PROBABILITY AND MATHEMATICAL STATISTICS Vol. 5, Fasc. 1 (1985), p. 153-163

A CONDITION TO AVOID A PATHOLOGICAL STRUCTURE OF SUFFICIENT σ -FIELDS

BY

GYÖRGY MICHALETZKY (BUDAPEST)

Abstract. Sufficiency is one of the fundamental concepts of mathematical statistic. For a statistical space $(\Omega, \mathcal{A}, \mathcal{P})$ a σ -field is sufficient if - roughly speaking - it contains the same information regarding the measure class \mathcal{P} as the whole σ -field \mathcal{A} . Burkholder has constructed an example where a nonsufficient σ -field is larger than a sufficient one. We show that if the Boolean algebra of equivalence classes of events is complete (where two events A, B are said to be equivalent if $P(A \circ B) = 0$ for two every measures $P \in \mathcal{P}$), then a sub- σ -field \mathcal{G} containing a sufficient sub- σ -field \mathcal{F} of \mathcal{A} is sufficient iff the Boolean algebra of equivalence the solution of equivalence classes of events belonging to \mathcal{G} is complete.

Notation. Let $(\Omega, \mathcal{A}, \mathcal{P})$ be a statistical space. Denote by $\mathcal{N}(\mathcal{P})$ the null ideal of the σ -field \mathcal{A} , i.e.

 $\mathcal{N}(\mathcal{P}) = \{A \in \mathcal{A} | P(A) = 0 \text{ for every } P \in \mathcal{P}\}.$

We say that two events are *equivalent* if the symmetric difference of these sets belongs to $\mathcal{N}(\mathcal{P})$. The set of equivalence classes forms a Boolean algebra, denoted by \mathfrak{A} . The equivalence class of an event $A \in \mathcal{A}$ will be denoted by \tilde{A} . Every measure $P \in \mathcal{P}$ defines in a natural way a measure of \mathfrak{A} also denoted by P.

A σ -field $\mathscr{F} \subset \mathscr{A}$ is called *sufficient* if for each $A \in \mathscr{A}$ there exists a common version $E(\chi_A | \mathscr{F})$ of the conditional expectations $E_p(\chi_A | \mathscr{F})$, $P \in \mathscr{P}$.

In order to simplify computations we shall always suppose that if \mathscr{F} is a sufficient σ -field, then $\mathscr{N}(\mathscr{P}) \subset \mathscr{F}$. This is not a serious restriction since a σ -field \mathscr{F} is sufficient iff $\sigma(\mathscr{F}, \mathscr{N}(\mathscr{P}))$ is sufficient.

Preliminaries. In this paper we shall use some results concerning Boolean algebras. These all can be found e.g. in [4]. Let \mathfrak{A} be any Boolean algebra, and P be a measure defined on it. Suppose that (Ω, \mathscr{A}) is a measurable space, and $\mathscr{C} \subset \mathscr{A}$ is a σ -ideal such that the Boolean algebra \mathfrak{A} is isomor-

phic to the factor Boolean algebra \mathscr{A}/\mathscr{C} . In this case, if X is a random variable defined on Ω , then its inverse mapping determines a σ homomorphism h_X from the Borel subsets \mathscr{B} of the real line into the Boolean algebra \mathfrak{A} . Conversely, if $h: \mathscr{B} \to \mathfrak{A}$ is a σ -homomorphism, then there exists a random variable X "unique up to \mathscr{C} equivalence" such that h_X = h. Furthermore $\overline{P}(A) = P(\widetilde{A})$ defines a measure \overline{P} on the σ -field \mathscr{A} which vanishes on the σ -ideal \mathscr{C} . In particular, one can define the integral of an arbitrary σ -homomorphism $h: \mathscr{B} \to \mathfrak{A}$ with respect to the measure P as follows: first take a random variable X for which $h_X = h$ and then take for $\int hdP$ the value of $\int Xd\overline{P}$. The crucial fact is that the value of this integral does not depend on the special choice of the measurable space (Ω, \mathscr{A}) and the σ -ideal \mathscr{C} .

Now let \mathfrak{A} be a complete Boolean algebra and denote by Ω the Stone representation space of \mathfrak{A} . Let \mathscr{A} be the σ -field generated by the clopen (closed and open) subsets of Ω . Then \mathfrak{A} is isomorphic to \mathscr{A}/\mathscr{N} , where \mathscr{N} is the σ -ideal consisting of the subsets of first category. Let \mathscr{A}^* consist of the clopen subsets of Ω . Every mod \mathscr{N} -equivalence class of \mathscr{A} contains exactly one element of \mathscr{A} . So there exists a one-to-one correspondence between \mathfrak{A} and \mathscr{A}^* . (This correspondence preserves the finite Boolean operations). Since \mathfrak{A} is a complete Boolean algebra, the closure of any open subset of Ω is clopen, and the interior of any closed subset of Ω is also clopen. If $(\widetilde{A}_i)_{i\in I} \subset \mathfrak{A}$ and $(A_i)_{i\in I} \subset \mathscr{A}^*$ are the corresponding elements, then the closure of the set $\bigcup A_i$ corresponds to $\sup \widetilde{A}_i$. Thus this closed set is clopen.

