)$. We obtain a more convenient limiting distribution of L_n under the hypothesis of dependence of X and Y.

Practically, in all the already-mentioned cases the asymptotic distribution has parameters strongly dependent on the distribution of the vector (X, Y). Therefore, and also partly for the sake of completeness, in Section 6 we study the asymptotic behaviour of μ^+_n where instead of (X_i, Y_i) we put their respective ranks. This ensures independence of the limiting distributions on the marginals of X and Y.

In the sequel, without additional reference, we shall deal with the random element

$$R_n(p) = n^{-1/2} \sum_{i=1}^n X_i (I[Y_i \leq y_{p,n}] - p)$$

which, practically in all of the considered situations, fulfills the condition $L_n/R_n \xrightarrow{P} 0$. The asymptotic results will be formulated for L_n, the numerator of μ^+_n. If the distribution of (X, Y) is fixed, then by Lemma 1.2 the limit of μ^+_n can be established as in Theorem 1.1. In the case of contiguous alternatives one can prove an analogue of Lemma 1.2 and obtain the limit of μ^+_n in a similar way.

2. The weak convergence of L_n in $D[0,1]$ under dependence of X and Y. Without loss of generality we assume $EX = 0$, for if $EX = m$, we have

$$R_n(p) = n^{-1/2} \sum_{i=1}^n (X_i - m)(I[Y_i \leq y_{p,n}] - p) + mn^{-1/2} \sum_{i=1}^n (I[Y_i \leq y_{p,n}] - p),$$

where the last term equals $mn^{-1/2}([np] \to 1 - np)$ and converges to 0 in $D[0,1]$.

6 — Prob. Math. Statist. 4 (1)
Let φ_n be a random element in $D[0, 1]$ defined by $\varphi_n(p) = F(y_{p,n})$ for $p \in [0, 1]$ and put $\varphi_n(1) = 1$. Here F stands for the distribution function of Y. We also define a function K on $[0, 1]$ by

$$K(p) = \mathbb{E}X(I[Y \leq F^{-1}(p)] - p)$$

and we denote by $K \circ \varphi_n$ the superposition of K and φ_n. The main result of this section is the following

Theorem 2.1. Assume $\mathbb{E}X^4 < +\infty$ and suppose that Y has uniquely determined quantiles. Then

$$n^{-1/2} I_n - n^{1/2} K \circ \varphi_n \rightarrow B \cdot T \quad \text{in} \quad D[0, 1],$$

where T is a Gaussian random element of $D[0, 1]$ such that $\mathbb{P}(T \in C[0, 1]) = 1$, $ET_p = 0$ for all $p \in [0, 1]$, and ET^2 is given by

$$(2.1) \quad \mathbb{E}\{-X(I[Y \leq y_p] - p) - K(p)\} \{X(I[Y \leq y_q] - q) - K(q)\}.$$

The assertion of the theorem will follow from lemmas given below. Observe that for $p \in [0, 1]$ we have

$$R_n(p) = V_n(p) + n^{-1/2}[\varphi_n(p) - p] \sum_{i=1}^n X_i,$$

where

$$V_n(p) = n^{-1/2} \sum_{i=1}^n X_i(I[Y_i \leq F^{-1}(\varphi_n(p))] - \varphi_n(p)).$$

(2.2)

The monotonicity of φ_n and the convergence of $\varphi_n(p) - p$ to 0 in probability for every $p \in [0, 1]$ imply

Lemma 2.1. If the quantiles of Y are uniquely determined, then

$$\varphi_n \stackrel{L^1}{\rightarrow} \varphi \quad \text{on} \quad D[0, 1], \quad \text{where} \quad \varphi(p) = p.$$

Therefore we have

$$R_n - V_n \stackrel{L}{\rightarrow} 0 \quad \text{on} \quad D[0, 1].$$

(2.3)

To find the asymptotic distribution of V_n we shall apply the standard random change of time argument. Let us first notice that $V_n(p) = T_n[\varphi_n(p)]$ for

$$T_n(p) = n^{-1/2} \sum_{i=1}^n X_i\{I[Y_i \leq y_p] - p\}.$$

(2.4)

Therefore, from Lemma 2.1 and [4], p. 145, we infer that if T_n converges to a limit on $D[0, 1]$, so does V_n. Next, let us notice that T_n is a normalized sum of independent identically distributed random elements $Z_i(p)$
Empirical monotonic dependence function

\[X_i(I[Y_i < y_i] - p) \] defined on \(D[0, 1] \). To derive the asymptotic distribution of \(T_n \) we shall use an appropriate central limit theorem (CLT).

