A CONDITION TO AVOID A PATHOLOGICAL STRUCTURE OF SUFFICIENT σ-FIELDS

BY
GYÖRGY MICHALETZKY (Budapest)

Abstract

Sufficiency is one of the fundamental concepts of mathematical statistic. For a statistical space $(\Omega, \mathscr{A}, \mathscr{O})$ a σ-field is sufficient if - roughly speaking - it contains the same information regarding the measure class \mathscr{P} as the whole σ-field \mathscr{A}. Burkholder has constructed an example where a nonsufficient σ-field is larger than a sufficient one. We show that if the Boolean algebra of equivalence classes of events is complete (where two events A, B are said to be equivalent if $P(A \circ B)=0$ for two every measures $P \in \mathscr{P})$, then a sub- σ-field \mathscr{G} containing a sufficient sub- σ-field \mathscr{F} of $c /$ is sufficient iff the Boolean algebra of equivalence classes of events belonging to $\%$ is complete.

Notation. Let $(\Omega, \mathscr{A}, \mathscr{P})$ be a statistical space. Denote by $\mathscr{N}(\mathscr{P})$ the null ideal of the σ-field \mathscr{A}, i.e.

$$
\forall^{\prime}(\mathscr{P})=\{A \in \mathscr{A} \mid P(A)=0 \text { for every } P \in \mathscr{P}\} .
$$

We say that two events are equivalent if the symmetric difference of these sets belongs to $\mathcal{N}(\mathscr{P})$. The set of equivalence classes forms a Boolean algebra, denoted by \mathfrak{U}. The equivalence class of an event $A \in \mathscr{A}$ will be denoted by \tilde{A}. Every measure $P \in \mathscr{P}$ defines in a natural way a measure of \mathfrak{A} also denoted by P.

A σ-field $\mathscr{F} \subset \mathscr{A}$ is called sufficient if for each $A \in \mathscr{A}$ there exists a common version $E\left(\chi_{A} \mid \cdot \mathscr{F}\right)$ of the conditional expectations $E_{p}\left(\chi_{A} \mid \mathscr{F}\right), P \in \mathscr{P}$.

In order to simplify computations we shall always suppose that if \mathscr{F} is a sufficient σ-field, then $\mathscr{N}(\mathscr{P}) \subset \mathscr{F}$. This is not a serious restriction since a σ-field \mathscr{F} is sufficient iff $\sigma(\mathscr{F}, \mathscr{N}(\mathscr{P}))$ is sufficient.

Preliminaries. In this paper we shall use some results concerning Boolean algebras. These all can be found e.g. in [4]. Let \mathfrak{G} be any Boolean algebra, and P be a measure defined on it. Suppose that (Ω, ∞) is a measurable space, and $\mathscr{\mathscr { C }} \subset \mathscr{A}$ is a σ-ideal such that the Boolean algebra \mathfrak{Q} is isomor-
phic to the factor Boolean algebra $\alpha / / / \%$. In this case, if X is a random variable defined on Ω, then its inverse mapping determines a σ homomorphism h_{X} from the Borel subsets \mathscr{B} of the real line into the Boolean algebra \mathfrak{A}. Conversely, if $h: \mathscr{B} \rightarrow \mathfrak{A}$ is a σ-homomorphism, then there exists a random variable X "unique up to \mathscr{C} equivalence" such that h_{X} $=h$. Furthermore $\bar{P}(A)=P(\widetilde{A})$ defines a measure \bar{P} on the σ-field \mathscr{A} which vanishes on the σ-ideal \mathscr{C}. In particular, one can define the integral of an arbitrary σ-homomorphism $h: \mathscr{B} \rightarrow \mathfrak{A}$ with respect to the measure P as follows: first take a random variable X for which $h_{X}=h$ and then take for $\int h d P$ the value of $\int X d \bar{P}$. The crucial fact is that the value of this integral does not depend on the special choice of the measurable space (Ω, \mathscr{A}) and the σ-ideal \mathscr{C}.

Now let \mathfrak{A} be a complete Boolean algebra and denote by Ω the Stone representation space of \mathfrak{N}. Let \mathscr{A} be the σ-field generated by the clopen (closed and open) subsets of Ω. Then \mathfrak{H} is isomorphic to $\mathscr{A} / \mathcal{N}$, where \mathcal{N} is the σ-ideal consisting of the subsets of first category. Let \mathscr{A}^{*} consist of the clopen subsets of Ω. Every $\bmod \mathscr{N}$-equivalence class of \mathscr{A} contains exactly one element of \mathscr{A}. So there exists a one-to-one correspondence between \mathfrak{A} and \mathscr{A}^{*}. (This correspondence preserves the finite Boolean operations). Since \mathfrak{A} is a complete Boolean algebra, the closure of any open subset of Ω is clopen, and the interior of any closed subset of Ω is also clopen. If $\left(\widetilde{A}_{i}\right)_{i \in I} \subset \mathfrak{A}$, and $\left(A_{i}\right)_{i \in I} \subset \mathscr{A}^{*}$ are the corresponding elements, then the closure of the set $\bigcup_{i \in I} A_{i}$ corresponds to $\sup _{i \in I} \tilde{A}_{i}$. Thus this closed set is clopen.