We say that the random variables X and Y defined on (Ω, \mathscr{A}) are equivalent "mod \mathscr{N} " if the set $(X \neq Y)$ belongs to \mathscr{N} . Denote by $B(\Omega, \mathscr{A}, \mathscr{N})$ the set of "mod \mathscr{N} " equivalence classes of \mathscr{A} -measurable functions. Equippe this space with the "mod \mathscr{N} " essential supremum "norm", i.e. if $X \in B(\Omega, \mathscr{A}, \mathscr{N})$, then write

 $||X||_{B} = \inf \{c \mid \text{ there exists } A \in \mathcal{N} \text{ for which } |X| \leq c \text{ off the set } A \}$

 $(||X||_B$ is not necessarily finite). Let $\overline{C}(\Omega)$ be the set of continuous functions defined on Ω , the value of which may be equal to $+\infty$ or $-\infty$. Denote by $C(\Omega)$ the set of bounded continuous functions. Since Ω is the Stone representation space of the Boolean algebra $\mathfrak{A} = \mathscr{A}/\mathscr{N}$, the set $\overline{C}(\Omega)$ is a complete lattice with the ordering defined as follows: $X \leq Y$ means that $X(\omega) \leq Y(\omega)$ for every $\omega \in \Omega$. Denote by $\wedge (\vee)$ the infimum (supremum) taken in the lattice $\overline{C}(\Omega)$ and by inf (sup) the infimum (supremum) taken pointwise. Since every equivalence class of events contains one clopen set, there exists a function $\varrho: B(\Omega, \mathscr{A}, \mathscr{N}) \to \overline{C}(\Omega)$ which is a strong lifting, i.e. isometric, lattice and algebra isomorphism (taking in $\overline{C}(\Omega)$ the supremum "norm").

Let \mathcal{F} be a sub- σ -field of \mathscr{A} containing \mathcal{N} for which the Boolean

algebra \mathscr{F}/\mathscr{N} is a complete Boolean subalgebra of \mathfrak{A} . (This means that every collection of elements of \mathscr{F}/\mathscr{N} has a least upper bound in \mathfrak{A} and it belongs to \mathscr{F}/\mathscr{N}). Denote by $\overline{C}(\Omega, \mathscr{F})$ and $C(\Omega, \mathscr{F})$ the subsets consisting of \mathscr{F} measurable functions of the set $\overline{C}(\Omega)$ or $C(\Omega)$, respectively. The set $\overline{C}(\Omega, \mathscr{F})$ is a complete lattice and the restriction of ϱ to $B(\Omega, \mathscr{F}, \mathscr{N})$ maps the latter onto $\overline{C}(\Omega, \mathscr{F})$. The following lemma makes a correspondence between the operations $\wedge (\vee)$ and inf (sup). This lemma is taken from Wright [6], Lemma 1.1; it is repeated here in our notations for the reader's convenience.

LEMMA 1. Let $(X_i)_{i \in I}$ be a non-empty subset of $\overline{C}(\Omega, \mathscr{F})$, bounded from below. Let

$$Y = \bigwedge_{i \in I} (X_i).$$

Then the set

$$Y \neq \inf_{i \in I} X_i$$

belongs to \mathcal{N} , i.e. it is a set of first category.

Proof. Obviously inf $X_i \ge Y$. Consider the set

$$C = \{\inf_{i \in I} X_i > Y\}.$$

This is equal to the union of the sets

$$C_n = \left\{ \inf_{i \in I} X_i \ge Y + \frac{1}{n} \right\}.$$

 C_n is the intersection of the family of closed sets $\{X_i \ge Y+1/n\}$ so it is closed and its interior is clopen. Detone by D_n the interior of C_n . The indicator function χ_{D_n} of D_n is continuous and

$$X_i \ge Y + \frac{1}{n} \chi_{D_n}$$
 for every $i \in I$.

Thus D_n must be the empty set. So C_n is nowhere dense proving that C is of first category.

The following lemma is a straightforward application of our previous considerations and it is interesting in itself.

