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Abstract. Sufficiency is one of the fundamental concepts of 
mathematical statistic. For a statistical space (Q, d, 9) a o-field is 
sufficient if - roughly speaking - it contains the same information 
regarding the measure class .9 as the whole a-field .d. Burkholder 
has constructed an example where a nonsufficient g-field is larger 
than a sufficient one. We show that if the Boolean algebra of 
equivalence classes of events is complete (where two events A, 3 are 
said to be equiuulent if P ( A  oB) = 0 for two every measures P E P ) ,  
then a sub-a-field V containing a sufficient sub-a-ti eId -F of C/ i s  
sufficient iff the Boolean algebra of equivalence classes of events 
belonging EO 7 is complete. 

Notation. Let (a, d, 9) be a statistical space. Denote by N ( 9 )  the null 
ideal of the o-field d, i.e. 

1'(9) = ( A E ~ ~ P ( A )  = 0 for every P E Y ~ .  

We say that two events are equiualenr if the symmetric difference of these 
sets belongs to ,/V(9).  The set of equivalence classes forms a Boolean 
algebra, denoted by 2l. The equivalence class of an event A E  d will be 
denoted by A. Every measure P E 9 defines in a natural way a measure of % 
aIso denoted by P. 

A a-field 9 c d is called sufficient if for each A E  d there exists a 
common version E (xA1 .FJ of the conditional expectations E ,  ( x ,  (.F), P E  9. 

In order to simplify computations we shall always suppose that if 9 is 
a sufficient a-field, then N(9)  c 9. This is not a serious restriction since 
a o-field F is sufficient iff o(9, N(9))  is sufficient. 

Preliminaries. In this paper we shall use some results concerning Booledn 
algebras. These all can be found e.g. in [4]. Let 'ILI be any Boolean algebra, 

-and P be a measure defined on it. Suppose that (52, is a measurable 
space, and K c .4 is a r-ideal such that the Boolean algebra a is isomor- 
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phic to the factor Boolean alsebra .rdfff;. In this case, if X is a random 
variable defined on 0, then its inverse mapping determines a 6-  

homomorphism hx from the Bore1 subsets of the real line into the 
Boolean algebra a. Conversely, if h: 9.l is a a-homomorphism, then 
there exists a random variable X "unique up to W equivalence" such that h, 
= h. Furthermore B ( A )  = P(& defines a measure P on the a-field d which 
vanishes on the a-ideal W. In particular, one can define the integral of an 
arbitrary a-homomorphism h: ZI with respect to the measure P as 
follows: fist  take a random variable X for which h, = h and then take for 
f h d P  the value of [XdP. The crucial fact is that the value of this integral 
does not depend oh the special choice of the measurable space (W, d) and 
the a-ideal 59. 

Now let r2I be a complete Boolean algebra and denote by 51 the Stone 
representation space of TI. Let $1 be the a-field generated by the clopen 
(closed and open) subsets of R. Then X is isomorphic to d / N ,  where JV is 
the u-ideal consisting of the subsets of first category. Let .rP* consist of the 
clopen subsets of a. Every mod .N-equivalence class of & contains 
exactly one element of d, So there exists a one-to-one correspondence 
between 21 and &. (This correspondence preserves the finite Boolean 
operations). Since SU is a complete Boolean algebra, the closure of any open 
subset of LJ is clopen, and the interior of any closed subset of 52 is also 
clopen. If c 'Q& and (A,),,, c & are the corresponding elements, then 
the closure of the set U A, corresponds to sup xi. Thus this closed set is 

is1 id 

clopen. 
We say that the random variables X and Y defined on (D, c 4  are 

equivalent "mod P if the set (X # Y) belongs to M. Denote by 
B(52, ,d, the set of "mod "V equivalence classes of &-measurable 
functions. Equippe this space with the "mod P essential supremum "norm", 
i.e. if XE B ( Q ,  .r/, .N), then write 

llXllB = inf ( c  I there exists A E  N for which 1x1 < c off the set A) 