We say that the random variables X and Y defined on $(\Omega, \&)$ are equivalent $" \bmod \mathscr{N}$ " if the set $(X \neq Y)$ belongs to \mathscr{N}. Denote by $B(\Omega, \mathscr{A}, \mathcal{N})$ the set of " $\bmod \mathscr{N}$ " equivalence classes of \mathscr{A}-measurable functions. Equippe this space with the " $\bmod \mathscr{N}$ " essential supremum "norm", i.e. if $X \in B(\Omega, \%, \mathcal{N})$, then write
$\|X\|_{B}=\inf \{c \mid$ there exists $A \in \mathscr{N}$ for which $|X| \leqslant c$ off the set $A\}$
($\|X\|_{B}$ is not necessarily finite). Let $\bar{C}(\Omega)$ be the set of continuous functions defined on Ω, the value of which may be equal to $+\infty$ or $-\infty$. Denote by $C(\Omega)$ the set of bounded continuous functions. Since Ω is the Stone representation space of the Boolean algebra $\mathfrak{A}=\mathscr{A} / \dot{\mathcal{V}}$, the set $\bar{C}(\Omega)$ is a complete lattice with the ordering defined as follows: $X \leqslant Y$ means that $X(\omega) \leqslant Y(\omega)$ for every $\omega \in \Omega$. Denote by $\wedge(\vee)$ the infimum (supremum) taken in the lattice $\bar{C}(\Omega)$ and by inf (sup) the infimum (supremum) taken pointwise. Since every equivalence class of events contains one clopen set, there exists a function $\varrho: B(\Omega, \alpha, \ldots) \rightarrow \bar{C}(\Omega)$ which is a strong lifting, i.e. isometric, lattice and algebra isomorphism (taking in $\bar{C}(\Omega)$ the supremum "norm").

Let \mathscr{F} be a sub- σ-field of \mathscr{A} containing \mathscr{N} for which the Boolean
algebra $\mathscr{F} / \mathscr{N}$ is a complete Boolean subalgebra of \mathfrak{Y}. (This means that every collection of elements of $\mathscr{F} / \mathscr{N}$ has a least upper bound in \mathfrak{H} and it belongs to $\mathscr{F} / \mathscr{N})$. Denote by $\bar{C}(\Omega, \mathscr{F})$ and $C(\Omega, \mathscr{F})$ the subsets consisting of \mathscr{F} measurable functions of the set $\bar{C}(\Omega)$ or $C(\Omega)$, respectively. The set $\bar{C}(\Omega, \mathscr{F})$ is a complete lattice and the restriction of ϱ to $B(\Omega, \mathscr{F}, \mathscr{N})$ maps the latter onto $\bar{C}(\Omega, \mathscr{F})$. The following lemma makes a correspondence between the operations $\wedge(\vee)$ and inf (sup). This lemma is taken from Wright [6], Lemma 1.1; it is repeated here in our notations for the reader's convenience.

Lemma 1. Let $\left(X_{i}\right)_{i \in I}$ be a non-empty subset of $\bar{C}(\Omega, \mathscr{F})$, bounded from below. Let

$$
Y=\bigwedge_{i \in I}\left(X_{i}\right)
$$

Then the set

$$
Y \neq \inf _{i \in I} X_{i}
$$

belongs to \mathcal{N}, i.e. it is a set of first category.
Proof. Obviously inf $X_{i} \geqslant Y$. Consider the set

$$
C=\left\{\inf _{i \in I} X_{i}>Y\right\} .
$$

This is equal to the union of the sets

$$
C_{n}=\left\{\inf _{i \in I} X_{i} \geqslant Y+\frac{1}{n}\right\}
$$

C_{n} is the intersection of the family of closed sets $\left\{X_{i} \geqslant Y+1 / n\right\}$ so it is closed and its interior is clopen. Detone by D_{n} the interior of C_{n}. The indicator function $\chi_{D_{n}}$ of D_{n} is continuous and

$$
X_{i} \geqslant Y+\frac{1}{n} \chi_{D_{n}} \quad \text { for every } i \in I
$$

Thus D_{n} must be the empty set. So C_{n} is nowhere dense proving that C is of first category.

The following lemma is a straightforward application of our previous considerations and it is interesting in itself.

Lemma 2. Let us be given two statistical spaces ($\Omega_{0}, \mathscr{A}_{0}, \mathscr{P}_{0}$) and $\left(\Omega_{1}, \alpha_{1}, \mathscr{P}_{1}\right)$ for which the corresponding Boolean algebras \mathfrak{A}_{0} and $\mathfrak{\mathfrak { A }}_{1}$ are isomorphic and this isomorphism - denoted by i - gives rise to a one-to-one correspondence between \mathscr{P}_{0} and \mathscr{P}_{1} - denoted also by i. Suppose further that we are given two σ-fields \mathscr{F}_{0} and $\mathscr{F}_{1}, \quad \mathscr{N}\left(\mathscr{P}_{0}\right) \subset \mathscr{F}_{0} \subset \mathscr{A}_{0}$, $\mathscr{N}\left(\mathscr{P}_{1}\right) \subset \mathscr{F}_{1} \subset \mathscr{A}_{1}$, in such a way that the isomorphism i transfers $\mathscr{F}_{0} / \mathscr{N}\left(\mathscr{P}_{0}\right)$ onto $\mathscr{F}_{1} / \mathscr{N}\left(\mathscr{P}_{1}\right)$.