LEMMA 2. Let us be given two statistical spaces $(\Omega_0, \mathcal{A}_0, \mathcal{P}_0)$ and $(\Omega_1, \mathcal{A}_1, \mathcal{P}_1)$ for which the corresponding Boolean algebras \mathfrak{A}_0 and \mathfrak{A}_1 are isomorphic and this isomorphism – denoted by i – gives rise to a one-to-one correspondence between \mathcal{P}_0 and \mathcal{P}_1 – denoted also by i. Suppose further that we are given two σ -fields \mathcal{F}_0 and \mathcal{F}_1 , $\mathcal{N}(\mathcal{P}_0) \subset \mathcal{F}_0 \subset \mathcal{A}_0$, $\mathcal{N}(\mathcal{P}_1) \subset \mathcal{F}_1 \subset \mathcal{A}_1$, in such a way that the isomorphism i transfers $\mathcal{F}_0/\mathcal{N}(\mathcal{P}_0)$ onto $\mathcal{F}_1/\mathcal{N}(\mathcal{P}_1)$.

Then the σ -field \mathcal{F}_0 is sufficient iff \mathcal{F}_1 is sufficient.

Proof. Take any event $A \in \mathcal{A}_0$ and let $B \in \mathcal{A}_1$ be such that $i(\tilde{A}) = \tilde{B}$. Suppose that \mathcal{F}_1 is sufficient, i.e. there exists a common version $E(\chi_B | \mathcal{F}_1)$ of

the conditional expectations $E_Q(\chi_B, \mathscr{F}_1), Q \in \mathscr{P}_1$. The inverse mapping of the random variable $E(\chi_B | \mathscr{F}_1)$ defines a σ -homomorphism $h_B: \mathscr{B} \to \mathscr{F}_1 / \mathcal{N}(\mathscr{P}_1)$. Then the mapping $i^{-1} \circ h_B: \mathscr{B} \to \mathscr{F}_0 / \mathcal{N}(\mathscr{B})$ is also a σ -homomorphism and consequently there is an \mathscr{F}_0 -measurable random variable Y inducing it. Take any measure $P \in \mathscr{P}_0$ and event $C \in \mathscr{F}_0$. Then, denoting by $D \in \mathscr{F}_1$ an event for which $\tilde{D} = i(\tilde{C})$, we have

$$\int_{C} Y dP = \int Y \chi_{C} dP = \int E(\chi_{B} | \mathscr{F}_{1}) \chi_{D} di(P) = \int_{D} E(\chi_{B} | \mathscr{F}_{1}) di(P)$$
$$= \int_{D} \chi_{B} di(P) = i(P)(B_{n}D) = P(A_{n}C) = \int_{C} \chi_{A} dP.$$

Thus $Y = E_P(\chi_A | \mathscr{F}_0)$ P-a.e. for every $P \in \mathscr{P}$, proving that \mathscr{F}_0 is sufficient.

Sufficiency and Boolean algebra completeness.

THEOREM. Let $(\Omega_0, \mathcal{A}_0, \mathcal{P}_0)$ be a statistical space such that the Boolean algebra $\mathfrak{A}_0 = \mathcal{A}_0/\mathcal{N}(\mathcal{P}_0)$ is complete. Let $\mathcal{F}_0, \mathcal{G}_0$ be two sub- σ -fields for which $\mathcal{N}(\mathcal{P}_0) \subset \mathcal{F}_0 \subset \mathcal{G}_0$ and \mathcal{F}_0 is sufficient.

Then \mathscr{G}_0 is sufficient iff $\mathscr{G}_0/\mathcal{N}(\mathscr{P}_0)$ is a complete Boolean subalgebra of the algebra \mathfrak{A}_0 .

Proof. In the paper Göndöcs-Michaletzky [2] we have shown that if \mathfrak{A}_0 is complete, then for any sufficient σ -field the corresponding Boolean algebra is a complete subalgebra. So $\mathscr{F}_0/\mathscr{N}(\mathscr{P}_0)$ is complete, and the necessity part of Theorem follows immediately.

Now suppose that $\mathscr{G}_0/\mathscr{N}(\mathscr{P}_0)$ is a complete Boolean subalgebra of \mathfrak{A}_0 . The sufficiency part of the Theorem will be proved through a series of lemmas.