(IIXlls is not necessarily finite). Let c(62) be the set of continuous functions 
defined on 52, the value of which may be equal to + m or - co . Denote by 
C(Q) the set of bounded-continuous functions. Since SZ is the Stone represen- 
tation space of the Boolean algebra = d/-V, the set C(Q) is a 'complete 
lattice with the ordering defined as follows: X < Y means that X(o)  < Y ( w )  
for every ~ ~ 6 2 .  Denote by r f v )  the infimum (supremum) taken in the lattice 
C(Q) and by inf (sup) the infimum (supremum) taken pointwise. Since every 
equivalence class of events contains one clopen set, there exists a function 
Q: B(Q, ,r/, ..I ') -+ C(SZ) which is a strong lifting, i.e. isometric, lattice and 
algebra isomorphism (taking in C(Q) the supremum "norm"). 

Let 9 be a sub-a-field of d containing fl for which the Boolean 
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algebra F/N is a complete Boolean subalgebra of 2l. (This means that every 
collection of elements of F/N has a least upper bound in cU and it belongs 
to F/JV). Denote by C ( 0 ,  .m and C(O, 9) the subsets consisting of 9- 
measurable functions of the set C(Q) or C@), respectively. The set C(n, F) 
is a complete lattice and the restriction of p to B(Q,  9, JV) maps the latter 
onto C(Q, .fl. The following lemma makes a correspondence between the 
operations A ( v )  and inf (sup). This lemma is taken from Wright [6], 
Lemma 1.1; it is repeated here in our notations for the reader's convenience. 

LEMMA 1. Let (Xi),-,, be a non-empty subset of %(a, S), bounded porn 
below. Let 

Y = A(&). 
i €1 

Then the set 

bebngs to  N, i.e. it is a set of ,first category. 
Proof.  Obviously id X, 2 Y. Consider the set 

. i ~ l  

C = [inf Xi > Y ]  . 
i d  

This is equal to the union of the sets 

C, is the intersection of the family of closed sets !Xi $ Y+ l / n )  so it is 
closed and its interior is clopen. Detone by D, the interior of C,. The 
indicator function xDn of D, is continuous and 

1 
Xi 2 Y+; XD, for every i E I. 

Thus D, must be the empty set. So C, is nowhere dense proving that C is 
of first category. 

The following lemma is a straightforward application of our previous 
considerations and it is interesting in itself. 

LEMMA 2. Let us be given two statistical spaces (Go, do, 9,) and 
(SZ,, .r/,, 9,) for which the corresponding Boolean algebras 'i?& and a, are 
isomorphic and this isomorphism - denoted by i - giues rise to a one-to-one 
correspondence between 9, and 9, - denoted also by i. Suppose further that 
we are given two a-,fields Fo and 9 ,  N(9,) c Po c do, 
N(9,) c S1 c dl ,  in such a way thar the isomorphism i transfers 
90/Lw(9'o) onto .Fl / N ( P 1 ) .  

Then the a-Jield go is sufficient i f  9, is sufficient. 
P r o  of. Take any event A E  do and let B E  dl be such that i (A") = B. 

Suppose that .F, is sufficient, i.e. there exists a common version E ( ~ , 1 9 ~ )  of 
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the conditional expectations EQ (x,, F1), Q E .PI. The inverse mapping of the 
random variable E (x,IF,) defines a a-homomorphism h,: k# + F,/JV(B,). 
Then the mapping i - I  ohB: B + 90/bN(@ is also a a-homomorphism and 
consequently there is an 50-measurable random variable Y inducing it. 
Take any measure P E Po and event C E 9,. Then, denoting by D E 9, an 
event for which fi = ire), we have 

Thus Y = E,(X, 19,) P-a.e. for every P E 9, proving that 3, is sufficient. 

Srsfficiemy and bolean algebra completeness. 