Then the σ-field \mathscr{F}_{0} is sufficient iff \mathscr{F}_{1} is sufficient.
Proof. Take any event $A \in \mathscr{A}_{0}$ and let $B \in \mathscr{A}_{1}$ be such that $i(\tilde{A})=\tilde{B}$. Suppose that \mathscr{F}_{1} is sufficient, i.e. there exists a common version $E\left(\chi_{B} \mid \mathscr{F}_{1}\right)$ of
the conditional expectations $E_{Q}\left(\chi_{B}, \mathscr{F}_{1}\right), Q \in \mathscr{P}_{1}$. The inverse mapping of the random variable $E\left(\chi_{B} \mid \mathscr{F}_{1}\right)$ defines a σ-homomorphism $h_{B}: \mathscr{B} \rightarrow \mathscr{F}_{1} / \mathscr{N}\left(\mathscr{P}_{1}\right)$. Then the mapping $i^{-1} \circ h_{B}: \mathscr{B} \rightarrow \mathscr{F}_{0} / \mathcal{N}(\mathscr{B})$ is also a σ-homomorphism and consequently there is an \mathscr{F}_{0}-measurable random variable Y inducing it. Take any measure $P \in \mathscr{P}_{0}$ and event $C \in \mathscr{F}_{0}$. Then, denoting by $D \in \mathscr{F}_{1}$ an event for which $\tilde{D}=i(\tilde{C})$, we have

$$
\begin{aligned}
\int_{C} Y d P & =\int Y \chi_{C} d P=\int \mathrm{E}\left(\chi_{B} \mid \mathscr{F}_{1}\right) \chi_{D} d i(P)=\int_{D} \mathrm{E}\left(\chi_{B} \mid \mathscr{F}_{1}\right) d i(P) \\
& =\int_{D} \chi_{B} d i(P)=i(P)\left(B_{n} D\right)=P\left(A_{n} C\right)=\int_{C} \chi_{A} d P
\end{aligned}
$$

Thus $Y=\mathrm{E}_{P}\left(\chi_{A} \mid \mathscr{F}_{0}\right) P$-a.e. for every $P \in \mathscr{P}$, proving that $\mathscr{\mathscr { F }}_{0}$ is sufficient.

Sufficiency and Boolean algebra completeness.

Theorem. Let $\left(\Omega_{0}, \mathscr{A}_{0}, \mathscr{P}_{0}\right)$ be a statistical space such that the Boolean algebra $\mathfrak{H}_{0}=\mathscr{A}_{0} / \mathscr{N}\left(\mathscr{P}_{0}\right)$ is complete. Let $\mathscr{F}_{0}, \mathscr{G}_{0}$ be two sub- σ-fields for which $\mathscr{N}\left(\mathscr{P}_{0}\right) \subset \mathscr{F}_{0} \subset \mathscr{G}_{0}$ and \mathscr{F}_{0} is sufficient.

Then \mathscr{G}_{0} is sufficient iff $\mathscr{G}_{0} / \mathscr{N}\left(\mathscr{P}_{0}\right)$ is a complete Boolean subalgebra of the algebra \mathfrak{A}_{0}.

Proof. In the paper Göndöcs-Michaletzky [2] we have shown that if ${ }^{\cdot} \mathfrak{A}_{0}$ is complete, then for any sufficient σ-field the corresponding Boolean algebra is a complete subalgebra. So $\mathscr{F}_{0} / \mathcal{N}\left(\mathscr{P}_{0}\right)$ is complete, and the necessity part of Theorem follows immediately.

Now suppose that $\mathscr{G}_{0} / \mathscr{N}\left(\mathscr{P}_{0}\right)$ is a complete Boolean subalgebra of \mathfrak{A}_{0}. The sufficiency part of the Theorem will be proved through a series of lemmas.

As the first step we show that the sample space can be supposed to be the Stone representation space of \mathfrak{N}_{0}. Let Ω be the Stone representation space of \mathfrak{M}_{0}, cf. [4]. Consider the σ-field \mathscr{A} generated by the clopen subsets of Ω. Then - as we have said before - \mathfrak{Q}_{0} is isomorphic to $\mathfrak{H}=\mathscr{A} / \mathcal{N}$, where \mathscr{N} is the σ-ideal consisting of the subsets of first category. Let i : \mathfrak{A} $\rightarrow \mathfrak{Q}_{0}$ be the isomorphims. By means of i we can define in a natural way a measure family \mathscr{P} on \mathfrak{A} and also on \mathscr{A} (the sets of first category have probability zero, and precisely \mathcal{N} will be the null-ideal $\mathscr{N}(\mathscr{P})$). Set

$$
\begin{gathered}
\mathscr{F}=\left\{A \in \mathscr{A} \mid i(\tilde{A}) \in \mathscr{F}_{0} / \mathscr{N}\left(\mathscr{P}_{0}\right)\right\}, \\
\mathscr{G}=\left\{A \in \mathscr{A} \mid i(\tilde{A}) \in \mathscr{G}_{0} / \mathscr{N}\left(\mathscr{P}_{0}\right)\right\}
\end{gathered}
$$

According to Lemma 2 the σ-field \mathscr{F} is sufficient for \mathscr{P} and it is enough to prove that \mathscr{G} is also sufficient for \mathscr{P}.