As the first step we show that the sample space can be supposed to be the Stone representation space of \mathfrak{A}_0 . Let Ω be the Stone representation space of \mathfrak{A}_0 , cf. [4]. Consider the σ -field \mathscr{A} generated by the clopen subsets of Ω . Then - as we have said before $-\mathfrak{A}_0$ is isomorphic to $\mathfrak{A} = \mathscr{A}/\mathscr{N}$, where \mathscr{N} is the σ -ideal consisting of the subsets of first category. Let *i*: $\mathfrak{A} \to \mathfrak{A}_0$ be the isomorphims. By means of *i* we can define in a natural way a measure family \mathscr{P} on \mathfrak{A} and also on \mathscr{A} (the sets of first category have probability zero, and precisely \mathscr{N} will be the null-ideal $\mathscr{N}(\mathscr{P})$). Set

$$\mathcal{F} = \{ A \in \mathcal{A} \mid i(\tilde{A}) \in \mathcal{F}_0 / \mathcal{N}(\mathcal{P}_0) \},$$
$$\mathcal{G} = \{ A \in \mathcal{A} \mid i(\tilde{A}) \in \mathcal{G}_0 / \mathcal{N}(\mathcal{P}_0) \}.$$

According to Lemma 2 the σ -field \mathscr{F} is sufficient for \mathscr{P} and it is enough to prove that \mathscr{G} is also sufficient for \mathscr{P} .

Let \mathscr{A}^* consist of the clopen subsets of Ω and write $\mathscr{F}^* = \mathscr{F} \cap \mathscr{A}^*$.

Now take any event $A \in \mathscr{A}$. Our aim is to define a random variable $E(\chi_A | \mathscr{G})$, which will be a common version of the conditional expectations $E_P(\chi_A | \mathscr{G})$ for every $P \in \mathscr{P}$, using the assumption that the smaller sub- σ -field \mathscr{F} is sufficient.

Define the following space:

$$H = \{X: \Omega \to \mathbb{R} | X \text{ } \mathscr{G}\text{-measurable, } \| \mathbb{E} (X^2 (1 + \chi_A) | \mathscr{F}) \|_{\mathbb{B}} < \infty \}.$$

Equippe the space H with a real-valued norm, further with a continuous function-valued norm and scalar product:

$$\begin{split} ||X||_{H,r} &= \left\| \mathbb{E} \left(X^2 (1 + \chi_A) | \mathscr{F} \right)^{1/2} \right\|_{\mathcal{B}} \in \mathbb{R}, \\ ||X||_{H} &= \varrho \left[\mathbb{E} \left(X^2 (1 + \chi_A) | \mathscr{F} \right)^{1/2} \right] \in C(\Omega, \mathscr{F}), \\ (X, Y)_{H} &= \varrho \left[\mathbb{E} \left(XY (1 + \chi_A) | \mathscr{F} \right) \right] \in C(\Omega, \mathscr{F}). \end{split}$$

Readers familiar with the notion of continuous function-valued scalar product will note that we are dealing with a Kaplansky-Hilbert module. Still, we shall not explicitly rely on the original work of Kaplansky [3] because the special structure of our space Ω allows a considerable simplification of his method.

LEMMA 3. Let $(Y_n)_{n \in \mathbb{N}} \subset H$ and suppose that

$$c=\sum_{n\in\mathbb{N}}||Y_n||_H<+\infty.$$

Then there exists a random variable $Y \in H$ for which $\sum_{i=1}^{N} Y_i$ converges to Y in the sense that

$$\|Y-\sum_{i=1}^n Y_i\|_H$$

converges to zero off an event belonging to $\mathcal{N}(\mathcal{P})$.

Proof. Write

$$X_n(\omega) = \sum_{i=1}^n |Y_i(\omega)|, \quad X(\omega) = \sup X_n(\omega).$$

Then

$$E(X_n^2(1+\chi_A)|\mathscr{F})^{1/2} \leq \sum_{i=1}^n E(Y_i^2(1+\chi_A)|\mathscr{F})^{1/2}$$
 P-a.e.

for every $P \in \mathscr{P}$. Applying the hypothesis and the monotone convergence theorem we get

 $E(X^2(1+\chi_A)|\mathscr{F})^{1/2} \leq C$ P-a.e. for every $P \in \mathscr{P}$.

Thus the set $D = (X = \infty)$ belongs to $\mathcal{N}(\mathcal{P})$ and off this set $\sum_{i=1}^{\infty} Y_i$ is convergent. Let

 $Y(\omega) = \begin{cases} \sum_{i=1}^{\infty} Y_i(\omega) & \text{ for } \omega \notin D, \\ 0 & \text{ for } \omega \in D. \end{cases}$

Obviously, $|Y(\omega)| \leq |X(\omega)|$ for every $\omega \in \Omega$. We see that

n	
$\mathbf{\nabla}$	v 2
L	I_i
i = 1	
	$\sum_{i=1}^{n}$

converges pointwise to zero off the set D and each term is dominated by $2X^2$. Applying the conditional version of the dominated convergence theorem for every P separately, we get that

$$\mathbb{E}\left(|Y-\sum_{i=1}^{n}Y_{i}|^{2}(1+\chi_{A})|\mathscr{F}\right)\to 0 \quad P\text{-a.e. for every } P\in\mathscr{P},$$

i.e.