THEOREM. Let (a,, .do, PO) be a statistical space such that rhe Boolean 
algebra CZI, = do/Jf(P0) is cornpiere. Let go, qO be two sub-0-fields for 
which V (Po) c F, c Yo and .Fo is stf icienr.  

Then Yo is sufficient iff %o/./lr(,Po) is a ~.nrnpkre Boolean subalgebra of 
E he algebra K. 

Proof.  In the paper Gondocs-Michaletzky [2] we have shown that if 
n%, is complete, then for any sufficient s-field the corresponding Boolean 
algebra is a complete subalgebra. So So/Y.lr(Po) is complete, and the 
necessity part of Theorem foIIows immediately. 

Now suppose that 90/uv(90) is a complete Boolean subalgebra of %,,. 
The sufficiency part of the Theorem will be proved through a series of 
lemmas. 

As the first step we show that the sample space can be supposed to be 
the Stone representation space of 2&. Let 52 be the Stone representation 
space of a,, cf. [4]. Consider the a-field d generated by the clopen subsets 
of Q. Then - as we have said before - 'ill,, is isomorphic to 2X = d/.,*lF, 
where Jlr is the a-ideal consisting of the subsets of first category. Let i: 3 
-+ Z10 be the isomorphims. By means of i we can define in a natural way a 
measure family 9 on 'ill and also on a' (the sets of first category have 
probability zero, and precisely JV will be the null-ideal A'-(@). Set 

. q =  { A E ~  I ~ ( A ) E ~ ~ / J ~ T ( P ~ ) ) .  

According to Lemma 2 the a-field .F is sufficient for P and it is enough 
to prove that B is also sufficient for 9. 

Let .rP consist of the clopen subsets of' 0 and write F* = =9 n .cP. 
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Now take any event A E  A?. Our aim is to define a random variable 
E (xA 19, which will be a common version of the conditional expectations 
EP(xA1 9 for every P C P ?  using the assumption that the smaller sub-a-field 
F is sufficient. 

Define the following space: 

Equippe the space H with a real-valued norm, further with a continuous 
function-valued norm and scalar product: 

Readers familiar with the notion of continuous function-valued scalar 
product will note that we are dealing with a Kaplansky-Hilbert module. 
Still, we shall not explicitely rely on the original work of Kaplansky [3] 
because the special structure of our space 52 allows a considerable simplifi- 
cation of Pis method. 
LEMMA 3. Let (Y,),, c H and suppose that 

n 

Then there exists a random variable Y E  Hfor  which converges to Y in 
i= 1 

the sense that 

converges to zero off an euent belonging to M ( 9 ) .  
Proof,  Write 

I 
n 

= I  X ( ~ = ~ U P X , ( ~ .  
i =  1 

Then 

for every P E  9. Applying the hypothesis and the monotone convergence 
theorem we get 

E (X2 (1 + xA)l P)' l2  < C P-a.e. for every P E 9. 
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m 

Thus the set D = (X = m) belongs to N ( P ]  and off this set is 
i =  1 

convergent. Let 

x(o) for w $ D ,  
Y(m) = 

(0 for W E D .  

Obviously, I Y(w)J < lX(o)l for every w E a. We see that 
n 

converges pointwise to zero off the set D and each term is dominated .by 
2XZ. Applying the conditional version of the dominated convergence 
theorem for every P separately, we get that 

n 

I ~ Y -  1 xuH -t 0 off an event belonging to N(9) .  
i =  1 

LEMMA 4. Let (AJ id  c .F, (Xi)iGI c H be such that the clopen sets (Ai)iEI 
m e  pairwise disjoint, 

vxi=SZ 
ie! 

and there exists a number A4 such that IIXillH,r < M for euery i ~ l .  
Then there exists an X E H  for which @(X)xAi = e(Xi)xAi for every ~ E I .  
Proof.  The inverse mapping of the random variable @(Xi) restricted to 

the set A, determines a homomorphism hi from the Bore1 subsets 9 of the 
real line into the principal ideal generated by Ji of the lattice 9 /N(P) .  