Let \mathscr{N}^{*} consist of the clopen subsets of Ω and write $\mathscr{F}^{*}=\mathscr{F} \cap \mathbb{N}^{*}$.

Now take any event $A \in \mathscr{A}$. Our aim is to define a random variable $\mathrm{E}\left(\chi_{A} \mid \mathscr{G}\right)$, which will be a common version of the conditional expectations $\mathrm{E}_{P}\left(\chi_{A} \mid \mathscr{G}\right)$ for every $P \in \mathscr{P}$, using the assumption that the smaller sub- σ-field \mathscr{F} is sufficient.

Define the following space:

$$
H=\left\{X: \Omega \rightarrow R \mid X \mathscr{G} \text {-measurable, }\left\|\mathrm{E}\left(X^{2}\left(1+\chi_{A}\right) \mid \mathscr{F}\right)\right\|_{B}<\infty\right\}
$$

Equippe the space H with a real-valued norm, further with a continuous function-valued norm and scalar product:

$$
\begin{gathered}
\|X\|_{H, r}=\left\|\mathrm{E}\left(X^{2}\left(1+\chi_{A}\right) \mid \mathscr{F}\right)^{1 / 2}\right\|_{B} \in R, \\
\|X\|_{H}=\varrho\left[\mathrm{E}\left(X^{2}\left(1+\chi_{A}\right) \mid \mathscr{F}\right)^{1 / 2}\right] \in C(\Omega ; \mathscr{F}), \\
(X, Y)_{H}=\varrho\left[\mathrm{E}\left(X Y\left(1+\chi_{A}\right) \mid \mathscr{F}\right)\right] \in C(\Omega, \mathscr{F}) .
\end{gathered}
$$

Readers familiar with the notion of continuous function-valued scalar product will note that we are dealing with a Kaplansky-Hilbert module. Still, we shall not explicitely rely on the original work of Kaplansky [3] because the special structure of our space Ω allows a considerable simplification of his method.

Lemma 3. Let $\left(Y_{n}\right)_{n \in N} \subset H$ and suppose that

$$
c=\sum_{n \in \boldsymbol{N}}\left\|Y_{n}\right\|_{\boldsymbol{H}}<+\infty
$$

Then there exists a random variable $Y \in H$ for which $\sum_{i=1}^{n} Y_{i}$ converges to Y in the sense that

$$
\left\|Y-\sum_{i=1}^{n} Y_{i}\right\|_{H}
$$

converges to zero off an event belonging to $\mathscr{N}(\mathscr{P})$.
Proof. Write

$$
X_{n}(\omega)=\sum_{i=1}^{n}\left|Y_{i}(\omega)\right|, \quad X(\omega)=\sup X_{n}(\omega)
$$

Then

$$
\mathrm{E}\left(X_{n}^{2}\left(1+\chi_{A}\right) \mid \mathscr{F}\right)^{1 / 2} \leqslant \sum_{i=1}^{n} \mathrm{E}\left(Y_{i}^{2}\left(1+\chi_{A}\right) \mid \mathscr{F}\right)^{1 / 2} \quad P \text {-a.e. }
$$

for every $P \in \mathscr{P}$. Applying the hypothesis and the monotone convergence theorem we get

$$
\mathrm{E}\left(X^{2}\left(1+\chi_{A}\right) \mid \mathscr{F}\right)^{1 / 2} \leqslant C \quad P \text {-a.e. for every } P \in \mathscr{P} .
$$

Thus the set $D=(X=\infty)$ belongs to $\mathscr{N}(\mathscr{P})$ and off this set $\sum_{i=1}^{\infty} Y_{i}$ is convergent. Let

$$
Y(\omega)= \begin{cases}\sum_{i=1}^{\infty} Y_{i}(\omega) & \text { for } \omega \notin D \\ 0 & \text { for } \omega \in D\end{cases}
$$

Obviously, $|Y(\omega)| \leqslant|X(\omega)|$ for every $\omega \in \Omega$. We see that

$$
\left|Y-\sum_{i=1}^{n} Y_{i}\right|^{2}
$$

converges pointwise to zero off the set D and each term is dominated by $2 X^{2}$. Applying the conditional version of the dominated convergence theorem for every P separately, we get that

$$
\mathrm{E}\left(\left|Y-\sum_{i=1}^{n} Y_{i}\right|^{2}\left(1+\chi_{A}\right) \mid \mathscr{F}\right) \rightarrow 0 \quad P \text {-a.e. for every } P \in \mathscr{P}
$$

i.e.

$$
\left\|Y-\sum_{i=1}^{n} Y_{i}\right\|_{H} \rightarrow 0 \quad \text { off an event belonging to } \mathscr{N}(\mathscr{P})
$$

Lemma 4. Let $\left(A_{i}\right)_{i \in I} \subset \mathscr{F},\left(X_{i}\right)_{i \in I} \subset H$ be such that the clopen sets $\left(A_{i}\right)_{i \in I}$ are pairwise disjoint,

$$
\bigvee_{i \in I} \tilde{A_{i}}=\tilde{\Omega}
$$

and there exists a number M such that $\left\|X_{i}\right\|_{H, r} \leqslant M$ for every $i \in I$.
Then there exists an $X \in H$ for which $\varrho(X) \chi_{A_{i}}=\varrho\left(X_{i}\right) \chi_{A_{i}}$ for every $i \in I$.
Proof. The inverse mapping of the random variable $\varrho\left(X_{i}\right)$ restricted to the set A_{i} determines a homomorphism h_{i} from the Borel subsets \mathscr{B} of the real line into the principal ideal generated by $\tilde{A_{i}}$ of the lattice $\mathscr{G} / \mathscr{N}(\mathscr{P})$.