 $\|Y - \sum_{i=1}^{n} Y_i\|_{H} \to 0$ off an event belonging to $\mathcal{N}(\mathscr{P})$.

LEMMA 4. Let $(A_i)_{i \in I} \subset \mathcal{F}$, $(X_i)_{i \in I} \subset H$ be such that the clopen sets $(A_i)_{i \in I}$ are pairwise disjoint,

$$\bigvee_{i\in I} \widetilde{A_i} = \widetilde{\Omega}^+$$

and there exists a number M such that $||X_i||_{H,r} \leq M$ for every $i \in I$.

Then there exists an $X \in H$ for which $\varrho(X)\chi_{A_i} = \varrho(X_i)\chi_{A_i}$ for every $i \in I$. Proof. The inverse mapping of the random variable $\varrho(X_i)$ restricted to the set A_i determines a homomorphism h_i from the Borel subsets \mathscr{B} of the real line into the principal ideal generated by \widetilde{A}_i of the lattice $\mathscr{G}/\mathscr{N}(\mathscr{P})$.

Let

$$h(B) = \bigvee_{i \in I} h_i(B)$$
 for every $B \in \mathscr{B}$.

This is a σ -homomorphism, so there is a random variable X for which $h_X = h$. The function X is \mathscr{G} -measurable and

$$\varrho(X)\chi_{A_i} = \varrho(X_i)\chi_{A_i}$$
 for every $i \in I$.

Further,

$$||X||_{H,r} = \sup_{\omega \in \Omega} |\varrho \left[E \left(X^2 (1 + \chi_A) | \mathcal{F} \right) \right] (\omega)|$$

=
$$\sup_{i \in I} \sup_{\omega \in A_i} \sup |\varrho \left[E \left(X^2 (1 + \chi_A) | \mathcal{F} \right) \right] (\omega)|$$

=
$$\sup_{i \in I} \sup_{\omega \in A_i} |\varrho \left[E \left(X_i^2 (1 + \chi_A) | \mathcal{F} \right) \right] (\omega)| \leq M$$

since the sets A_i belong to $\mathscr{F}^* \subset \mathscr{F}$.

In the sequel we shall denote this construction by $X = \sum_{i \in I} X_i \chi_{A_i}$. Consider be following subspaces of H:

the following subspaces of H:

$$H_0 = \{X \in H \mid \varrho[\mathbf{E}(X|\mathscr{F})] = 0\},\$$

 $H_1 = \{Y \in H \mid (X, Y)_H = 0 \text{ for every } X \in H_0\}.$

LEMMA 5. H is the direct sum of H_0 and H_1 .

Proof. If $X \in H_0 \cap H_1$, then $(X, X)_H = 0$, thus $\varrho[E(X^2(1+\chi_A)|\mathscr{F})] = 0$. This means that $(E(X^2(1+\chi_A)|\mathscr{F}) \neq 0) \in \mathcal{N}(\mathscr{P})$ for every $P \in \mathscr{P}$, consequently X = 0 *P*-a.e., thus the equivalence class of X is zero.

Now let $X \in H$ be arbitrary. We shall compute its components. For every $Y \in H_0$ the function $||X - Y||_H^2$ is continuous. Write

$$d = \bigwedge_{Y \in H_0} \|X - Y\|_H^2.$$

We claim that there exists a $Y \in H_0$ for which $d = ||X - Y||_H^2$. According to Lemma 2 this lattice infimum is "mod $\mathcal{N}(\mathcal{P})$ " equal to the infimum taken pointwise. I.e., there exists a $C \in \mathcal{N}(\mathcal{P})$ such that

$$d(\omega) = \inf_{Y \in H_0} ||X - Y||_H^2(\omega) \quad \text{for every } \omega \in \Omega \setminus C.$$

For every $n \in N$ and $\omega \in \Omega \setminus C$ consider a random variable $Y_{n,\omega} \in H_0$ such that

$$||X-Y_{n,\omega}||_H^2(\omega) < d(\omega) + 1/n^4.$$

The functions on both sides of this equality are continuous and \mathscr{F} -measurable, hence there is a clopen set $A_{n,\omega} \in \mathscr{F}^*$ such that

$$||X - Y_{n,\omega}||_{H}^{2}(\omega') < d(\omega') + 1/n^{4}, \quad \omega' \in A_{n,\omega}.$$

Obviously

$$\bigvee_{\omega\in\Omega\setminus C}\tilde{A}_{n,\omega}=\tilde{\Omega}$$

Since the lattice $\mathscr{F}/\mathscr{N}(\mathscr{P})$ is complete, there exists a subclass \mathscr{D}_n of \mathscr{F}^* consisting of disjoint sets such that for every $B \in \mathscr{D}_n$ there exists an event