Let 

h (B) = V hi (3) for every B E 24. 
i d  

This is a 8-homomorphism, so there is a random variable X for which 
h, = h. The function X is $-measurable and 

Q ( X )  X A ,  = Q ( X i )  xAi for every i E I. 
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Further, 

since the sets A, belong to 9* c 5.' 
In the sequel we shall denote this construction by X = Xi xAi .  Consider 

id 

the following subspaces of H: 

H I  = { Y E H  I (X, vH=O forevery XEH,). 

LEMMA 5. H i s  the direct sum of H, and H I .  
Proof.  If X g H , n H , ,  then (X, X), =0, thus g [ ~ ( ~ 2 ( 1 + X , ) ( & ) ]  =0. 

This means that (E (xZ (1 + zA)( 9) # O)E N ( 9 )  for every P E 9, consequently 
X = 0 P-a.e, thus the equivalence class of X is zero. 

Now let X E H  be arbitrary. We shall compute its components. For every 
Y E H ,  the function I(X- Y11; is continuous. Write 

We claim that there exists a Y E  H ,  for which d = IIX - Y l ( i .  According 
to Lemma 2 this lattice infimum is "mod N(9')" equal to the infimum taken . 

! pointwise. I.e., there exists a C E J V ( ~ ~  such that 

d(o)= inf IjX-Yl(&(w) forevery o ~ a \ C .  
YeHD 

For every n E N and w E SZ \ C consider a random variable Y,,,, E H, such 
that 

The functions on both sides of this equality are continuous and 6- 
I 

measurable, hence there is a clopen set A , , €  F* such that 

lIx-r,,,11;(~1<d(w?+l/n4, ~ ' E A " , , .  

Obviously 

Since the lattice F/.N(P) is complete, there exists a subclass 9, of F* 
consisting of disjoint sets such that for every BE 9, there exists an event 
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A , ,  3 B. For every  BE^, we define a random variable Y, as follows: Take 
an event A, ,  which contains the set B and let YB = Y,, x,. Then 

The second term is zero because BE F* c F and YB = 0 off the event B. 
In the first term we can change YB by the Y,,, an4 using the triangle 
inequality, we get 

Since 

(because the zero function belongs to H,), we have 

11 Glli,~ 6 4 l /xl l i .~ + 2-  

Thus we can apply Lemma 4. It follows that there exists a random 
variable 

such that Y, E H. Since e(YJ xB = e (YB) xB for every B E  53,, and Yn E H,,  i.e., 
Q [ E ( Y ~ ~ F ) ]  = 0, we have Q[E(Y~',(@)] = 0, thus ~ E H ,  and IIx-Y,II~ < d 
+ 1/n4. 

Now the following computations are straightforward: 

Thus II'Y,,, - Y,,I(, < 2/n2, hence Lemma 3 guarantees the existence of a 
random variable YE H such that 1 1  Y- converges pointwise to zero except 
on an event belonging to N ( q .  Obviously (IX - Yll, = d and Y E  H,, as 
claimed. 

Now the proof of Lemma 5 is completed easily; for every Y'EH,-,, ~ E R  

Since ( IX-Yl l i  = d ,  we have ~ ~ l l Y ' I [ i - 2 a ( X - Y ,  Y'),2Ofor every ~ E R .  
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Thus (X- Y, Y') = 0 i.e. X- Y E H ~ .  Summing up we have got X = Y+ X 
- Y with Y E  H,, X - Y E HI, proving Lemma 5. 

I 

Consider now the space 
I 

H: = (YfC(O, 9)j@(X).Y = 0 for every X E H ~ } .  