Let

$$
h(B)=\bigvee_{i \in I} h_{i}(B) \quad \text { for every } B \in \mathscr{B}
$$

This is a σ-homomorphism, so there is a random variable X for which $h_{X}=h$. The function X is \mathscr{G}-measurable and

$$
\varrho(X) \chi_{A_{i}}=\varrho\left(X_{i}\right) \chi_{A_{i}} . \text { for every } i \in I
$$

Further,

$$
\begin{aligned}
\|X\|_{H, r} & =\sup _{\omega \in \Omega}\left|\varrho\left[\mathrm{E}\left(X^{2}\left(1+\chi_{A}\right) \mid \cdot \mathscr{F}\right)\right](\omega)\right| \\
& =\sup _{i \in I} \sup _{\omega \in A_{i}}\left|\varrho\left[\mathrm{E}\left(X^{2}\left(1+\chi_{A}\right) \mid \cdot \mathscr{F}\right)\right](\omega)\right| \\
& =\sup _{i \in I} \sup _{\omega \in A_{i}}\left|\varrho\left[\mathrm{E}\left(X_{i}^{2}\left(1+\chi_{A}\right) \mid . \mathscr{F}\right)\right](\omega)\right| \leqslant M
\end{aligned}
$$

since the sets A_{i} belong to $\mathscr{F}^{*} \subset \mathscr{F}$.
In the sequel we shall denote this construction by $X=\sum_{i \in I} X_{i} \chi_{A_{i}}$. Consider the following subspaces of H :

$$
\begin{aligned}
H_{0} & =\{X \in H \mid \varrho[\mathrm{E}(X \mid \bar{Y})]=0\} \\
H_{1} & =\left\{Y \in H \mid(X, Y)_{H}=0 \text { for every } X \in H_{0}\right\} .
\end{aligned}
$$

Lemma 5. H is the direct sum of H_{0} and H_{1}.
Proof. If $X \in H_{0} \cap H_{1}$, then $(X, X)_{H}=0$, thus $\varrho\left[\mathrm{E}\left(X^{2}\left(1+\chi_{A}\right) \mid \dot{\mathscr{F}}\right)\right]=0$. This means that $\left(\mathrm{E}\left(X^{2}\left(1+\chi_{A}\right) \mid \mathscr{F}\right) \neq 0\right) \in \mathscr{N}(\mathscr{P})$ for every $P \in \mathscr{P}$, consequently $X=0 P$-a.e., thus the equivalence class of X is zero.

Now let $X \in H$ be arbitrary. We shall compute its components. For every $Y \in H_{0}$ the function $\|X-Y\|_{H}^{2}$ is continuous. Write

$$
d=\bigwedge_{Y \in H_{0}}\|X-Y\|_{H}^{2}
$$

We claim that there exists a $Y \in H_{0}$ for which $d=\|X-Y\|_{H}^{2}$. According to Lemma 2 this lattice infimum is " $\bmod \mathscr{N}(\mathscr{P})$ " equal to the infimum taken pointwise. I.e., there exists a $C \in \mathscr{N}(\mathscr{P})$ such that

$$
d(\omega)=\inf _{Y \in H_{0}}\|X-Y\|_{H}^{2}(\omega) \quad \text { for every } \omega \in \Omega \backslash C
$$

For every $n \in N$ and $\omega \in \Omega \backslash C$ consider a random variable $Y_{n, \omega} \in H_{0}$ such that.

$$
\left\|X-Y_{n, \omega}\right\|_{H}^{2}(\omega)<d(\omega)+1 / n^{4}
$$

The functions on both sides of this equality are continuous and \mathscr{F} measurable, hence there is a clopen set $A_{n, \omega} \in \mathscr{F}^{*}$ such that

$$
\left\|X-Y_{n, \omega}\right\|_{H}^{2}\left(\omega^{\prime}\right)<d\left(\omega^{\prime}\right)+1 / n^{4}, \quad \omega^{\prime} \in A_{n, \omega}
$$

Obviously

$$
\bigvee_{\omega \in \Omega \backslash C} \tilde{A}_{n, \omega}=\tilde{\Omega}
$$

Since the lattice $\mathscr{F} / \mathscr{N}(\mathscr{P})$ is complete, there exists a subclass \mathscr{D}_{n} of \mathscr{F}^{*} consisting of disjoint sets such that for every $B \in \mathscr{D}_{n}$ there exists an event
$A_{n, \omega} \supset B$. For every $B \in \mathscr{D}_{n}$ we define a random variable Y_{B} as follows: Take an event $A_{n, \omega}$ which contains the set B and let $Y_{B}=Y_{n, \omega} \chi_{B}$. Then

$$
\begin{aligned}
\left\|Y_{B}\right\|_{H, r}^{2} & =\sup _{\omega \in \Omega}\left|\varrho\left[\mathrm{E}\left(Y_{B}^{2}\left(1+\chi_{A}\right) \mid \mathscr{F}\right)\right](\omega)\right| \\
& \leqslant \sup _{\omega \in B}\left|\varrho\left[\mathrm{E}\left(Y_{B}^{2}\left(1+\chi_{A}\right) \mid \mathscr{F}\right)\right](\omega)\right|+\sup _{\omega \in \Omega \backslash B}\left|\varrho\left[\mathrm{E}\left(Y_{B}^{2}\left(1+\chi_{A}\right) \mid \mathscr{F}\right)\right](\omega)\right| .
\end{aligned}
$$

