RATE OF CONVERGENCE IN THE STRONG LAW OF LARGE NUMBERS

Sándor Csörgő
 Zdzisław Rychlik

Abstract: Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of independent random variables such that $E X_{n}=0, E X_{n}^{2}=\sigma_{n}^{2}<\infty, n \geq 1$. For each $n \geq 1$ let

$$
S_{n}=\sum_{k=1}^{n} X_{k}, \quad \mathcal{S}_{n}^{2}=\sum_{k=1}^{n} \sigma_{k}^{2}
$$

then, under some additional conditions, $S_{n} / \mathcal{S}_{n}^{1+\alpha} \rightarrow 0$ as $n \rightarrow \infty$ with probability 1 for any $\alpha>0$.

The main purpose of this paper is to give the order of magnitude of

$$
\sum_{n=1}^{\infty} P\left(\left|S_{n}\right| \geq t \mathcal{S}_{n}^{1+2 \alpha}\right)
$$

as $t \rightarrow 0^{+}$. The rate of convergence in the random strong law of large numbers is established too.

2000 AMS Mathematics Subject Classification: Primary: -; Secondary: -;
Key words and phrases: -