Recall that a \(D \)-valued random element \(Z \) distributed as \(Z \), is said to satisfy the CLT if there exists a \(D \)-valued random element \(T \) such that \(T \) is the limit in distribution of the sequence \(n^{-1/2} \sum_{i=1}^{n} (Z_i - EZ_i) \). Let \(U \) stand for \(Z - EZ \) and let \(\mathcal{L}(T) \) denote the law of \(T \). Sufficient conditions for \(U \) to satisfy the CLT are given by

Theorem 2.2 (see [6]). Let \(EU^2(t) < \infty \) for all \(t \in [0, 1] \). Assume that there exist nondecreasing continuous functions \(G^* \) and \(F^* \) on \([0, 1]\) and numbers \(\alpha > 1/2 \) and \(\beta > 1 \) such that for all \(s, t, u \) \((0 \leq s \leq t \leq u \leq 1)\) the following two conditions hold:

(i) \(E[(U(u) - U(t))^2] \leq [G^*(u) - G^*(t)]^\alpha \),
(ii) \(E[(U(u) - U(t))^2(U(t) - U(s))^2] \leq [F^*(u) - F^*(s)]^\beta \).

Then \(U \) satisfies the CLT in \(D[0, 1] \) and \(\mathcal{L}(T|C[0, 1]) = 1 \).

The random element \(Z(p) - EZ(p) \) fulfills conditions (i) and (ii) with \(F^* \) and \(G^* \) proportional to the identity function and with \(\alpha = 3/4 \) and \(\beta = 3/2 \), respectively. To verify this, one multiplies all terms under the expectations and applies the Hölder inequality to the random variable \(XI[y_i < Y \leq y_u] \) for \(t < u, t, u \in [0, 1] \). Indeed, for \(\alpha \in (1/2, 1) \) we have

\[|EXI[y_i < Y \leq y_u]| \leq [EX]^1\alpha(1 - \alpha)]^{-1/\alpha}(u - t)^\alpha. \]

The above gives the following result which together with Lemma 2.1 implies the assertion of Theorem 2.1.

Lemma 2.2. If \(EX^4 < +\infty \), then \(T_n - ET_n \Rightarrow T \), where \(T \) is a Gaussian process such that \(P(T \in C[0, 1]) = 1 \), \(ET_p = 0 \) for \(p \in [0, 1] \), and \(ET_pT_q \) is given by (2.1).

Remark 2.1. Observe that parameters of the Gaussian distribution given in the theorem depend on the distribution of \((X, Y)\). Under the independence of \(X \) and \(Y \) the asymptotic distribution of \(L_n/(n^{1/2}a_n) \) is free of this drawback.

3. The weak convergence of \(L_n \) in \(D[0, 1] \) under alternatives contiguous to independence. Assume \(P_0 \) is a product distribution on \(R^2 \) and let the sequence of distributions \(\{P_n\} \) be defined as \(n \)-products of \(P_n \), where

\[dP_n/dP_0 = 1 + n^{-1/2}a_n. \]

It is assumed that the measurable functions \(a_n \) are uniformly bounded and converge pointwisely to some function \(a(x, y) \) and \(\int a_n dP_0 = 0 \) for all \(n \geq 1 \).

By Theorem 2.1 of [13], the sequence of product measures \(P_1 = \prod_{i=1}^{n} P_n \) is contiguous to \(P = \prod_{i=1}^{n} P_0 \). This kind of alternatives \(\{P_n\} \) was considered,
among others, by Chibisov [5], Behnen [2], [3], and Neuhaus [14]. For the sake of completeness we recall some facts about contiguity (see [7], [8], and [12]).

Let X be an arbitrary space and \mathcal{A}_n a sequence of σ-fields of subsets of X. For each n let Q_n and Q'_n be two probability measures defined on \mathcal{A}_n. The sequence $\{Q'_n\}$ is said to be contiguous to $\{Q_n\}$ if, for every sequence A_n of \mathcal{A}_n-measurable sets, $Q_n(A_n) \to 0$ implies $Q'_n(A_n) \to 0$. The condition of contiguity is equivalent to each of the following statements:

(a) A sequence $\{T_n\}$ of \mathcal{A}_n-measurable random variables converges in Q_n-probability to 0 if it converges to 0 in Q'_n.