159

 $A_{n,\omega} \supset B$. For every $B \in \mathscr{D}_n$ we define a random variable Y_B as follows: Take an event $A_{n,\omega}$ which contains the set B and let $Y_B = Y_{n,\omega} \chi_B$. Then

$$\|Y_B\|_{H,r}^2 = \sup_{\omega \in \Omega} \left| \varrho \left[\mathbb{E} \left(Y_B^2 (1 + \chi_A) | \mathscr{F} \right) \right] (\omega) \right|$$

$$\leq \sup_{\omega \in B} \left| \varrho \left[\mathbb{E} \left(Y_B^2 (1 + \chi_A) | \mathscr{F} \right) \right] (\omega) \right| + \sup_{\omega \in \Omega \setminus B} \left| \varrho \left[\mathbb{E} \left(Y_B^2 (1 + \chi_A) | \mathscr{F} \right) \right] (\omega) \right|.$$

The second term is zero because $B \in \mathscr{F}^* \subset \mathscr{F}$ and $Y_B = 0$ off the event B. In the first term we can change Y_B by the $Y_{n,\omega}$ and, using the triangle inequality, we get

$$\begin{aligned} \left| \varrho \left[\mathbb{E} \left(Y_B^2 (1 + \chi_A) | \mathscr{F} \right) \right] (\omega) \right| &\leq \left(||X - Y_{n,\omega}||_H + ||X||_H \right)^2 \chi_B \\ &\leq 2 ||X||_{H,r}^2 + 2 \left(\sup_{\omega \in B} d(\omega) + 1/n^4 \right) \quad \text{if } \omega \in B. \end{aligned}$$

Since

$$\sup_{\omega\in B} d(\omega) \leq ||X||_{H,r}^2$$

(because the zero function belongs to H_0), we have

$$||Y_B||_{H,r}^2 \leq 4 ||X||_{H,r}^2 + 2.$$

Thus we can apply Lemma 4. It follows that there exists a random variable

$$Y_n = \sum_{B \in \mathscr{D}_n} Y_B \chi_B$$

such that $Y_n \in H$. Since $\varrho(Y_n) \chi_B = \varrho(Y_B) \chi_B$ for every $B \in \mathcal{D}_n$ and $Y_n \in H_0$, i.e., $\varrho[E(Y_B | \mathcal{F})] = 0$, we have $\varrho[E(Y_n | \mathcal{F})] = 0$, thus $Y_n \in H_0$ and $||X - Y_n||_H^2 \leq d + 1/n^4$.

Now the following computations are straightforward:

$$||Y_{n+1} - Y_n||_H^2 = 2(||X - Y_n||_H^2 + ||X - Y_{n+1}||_H^2) - 4 \left\| X - \frac{Y_n + Y_{n+1}}{2} \right\|_H^2$$

$$\leq 2\left(d + \frac{1}{n^4} + d + \frac{1}{(n+1)^4}\right) - 4d = 2\left(\frac{1}{n^4} + \frac{1}{(n+1)^4}\right).$$

Thus $||Y_{n+1} - Y_n||_H < 2/n^2$, hence Lemma 3 guarantees the existence of a random variable $Y \in H$ such that $||Y - Y_n||_H$ converges pointwise to zero except on an event belonging to $\mathcal{N}(\mathcal{P})$. Obviously $||X - Y||_H = d$ and $Y \in H_0$, as claimed.

Now the proof of Lemma 5 is completed easily; for every $Y' \in H_0$, $\alpha \in \mathbb{R}$

$$d \leq \|X - Y - \alpha Y'\|_{H}^{2} = \|X - Y\|_{H}^{2} - 2\alpha (X - Y, Y')_{H} + \alpha^{2} \|Y'\|_{H}^{2}$$

Since $||X - Y||_{H}^{2} = d$, we have $\alpha^{2} ||Y'||_{H}^{2} - 2\alpha (X - Y, Y')_{H} \ge 0$ for every $\alpha \in \mathbb{R}$.

Thus (X - Y, Y') = 0 i.e. $X - Y \in H_1$. Summing up we have got X = Y + X - Y with $Y \in H_0$, $X - Y \in H_1$, proving Lemma 5.

