PROBABILITY AND MATHEMATICAL STATISTICS Vol. 5, Fasc. 1 (1985), pp. 99–111

RATE OF CONVERGENCE IN THE STRONG LAW OF LARGE NUMBERS

Sándor Csörgő Zdzisław Rychlik

Abstract: Let $\{X_n, n \ge 1\}$ be a sequence of independent random variables such that $EX_n = 0, EX_n^2 = \sigma_n^2 < \infty, n \ge 1$. For each $n \ge 1$ let

$$S_n = \sum_{k=1}^n X_k, \quad \mathcal{S}_n^2 = \sum_{k=1}^n \sigma_k^2;$$

then, under some additional conditions, $S_n/S_n^{1+\alpha} \to 0$ as $n \to \infty$ with probability 1 for any $\alpha > 0$.

The main purpose of this paper is to give the order of magnitude of

$$\sum_{n=1}^{\infty} P(|S_n| \ge t \mathcal{S}_n^{1+2\alpha})$$

as $t \to 0^+$. The rate of convergence in the random strong law of large numbers is established too.

2000 AMS Mathematics Subject Classification: Primary: -; Secondary: -; Key words and phrases: -

THE FULL TEXT IS AVAILABLE HERE