(b) For every $\varepsilon > 0$ there are an $n(\varepsilon) < +\infty$ and $\delta(\varepsilon) > 0$ such that if $n \geq n(\varepsilon)$ and $A_n \in \mathcal{A}_n$, then the inequality $Q_n(A_n) \leq \delta(\varepsilon)$ implies $Q'_n(A_n) < \varepsilon$.

Lemma 3.1. Let N_n be a sequence of measurable mappings from (X, \mathcal{A}_n) to a measurable space $(\mathcal{Y}, \mathcal{B})$. If a sequence $\{Q_n\}$ is contiguous to $\{Q'_n\}$, then the respective sequence of probability measures induced by distributions of N_n on $(\mathcal{Y}, \mathcal{B})$ are also contiguous.

The lemma is a direct consequence of (a).

Let $(X, \mathcal{A}_n) = (X, \mathcal{A})$ and let X be a metric space with Borel σ-field \mathcal{A} such that every probability measure on \mathcal{A} is tight. Suppose $\{Q'_n\}$ is contiguous to $\{Q_n\}$. The following lemma is well known and can be easily proved by the application of (b).

Lemma 3.2. Under the above assumptions the tightness of $\{Q_n\}$ implies the tightness of $\{Q'_n\}$.

The remaining part of this section is the following generalization of Lemma 1.1:

Theorem 3.1. If all the quantiles of Y are uniquely determined and $EX^4 < +\infty$, then under P_q^* we have

$$L_n/(n^{1/2} \sigma_q) \overset{D}{\to} T^* \quad \text{on} \ D[0, 1],$$

where T^* is a Gaussian process with continuous sample paths and with moments

$$ET_p^* = E_{P_0} \{X(I[Y \leq y_p] - p)a(X, Y)\}, \quad ET_p^* T_q^* = p(1-q) \quad \text{for} \ p \leq q.$$

Proof. Recall that under P_q^* the element $L_n/(n^{1/2} \sigma_q)$ has the same limiting distribution as $R_n/(n^{1/2} \sigma_q)$, where R_n is given by (1.1). Moreover, similarly as in (2.3), we have $R_n - V_n \to 0$ in P_q^*-probability. This is due to the contiguity of $\{P_n^q\}$ to $\{P_0^q\}$ and to Lemma 2.1. Since $V_n(p) = T_n[\varphi_n(p)]$ for T_n given by (2.4), the random change of time argument implies a further reduction. Therefore, we shall now study the limiting distribution of T_n under the contiguous alternatives $\{P_n^q\}$.

By Lemma 2.2 the sequence T_n converges in distribution under P_0^q. It is
Empirical monotonic dependence function

then tight. Lemma 3.2 yields tightness under P^*_1. To consider the convergence of finite-dimensional distributions of T_n under P^*_1 let us fix $p_1 < p_2 < \ldots < p_k$, $p_i \in [0, 1]$, and define random vectors

$$W_i = [X_i(I[Y_i < y_{p_1}]-p_1), \ldots, X_i(I[Y_i < y_{p_k}]-p_k)].$$

Then $(T_n(p_1)-ET_n(p_1), \ldots, T_n(p_k)-ET_n(p_k))$ coincides with

$$Z_n = n^{-1/2} \sum_{i=1}^{n} (W_i-EW).$$

If $\varphi_{Z_n}(t)$ stands for the characteristic function of Z_n, then

$$\varphi_{Z_n}(t) = \{E \exp \left[n^{-1/2} i(t, W_i-EW_i) \right]\}^n$$

$$= \{1-(2n)^{-1} E(t, W_i-EW_i)^2 + o(n^{-1})\}^n$$

$$= \{1-(2n)^{-1} \int (W_i-EW_i, t)^2 (1+n^{-1/2}a_d) dP_0 + o(n^{-1})\}^n$$

$$= \{1-n^{-1} [2^{-1} \int (W_i-EW_i, t)^2 dP_0 -$$

$$- (2n)^{1/2} \int (W_i-EW_i, t)^2 a_n dP_0] + o(n^{-1})\}^n.$$

The last expression tends to $\exp \{(-1/2)E(W_1-EW_1, t)^2\}$, where the expectation is taken under P_0; and this is the characteristic function of the k-dimensional normal distribution with mean zero and covariance matrix with the $i j$-th element given by