Consider now the space

$$H_1^{\perp} = \{ Y \in C(\Omega, \mathscr{F}) | \varrho(X) \cdot Y = 0 \text{ for every } X \in H_1 \}.$$

LEMMA 6. There exists a set $B \in \mathscr{F}^*$ and a random variable $Z \in H_1$ such that

$$H_1^{\perp} = \chi_B C(\Omega, \mathscr{F}), \quad ||Z||_H^2 = 1 - \chi_B.$$

Proof. Let $B_Y = (Y \neq 0)$ if $Y \in H_1^{\perp}$. Define the event *B* as the closure of the union of these sets. Then $B \in \mathscr{F}^*$ and $B_Y \subset B$ for every $Y \in H_1^{\perp}$. On the other hand, if $X \in H_1$, then $\varrho(X) \cdot Y = 0$ for every $Y \in H_1^{\perp}$, consequently $(\varrho(X) = 0) \rightrightarrows B$. Thus if the function $Y \in C(\Omega, \mathscr{F})$ is such that $(Y \neq 0) \supset B$ then $\varrho(X) \cdot Y = 0$ for every $X \in H_1$, i.e. $Y \in H_1^{\perp}$. Thus $H_1^{\perp} = \chi_B \cdot C(\Omega, \mathscr{F})$.

Fix now an $\varepsilon > 0$. For every $X \in H_1$ define an event $C_X \in \mathscr{F}^*$ as the closure of the set $(||X||_H^2 > \varepsilon)$. We have

$$\bigvee_{X\in H_1} \widetilde{C}_X = \widetilde{\Omega\setminus B}.$$

Applying the Zorn lemma we get a maximal collection of disjoint sets C_{x_i} , $i \in I$. Obviously $\bigvee \tilde{C}_{x_i} = \Omega \setminus B$.

Write

$$Y_i = \frac{X_i \chi_{C_{X_i}}}{\|X_i\|_H}, \quad i \in I.$$

Then $||Y_i||_{H,r} \leq 1$, so there exists the random variable

$$Z = \sum_{i \in I} Y_i \chi_{C_{X_i}}$$

Since

$$\varrho(Z)\chi_{C_{X_i}} = \varrho(Y_i)\chi_{C_{X_i}}$$
 and $C_{X_i} \in \mathscr{F}^*$,

it holds that $||Z||_H \chi_{C_{X_i}} = \chi_{C_{X_i}}$. Thus $||Z||_H = 1 - \chi_B$.

LEMMA 7. For every $Y_0 \in H_1$ there exists a $Y_1 \in C(\Omega, \mathscr{F})$ for which

 $\varrho(Y_0) = Y_1 \, \varrho(Z).$

Proof. Let $Y = Y_0 - (Y_0, Z)_H Z$. This belongs to H_1 and $(Y, Z)_H = 0$. It is enough to prove that $\varrho(Y) = 0$.

Suppose on the contrary that $\varrho(Y)$ is not identically zero. Then there exists an event $B_Y \in \mathscr{F}^*$ such that $||Y||_H^2 > 0$ on the event B_Y (observe that $B_Y \subset \Omega \setminus B$). Obviously $Z\chi_{B_Y} \in H_1$.

• On the other hand,

$$||Z\chi_{B_Y}||^2 = ||Z||_H^2 \chi_{B_Y} = (1-\chi_B) \chi_{B_Y} = \chi_{B_Y}$$

11 - Probability Math. Statistics 5/1

Thus $\varrho(Z)\chi_{B_Y}$ does not vanish everywhere on Ω , consequently $Z\chi_{B_Y} \notin H_0$. So there exists an event $C \in \mathscr{F}^*$ for which

$$\operatorname{E}(Z\chi_{B_{V}}|\mathscr{F}) > 0 \quad \text{``mod } \mathscr{N}(\mathscr{P})\text{'' on } C.$$

But $E(Z\chi_{B_Y}|\mathscr{F}) = 0 \pmod{\mathscr{N}(\mathscr{P})}$ off B_Y , so $C \subset B_Y$. Since $C \in \mathscr{F}^*$ $E(Z\chi_C|\mathscr{F}) > 0 \pmod{\mathscr{N}(\mathscr{P})}$ on C.

So there exists a random variable X which is \mathcal{F} -measurable such that

$$X\varrho[\mathbf{E}(Z\chi_{c}|\mathscr{F})] = \chi_{c}\varrho[\mathbf{E}(Y|\mathscr{F})].$$

Rearranging, we get

$$E(Z\chi_C X - \chi_C Y | \mathscr{F}) = 0$$
 P-a.e. for every $P \in \mathscr{P}$.

But $Z\chi_C X - \chi_C Y \in H_1$, so it vanishes "mod $\mathcal{N}(\mathcal{P})$ " on $\Omega \setminus B$, thus, moreover, on Ω . Using $(Y, Z)_H = 0$, we have

$$0 = \varrho \left[\mathbb{E} \left(Z X \chi_C Y (1 + \chi_A) (1 - \chi_B) | \mathscr{F} \right) \right] = \varrho \left[\mathbb{E} \left(Y^2 (1 + \chi_A) | \mathscr{F} \right) \right] \chi_C = \|Y\|_H^2 \chi_C.$$

We have got a contradiction.