The second term is zero because $B \in \mathscr{F P}^{*} \subset \mathscr{F}$ and $Y_{B}=0$ off the event B. In the first term we can change Y_{B} by the $Y_{n, \omega}$ and, using the triangle inequality, we get

$$
\begin{aligned}
\left|\varrho\left[\mathrm{E}\left(Y_{B}^{2}\left(1+\chi_{A}\right) \mid \mathscr{F}\right)\right](\omega)\right| & \leqslant\left(\left\|X-Y_{n, \omega}\right\|_{H}+\|X\|_{H}\right)^{2} \chi_{B} \\
& \leqslant 2\|X\|_{H, r}^{2}+2\left(\sup _{\omega \in B} d(\omega)+1 / n^{4}\right) \quad \text { if } \omega \in B .
\end{aligned}
$$

Since

$$
\sup _{\omega \in B} d(\omega) \leqslant\|X\|_{H, r}^{2}
$$

(because the zero function belongs to H_{0}), we have

$$
\left\|Y_{B}\right\|_{H, r}^{2} \leqslant 4\|X\|_{H, r}^{2}+2
$$

Thus we can apply Lemma 4. It follows that there exists a random variable

$$
Y_{n}=\sum_{B \in \mathscr{Q}_{n}} Y_{B} \chi_{B}
$$

such that $Y_{n} \in H$. Since $\varrho\left(Y_{n}\right) \chi_{B}=\varrho\left(Y_{B}\right) \chi_{B}$ for every $B \in \mathscr{D}_{n}$ and $Y_{n} \in H_{0}$, i.e., $\varrho\left[\mathrm{E}\left(Y_{B} \mid \mathscr{F}\right)\right]=0$, we have $\varrho\left[\mathrm{E}\left(Y_{n} \mid \mathscr{F}\right)\right]=0$, thus $Y_{n} \in H_{0}$ and $\left\|X-Y_{n}\right\|_{H}^{2} \leqslant d$ $+1 / n^{4}$.

Now the following computations are straightforward:

$$
\begin{aligned}
\left\|Y_{n+1}-Y_{n}\right\|_{H}^{2} & =2\left(\left\|X-Y_{n}\right\|_{H}^{2}+\left\|X-Y_{n+1}\right\|_{H}^{2}\right)-4\left\|X-\frac{Y_{n}+Y_{n+1}}{2}\right\|_{H}^{2} \\
& \leqslant 2\left(d+\frac{1}{n^{4}}+d+\frac{1}{(n+1)^{4}}\right)-4 d=2\left(\frac{1}{n^{4}}+\frac{1}{(n+1)^{4}}\right)
\end{aligned}
$$

Thus $\left\|Y_{n+1}-Y_{n}\right\|_{H}<2 / n^{2}$, hence Lemma 3 guarantees the existence of a random variable $Y \in H$ such that $\left\|Y-Y_{n}\right\|_{H}$ converges pointwise to zero except on an event belonging to $\mathscr{N}(\mathscr{P})$. Obviously $\|X-Y\|_{H}=d$ and $Y \in H_{0}$, as claimed.

Now the proof of Lemma 5 is completed easily; for every $Y^{\prime} \in H_{0}, \alpha \in \boldsymbol{R}$

$$
d \leqslant\left\|X-Y-\alpha Y^{\prime}\right\|_{H}^{2}=\|X-Y\|_{H}^{2}-2 \alpha\left(X-Y, Y^{\prime}\right)_{H}+\alpha^{2}\left\|Y^{\prime}\right\|_{H}^{2}
$$

Since $\|X-Y\|_{H}^{2}=d$, we have $\alpha^{2}\left\|Y^{\prime}\right\|_{H}^{2}-2 \alpha\left(X-Y, Y^{\prime}\right)_{H} \geqslant 0$ for every $\alpha \in \mathbb{R}$.

Thus $\left(X-Y, Y^{\prime}\right)=0$ i.e. $X-Y \in H_{1}$. Summing up we have got $X=Y+X$ $-Y$ with $Y \in H_{0}, X-Y \in H_{1}$, proving Lemma 5.