LEMMA 6. There exists' a set B E F* and a .random variable Z E H, such 
that 

Proof.  Let B, = (Y # 0) if YE H:. Define the event B as the closure of 
the union of these sets. Then BG $* and By c B  for every YEH:. On the 
other hand, if XE Hi, then Q ( X ) .  Y = 0 for every YE H:, consequently 
(e (X) = 0) I B. Thus if the function YE C (Q, f i  is such that (Y # 0) 3 B 
then e(X).Y = 0 for every X E H ~ ,  i.e. Y E U ~ .  Thus H: =zB.C(S2, @. 

Fix now an E > 0. For every XE HI define an event C x € F *  as the 
closure of the set (IlXll& > E). We have 

Applying the Zorn l e m m a z g e t  a maximal collection of disjoint sets 
Cxi, i E I. Obviously V cxK = n \B. 

i el 
Write 

Then IJXIJ,,, < 1, so there exists the random variable 

Since 

@ ( Z )  Xc4 = Q ( Y )  xc9 and cxi  E 9 . 3  

it holds that llZllH~cxi = zcXi. Thus /IZIJ, = 1 - zB.  
LEMMA 7 .  For every Y ,EH,  there exists a &E C(Q, 9) for which 

= K e(z).  
Pro of. Let Y = Yo -(Yo, Z),  2. This belongs to HI and (x Z)* = 0. It is 

enough to prove that Q(Y)  = 0. 
Suppose on the contrary that @(Y) is not identically zero. Then there 

1 exists an event By E $* such that 1 1  Y ( ( i  > 0 on the event By (observe that 
d, c Q\B). Obviously Z X ~ , E H , .  

I On the other hand, 

I1 - Probab~lity Math. Slatistlcs 5/1 
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Thus Q (2) xe, does not vanish everywhere on a, consequently ZX,, & H o .  
So there exists an event CE .F* for which 

E (ZxB,1 .fl> 0 "mod Jy(P)" on C. 

B U ~  E (zX,, 1 3 = 0 "mod . N ( W  off By,  so C c 3,. Since C E b* 

E(Z;lc[*>O " m o d N ( P ) " o n  C. 

So there exists a random variable X which is 9-measurable such that 

xe CE(Z~clfl1 = xce CE(YI m1. 
Rearranging, we get 

E(Zxc X - x c  Y I .F) = 0 P-a.e. for every P E - 9 .  

But ZzcX - xc YE HI, so it vanishes "mbd N(9')'' on W \ 3, thus, 
moreover, on D. Using (Y, Z) ,  = 0, we have 

We have got a contradiction. 
Write Z ,  = ZE ( Z ( 9 ) .  Let Y E  H .  There exist YO E Ho,  Y, E HI for which 

Y = Yo f Y,. In this case 

Substituting the definition of the scalar product ( , ), and rearranging 
we have 

E (Y (1 - z,)/ 9) = E (YZ, X,  1 9) P-a.e. for every P E 9. 

First choose Y as the indicator function of the event (2, < 1/2) and then 
as that of (Z, > 1). Since 

we have 

E ( x ( ~ ,  < 1 ~ ~ ) ( 1 - ~ 1 ) 1 9 )  > E(%IZ1 <112,Zl P-a.e. for every PE 9 

Consequently, (2, < 112) E J V ( ~ ~ .  Similarly, we get (2, > 1) E J V ( ~ .  
Thus the random variable (1 -Z1)/Z1 is nonnegative and it is not greater 
than 1, so it belongs to H. 

Take an arbitrary event B belonging to 93. Let Y = xB/Z1. This belongs 
to H. Thus we can write 
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Taking the expectation of each side we get 

Thus E,(x,J = (1  -Z,)/Z,, which proves the Theorem. 
Remark. A little bit stronger version of the Theorem is also true. 

Namely, the assumptions that .F, is sufficient and -Fo/v4'(@, g0/.,V(9) are 
complete Boolean-subalgebras of 2b = do/N(g) imply that 3, is also 
sufficient. Thus there is no need to suppose that V&, is complete. The proof of 
this assertion is similar to the proof of the Theorem. 
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