Write $Z_1 = ZE(Z|\mathscr{F})$. Let $Y \in H$. There exist $Y_0 \in H_0$, $Y_1 \in H_1$ for which $Y = Y_0 + Y_1$. In this case

$$\varrho\left[\mathrm{E}\left(Y|\mathscr{F}\right)\right] = \varrho\left[\mathrm{E}\left(Y_{1}|\mathscr{F}\right)\right] = \varrho\left[\mathrm{E}\left((Y_{1}, Z)_{H}Z|\mathscr{F}\right)\right]$$
$$= (Y_{1}, Z)_{H}\varrho\left[\mathrm{E}\left(Z|\mathscr{F}\right)\right] = (Y_{1}, Z_{1})_{H} = (Y, Z_{1})_{H}$$

Substituting the definition of the scalar product $(,)_H$ and rearranging we have

$$E(Y(1-Z_1)|\mathscr{F}) = E(YZ_1\chi_A|\mathscr{F})$$
 P-a.e. for every $P \in \mathscr{P}$.

First choose Y as the indicator function of the event $(Z_1 < 1/2)$ and then as that of $(Z_1 > 1)$. Since

$$\chi_{(Z_1 < 1/2)}(1 - Z_1) > \chi_{(Z_1 < 1/2)} Z_1 \ge \chi_{(Z_1 < 1/2)} Z_1 \chi_A,$$

we have

 $\mathrm{E}\left(\chi_{(Z_1 < 1/2)}(1 - Z_1)|\mathscr{F}\right) > \mathrm{E}\left(\chi_{(Z_1 < 1/2)}Z_1\chi_A|\mathscr{F}\right) \quad P\text{-a.e. for every } P \in \mathscr{P}.$

Consequently, $(Z_1 < 1/2) \in \mathcal{N}(\mathcal{P})$. Similarly, we get $(Z_1 > 1) \in \mathcal{N}(\mathcal{P})$. Thus the random variable $(1-Z_1)/Z_1$ is nonnegative and it is not greater than 1, so it belongs to H.

Take an arbitrary event B belonging to \mathscr{G} . Let $Y = \chi_B/Z_1$. This belongs to H. Thus we can write

$$\mathbf{E}\left(\frac{\chi_{B}}{Z_{1}}\left(1-Z_{1}\right)|\mathscr{F}\right)=\mathbf{E}\left(\frac{\chi_{B}}{Z_{1}}Z_{1}\chi_{A}|\mathscr{F}\right) \quad P\text{-a.e., } P\in\mathscr{P}.$$

162

Taking the expectation of each side we get

$$\mathbf{E}_{P}\left(\chi_{B}\,\frac{1-Z_{1}}{Z_{1}}\right)=\mathbf{E}_{P}(\chi_{B}\,\cdot\,\chi_{A}).$$

Thus $E_P(\chi_A|\mathscr{G}) = (1-Z_1)/Z_1$, which proves the Theorem.

Remark. A little bit stronger version of the Theorem is also true. Namely, the assumptions that \mathscr{F}_0 is sufficient and $\mathscr{F}_0/\mathcal{N}(\mathscr{B})$, $\mathscr{G}_0/\mathcal{N}(\mathscr{B})$ are complete Boolean-subalgebras of $\mathfrak{A}_0 = \mathscr{A}_0/\mathcal{N}(\mathscr{B})$ imply that \mathscr{G}_0 is also sufficient. Thus there is no need to suppose that \mathfrak{A}_0 is complete. The proof of this assertion is similar to the proof of the Theorem.

REFERENCES

- [1] D. L. Burkholder, On the order structure of the set of sufficient σ -fields, Ann. Math. Stat. 33 (1962), p. 598-599.
- [2] F. Göndöcs and G. Michaletzky, Construction of minimal sufficient and pairwise sufficient σ -field, Z. für Wahrschein, submitted.
- [3] Kaplansky, Modules over operator algebras, Amer. J. Math. 75 (1953), p. 839-858.
- [4] R. Sikorski, Boolean algebras, Springer Verlag, Berlin-Göttingen-Heidelberg-New York 1957.
- [5] J. D. M. Wright, A Radon-Nikodym theorem for Stone algebra-valued measures, Trans. of Amer. Math. Soc. (1969), 139-140, p. 75-94.
- [6] Stone algebra valued measures and integrals, Proc. London Math. Soc. 19 (1969), p. 107-122.

Department of Probability Theory Eötvös Loránd University Múzeum krt. 6-8 H-1088 Budapest, Hungary

Received on 27. 4. 1981

1. . 84. ¹⁴