$$E[X_i(I[Y_i \leq y_{p_j}]-p_i)][X_i(I[Y_i \leq y_{p_j}]-p_j)]$$

$$= EX_p (1-p) \quad \text{for } i \leq j.$$

4. The weak convergence of $n^{-1/2} L_n$ in $L_2([0, 1], \lambda)$ under dependence. The results proved in this section are analogous to those obtained in Section 2. We study the convergence of the random element $L_n(p), p \in [0, 1]$, in the Hilbert space $L_2([0, 1], \lambda)$, where λ stands for the Lebesgue measure. It turns out that in the present case one obtains a more convenient formula, from the practical point of view, for the limiting distribution under dependence of X and Y. As before we apply a CLT to the random element

$$T_n(p) = n^{-1/2} \sum_{i=1}^{n} X_i(I[Y_i \leq y_p] - p).$$

Let $Z_i(p) = X_i(I[Y_i \leq y_p] - p)$. Then $Z_i(p)-EZ_i(p)$ is a random element of $L_2([0, 1], \lambda)$ and if $EX_1^2 < +\infty$, then by [15], Chap. IV, there exists a weak limit of the expression

$$n^{-1/2} \sum_{i=1}^{n} [Z_i(p)-EZ_i(p)] \quad \text{in } L_2([0, 1], \lambda)$$

and it is a Gaussian process T with expectation zero and covariance kernel (2.1). Hence, as an analogue of Theorem 2.1, we shall prove
THEOREM 4.1. Assume $E X_1^2 < +\infty$ and suppose that the quantiles of Y are uniquely determined. Then

$$n^{-1/2} L_n - n^{1/2} E Z_1 \xrightarrow{D} T \text{ in } L_2([0, 1], \lambda).$$

Proof. Let $\| \cdot \|$ denote the norm in $L_2([0, 1], \lambda)$. The theorem will follow if we prove

$$(4.1) \quad \|n^{-1/2} L_n - R_n\| + \|R_n - T_n\| \xrightarrow{P} 0.$$

We have

$$n^{-1/2} L_n - R_n = n^{-1/2} \sum_{i=1}^n X_i I \left[Y_i = y_{p,n} \right] (np - [np] - 1).$$

Therefore

$$\|n^{-1/2} L_n - R_n\|^2 \leq n^{-1} \int_0^1 \left[X_i \{ np - [np] - 1 \} \right]^2 dp$$

$$\leq n^{-1} \int_0^1 X_i^2 dp = n^{-2} \sum_{i=1}^n X_i^2,$$

where $i(p, n)$ is the index of the $([np]+1)$-st order statistics of Y_1, \ldots, Y_n. Clearly, the last expression converges to 0 with probability 1. The second term of (4.1) converges to 0 by the following argument:

$$\|R_n - T_n\|^2 = \int_0^1 \left\{ n^{-1/2} \sum_{i=1}^n X_i \{ I[Y_i \leq y_p] - I[Y_i \leq y_{p,n}] \} \right\}^2 dp$$

$$\leq (2/n) \sum_{i=1}^n X_i^2 |F(Y_i) - F_n(Y_i)|,$$

where F is the distribution function of Y and F_n is the empirical distribution for the sample Y_1, \ldots, Y_n. Since $\sup_{x} |F(x) - F_n(x)|$ converges to 0 in probability, we obtain the convergence of $\|R_n - T_n\|$. This completes the proof.

COROLLARY 4.1. Under the assumptions of Theorem 4.1, if in addition X and Y are independent, then the process T has the covariance kernel of the Brownian bridge multiplied by $E X^2$.

5. The weak convergence of $n^{-1/2} L_n$ in $L_2([0, 1], \lambda)$ under alternatives contiguous to independence. As in Section 3 we consider sequences of probability measures $\{P_n\}$ given by n-fold products of the probabilities P_n, where $dP_n/dP_0 = 1 + n^{-1/2} a_n$ and P_0 is a product distribution on R^2. Since arguments used to prove our basic result do not differ much from those presented in Section 3, we shall simply state the result.