Consider now the space

$$
H_{1}^{\perp}=\left\{Y \in C(\Omega, \mathscr{F}) \mid \varrho(X) \cdot Y=0 \text { for every } X \in H_{1}\right\}
$$

Lemma 6. There exists‘ a set $B \in \mathscr{F}^{*}$ and a random variable $Z \in H_{1}$ such that

$$
H_{1}^{\perp}=\chi_{B} C(\Omega, \mathscr{F}), \quad\|Z\|_{H}^{2}=1-\chi_{B} .
$$

Proof. Let $B_{Y}=(Y \neq 0)$ if $Y \in H_{1}^{\perp}$. Define the event B as the closure of the union of these sets. Then $B \in \mathscr{F}^{*}$ and $B_{Y} \subset B$ for every $Y \in H_{1}^{\perp}$. On the other hand, if $X \in H_{1}$, then $\varrho(X) \cdot Y=0$ for every $Y \in H_{1}^{\perp}$, consequently $(\varrho(X)=0)\lrcorner B$. Thus if the function $Y \in C(\Omega, \mathscr{F})$ is such that $(Y \neq 0) \supset B$ then $\varrho(X) \cdot Y=0$ for every $X \in H_{1}$, i.e. $Y \in H_{1}^{\perp}$. Thus $H_{1}^{\perp}=\chi_{B}: C(\Omega, \mathscr{F})$.

Fix now an $\varepsilon>0$. For every $X \in H_{1}$ define an event $C_{X} \in \mathscr{F}^{*}$ as the closure of the set $\left(\|X\|_{H}^{2}>\varepsilon\right)$. We have

$$
\bigvee_{X \in H_{1}} \tilde{C}_{X}=\widetilde{\Omega \backslash B} .
$$

Applying the Zorn lemma we get a maximal collection of disjoint sets $\dot{C}_{X_{i}}, i \in I$. Obviously $\bigvee_{i \in I} \tilde{C}_{X_{i}}=\overparen{\Omega \backslash B}$.

Write

$$
Y_{i}=\frac{X_{i} \chi_{C_{X_{i}}}}{\left\|X_{i}\right\|_{H}}, \quad i \in I
$$

Then $\left\|Y_{i}\right\|_{H, r} \leqslant 1$, so there exists the random variable

$$
Z=\sum_{i \in I} Y_{i} \chi_{C_{X_{i}}}
$$

Since

$$
\varrho(Z) \chi_{c_{X_{i}}}=\varrho\left(Y_{i}\right) \chi_{c_{X_{j}}} \quad \text { and } \quad C_{X_{i}} \in \mathscr{F}^{*}
$$

it holds that $\|Z\|_{H} \chi_{C_{X_{i}}}=\chi_{C_{X_{i}}}$. Thus $\|Z\|_{H}=1-\chi_{B}$.
Lemma 7. For every $Y_{0} \in H_{1}$ there exists a $Y_{1} \in C(\Omega, \mathscr{F})$ for which

$$
\varrho\left(Y_{0}\right)=Y_{1} \varrho(Z)
$$

Proof. Let $Y=Y_{0}-\left(Y_{0}, Z\right)_{H} Z$. This belongs to H_{1} and $(Y, Z)_{H}=0$. It is enough to prove that $\varrho(Y)=0$.

Suppose on the contrary that $\varrho(Y)$ is not identically zero. Then there exists an event $B_{Y} \in \mathscr{F}^{*}$ such that $\|Y\|_{H}^{2}>0$ on the event B_{Y} (observe that $\left.B_{Y} \subset \Omega \backslash B\right)$. Obviously $Z_{\chi_{B_{Y}}} \in H_{1}$.

On the other hand,

$$
\left\|Z \chi_{B_{Y}}\right\|^{2}=\|Z\|_{H}^{2} \chi_{B_{Y}}=\left(1-\chi_{B}\right) \chi_{B_{Y}}=\chi_{B_{Y}}
$$

Thus $\varrho(Z) \chi_{B_{Y}}$ does not vanish everywhere on Ω, consequently $Z \chi_{B_{Y}} \notin H_{0}$. So there exists an event $C \in \mathscr{F}^{*}$ for which

$$
\mathrm{E}\left(Z_{\chi_{B_{Y}}} \mid \mathscr{F}\right)>0 \quad 4 \bmod \mathscr{N}(\mathscr{P}) " \text { on } C .
$$

But $\mathrm{E}\left(Z_{\chi_{B_{Y}}} \mid \mathscr{F}\right)=0 " \bmod \mathscr{N}(\mathscr{P})$ " off B_{Y}, so $C \subset B_{Y}$. Since $C \in \mathscr{F} *$

$$
\mathrm{E}\left(Z_{\chi_{c}} \mid \mathscr{F}\right)>0 \quad \text { " } \bmod \mathscr{N}(\mathscr{P}) " \text { on } C .
$$

So there exists a random variable X which is \mathscr{H}-measurable such that

$$
X \varrho\left[\mathrm{E}\left(Z \chi_{c} \mid \mathscr{F}\right)\right]=\chi_{c} \varrho[\mathrm{E}(Y \mid \mathscr{F})]
$$

Rearranging, we get

$$
\mathrm{E}\left(Z \chi_{C} X-\chi_{C} Y \mid \mathscr{F}\right)=0 \quad P \text {-a.e. for every } P \in \mathscr{P} .
$$

But $Z \chi_{c} X-\chi_{c} Y \in H_{1}$, so it vanishes $" \bmod \mathscr{N}(\mathscr{P}) "$ on $\Omega \backslash B$, thus, moreover, on Ω. Using $(Y, Z)_{H}=0$, we have

$$
0=\varrho\left[\mathrm{E}\left(Z X \chi_{C} Y\left(1+\chi_{A}\right)\left(1-\chi_{B}\right) \mid \mathscr{F}\right)\right]=\varrho\left[\mathrm{E}\left(Y^{2}\left(1+\chi_{A}\right) \mid \mathscr{F}\right)\right] \chi_{C}=\|Y\|_{H}^{2} \chi_{C} .
$$