THEOREM 5.1. Let the quantiles of Y be uniquely determined and $E X^2 < +\infty$ under P_0. Suppose σ_n is a positive consistent estimator of the standard
deviation of X. Then under P_n the sequence $n^{-1/2} \sigma_n^{-1} L_n$ converges weakly in $L_2([0, 1], \lambda)$ to a Gaussian random element T^*, where

$$ET^*(p) = E_{P_0} \{ X(I[Y \leq y_p]) - p \} a(X, Y),$$

$$ET^*(p) T^*(q) = p(1 - q) \text{ for } p \leq q.$$

6. The weak convergence of μ_n in $D[0, 1]$ under independence and alternatives contiguous to independence. To avoid influence of marginal distributions on $\mu_{X,Y}(p)$ and on the distribution of μ_n a grade monotone dependence function and its consistent estimator μ_n were introduced in [10]. This estimator, being a function of ranks R_1, \ldots, R_n of X_1, \ldots, X_n and S_1, \ldots, S_n of Y_1, \ldots, Y_n, is defined as follows:

$$\mu_n(p) = L_n(p)/M_n(p), \quad p \in (0, 1),$$

where

$$L_n(p) = \sum_{i=1}^n (R_i((n+1))I[S_i < [np] + 1] - np/2 + R_{k(p)}(np - [np])/(n+1),$$

$$M_n(p) = ([np] + 1)(2np - [np])/2(n+1) - np/2,$$

while $k(p)$ is that element of $1, \ldots, n$ for which $S_{k(p)} = [np] + 1$. Since $M_n(p)/n \to (p - 1)p/2$ as $n \to \infty$, we shall concentrate on the asymptotic distribution of L_n, where for $p = 1$ we put $L_n(p) = 0$.

Theorem 6.1. Under the independence of X and Y we have

$$(12/n)^{1/2} L_n \Rightarrow W^0 \quad \text{in } D[0, 1],$$

where W^0 stands for the Brownian bridge on $D[0, 1]$.

Proof. Let us first note that $R_{k(p)}(np - [np])/(n+1) \Rightarrow 0$ in $D[0, 1]$. Then observe that under the independence of X and Y the finite-dimensional distributions of the process

$$R_n(p) = n^{-1/2} \sum_{i=1}^n R_i(I[S_i < [np] + 1] - p)/(n+1)$$

coincide with the corresponding finite-dimensional distributions of the simpler process

$$n^{-1/2} \sum_{i=1}^{[np]} (R_i/(n+1) - 1/2).$$

Therefore, we can consider the asymptotic distribution of (6.2) instead of (6.1) and our theorem follows from Theorem 24.1 of [4].

Let W^* be a Gaussian process on $D[0, 1]$ such that

$$EW^*_p = E_{P_0} \{ U(I[Y \leq p] - p) a(U, V) \},$$

$$EW^*_p W^*_q = p(1 - q) \quad \text{for } p \leq q.$$
while \(U = G(X), \ V = F(Y), \) and let \(G \) and \(F \) stand for the marginals of \(X \) and \(Y, \) respectively. The asymptotic behaviour of \((12/n)^{1/2} L_n\) under \(P_1^n \) is given by

Theorem 6.2. Under \(\{P_1^n\} \) we have

\[
(12/n)^{1/2} L_n \overset{D}{\rightarrow} W^* \quad \text{in} \ D[0, 1].
\]

Proof. By Theorem 6.1 the distributions of \((12/n)^{1/2} L_n\) are tight under \(\{P_0^n\}, \) and hence by Lemma 3.2 they are tight under \(\{P_1^n\}. \) To prove that finite-dimensional distributions of \((12/n)^{1/2} L_n\) (or, equivalently, of \(12^{1/2} R_n\)) converge, we use the result of Ruymgaart [16] on asymptotic normality of some rank test statistics.

Recall that

\[
R_n(p) = n^{-1/2} \sum_{i=1}^n R_i(I[S_i \leq np] - p)/(n+1)
\]

and introduce

\[
Z_n(p) = n^{-1/2} \sum_{i=1}^n U_i(I[V_i \leq np] - p),
\]

where \(U_i = G(X_i), \ V_i = F(Y_i), \) \(i = 1, \ldots, n. \)

In particular, by Ruymgaart [16], for every fixed \(p \in [0, 1], \) \(R_n(p) - Z_n(p) \) tends to 0 in \(P_0^n \) and, consequently, in \(P_1^n \) - probability. Since by Theorem 3.1 we have the convergence of \(Z_n - E_{P_1^n} Z_n \) in \(D[0, 1] \) under \(P_1^n, \) the above implies the convergence of the finite-dimensional distributions of \(R_n - E_{P_1^n} Z_n. \) This completes the proof.

References

Empirical monotonic dependence function

T. Bednarski
Institute of Mathematics
Polish Academy of Sciences
ul. Kopernika 18
51-617 Wrocław, Poland

T. Ledwina
Institute of Mathematics
Technical University of Wrocław
Wybrzeże Wyspiańskiego 27
50-370 Wrocław, Poland

Received on 27. 5. 1981