We have got a contradiction.
Write $Z_{1}=Z E(Z \mid \mathscr{F})$. Let $Y \in H$. There exist $Y_{0} \in H_{0}, Y_{1} \in H_{1}$ for which $Y=Y_{0}+Y_{1}$. In this case

$$
\begin{aligned}
\varrho[\mathrm{E}(Y \mid \mathscr{F})] & =\varrho\left[\mathrm{E}\left(Y_{1} \mid \mathscr{F}\right)\right]=\varrho\left[\mathrm{E}\left(\left(Y_{1}, Z\right)_{H} Z \mid \mathscr{F}\right)\right] \\
& =\left(Y_{1}, Z\right)_{H} \varrho[\mathrm{E}(Z \mid \mathscr{F})]=\left(Y_{1}, Z_{1}\right)_{H}=\left(Y, Z_{1}\right)_{H}
\end{aligned}
$$

Substituting the definition of the scalar product $(,)_{H}$ and rearranging we have

$$
\mathrm{E}\left(Y\left(1-Z_{1}\right) \mid \mathscr{F}\right)=\mathrm{E}\left(Y Z_{1} \chi_{A} \mid \mathscr{F}\right) \quad P \text {-a.e. for every } P \in \mathscr{P}
$$

First choose Y as the indicator function of the event $\left(Z_{1}<1 / 2\right)$ and then as that of $\left(Z_{1}>1\right)$. Since

$$
\chi_{\left(z_{1}<1 / 2\right)}\left(1-Z_{1}\right)>\chi_{\left(z_{1}<1 / 2\right)} Z_{1} \geqslant \chi_{\left(z_{1}<1 / 2\right)} Z_{1} \chi_{A},
$$

we have

$$
\mathrm{E}\left(\chi_{\left(z_{1}<1 / 2\right)}\left(1-Z_{1}\right) \mid \mathscr{F}\right)>\mathrm{E}\left(\chi_{\left(Z_{1}<1 / 2\right)} Z_{1} \chi_{A} \mid \mathscr{F}\right) \quad P \text {-a.e. for every } P \in \mathscr{P}
$$

Consequently, $\left(Z_{1}<1 / 2\right) \in \mathscr{N}(\mathscr{P})$. Similarly, we get $\left(Z_{1}>1\right) \in \mathscr{N}(\mathscr{P})$. Thus the random variable $\left(1-Z_{1}\right) / Z_{1}$ is nonnegative and it is not greater than. 1 , so it belongs to H.

Take an arbitrary event B belonging to \mathscr{G}. Let $Y=\chi_{B} / Z_{1}$. This belongs to H. Thus we can write

$$
\mathrm{E}\left(\left.\frac{\chi_{B}}{Z_{1}}\left(1-Z_{1}\right) \right\rvert\, \mathscr{F}\right)=\mathrm{E}\left(\left.\frac{\chi_{B}}{Z_{1}} Z_{1} \chi_{A} \right\rvert\, \mathscr{F}\right) \quad P \text {-a.e., } P \in \mathscr{P} .
$$

Taking the expectation of each side we get

$$
\mathrm{E}_{P}\left(\chi_{B} \frac{1-Z_{1}}{Z_{1}}\right)=\mathrm{E}_{P}\left(\chi_{B} \cdot \chi_{A}\right) .
$$

Thus $\mathrm{E}_{P}\left(\chi_{A} \mid \mathscr{G}\right)=\left(1-Z_{1}\right) / Z_{1}$, which proves the Theorem.
Remark. A little bit stronger version of the Theorem is also true. Namely, the assumptions that \mathscr{F}_{0} is sufficient and $\mathscr{F}_{0} / \mathcal{N}(\mathscr{B}), \mathscr{G}_{0} / \mathcal{N}(\mathscr{B})$ are complete Boolean-subalgebras of $\mathfrak{N}_{0}=\mathscr{A}_{0} / \mathscr{N}(\mathscr{B})$ imply that \mathscr{G}_{0} is also sufficient. Thus there is no need to suppose that \mathfrak{N}_{0} is complete. The proof of this assertion is similar to the proof of the Theorem.

REFERENCES

[1] D. L. Burkholder, On the order structure of the set of sufficient σ-fields, Ann. Math. Stat. 33 (1962), p. 598-599.
[2] F. Göndöcs and G. Michaletzky, Construction of minimal sufficient and pairwise sufficient σ-field, Z. für Wahrschein, submitted.
[3] Kaplansky, Modules over operator algebras, Amer. J. Math. 75 (1953), p. 839-858.
[4] R. Sikorski, Boolean algebras, Springer Verlag, Berlin-Göttingen-Heidelberg-New York 1957.
[5] J. D. M. Wright, A Radon-Nikodym theorem for Stone algebra-valued measures, Trans. of Amer. Math. Soc. (1969), 139-140, p. 75-94.
[6] - Stone algebra valued measures and integrals, Proc. London Math. Soc. 19 (1969), p. 107122.

Department of Probability Theory
Eötvös Loránd University
Múzeum krt. 6-8
H-1088 Budapest, Hungary

