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OF SUFFICIENT o-FIELDS
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Abstract. Sufficiency is one of the fundamental concepts of
mathematical statistic. For a statistical space (Q, </, #) a o-field is
sufficient if — roughly speaking — it contains the same information
regarding the measure class & as the whole o-field /. Burkholder
bhas..constructed an example where a nonsufficient ¢-field is larger
than a sufficient one. We show that if the Boolean algebra of
equivalence classes of events is complete (where two events 4, B are
said to be equivalent if P(40B) =0 for two every measures Pe %),
then a sub-o-field % containing a sufficient sub-c-field # of ./ is
sufficient iff the Boolean algebra of equivalence classes of events
belonging to % is complete.

Notation. Let (2, o/, #) be a statistical space. Denote by 4" (2) the null
ideal of the a-field o, ie.

A (P) = {Ae | P(4) = 0 for every Pe?}.

We say that two events are equivalent if the symmetric difference of these
sets belongs to A7(#). The set of equivalence classes forms a Boolean

~algebra, denoted by . The equivalence class of an event Ae o/ will be

denoted by A. Every measure Pe 2 defines in a natural way a measure of A
also denoted by P
A o-field F < &x/ is called sufficient if for each Ae o there exists a
common version E(x,|.%#) of the conditional expectations E,(y| %), Pe 2.
In order to simplify computations we shall always suppose that if % is
a sufficient o-field, then /(%) = #. This is not a serious restriction smce
a a-field # is sufficient iff o(#, /() is sufficient.

Preliminaries. In this paper we shall use some fesults concerning Boolean
algebras. These all can be found e.g. in [4]. Let U be any Boolean algebra,

-and P be a measure defined on it. Suppose that (€, /) is a measurable

space, and % < .o/ is a o-ideal such that the Boolean algebra A is isomor-
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phic to the factor Boolean algebra //%. In this case, if X is a random

variable defined on €, then its inverse mapping determings a o-

homomorphism hy from the Borel subsets # of the real line into the
Boolean algebra . Conversely, if h: #— U is a ¢-homomorphism, then
there exists a random variable X “unique up to % equivalence” such that hy
= h. Furthermore P(A4) = P(A) defines a measure P on the ¢-field o/ which -
vanishes on the o-ideal %. In particular, one can define the integral of an
arbitrary o-homomorphism h: % — U with respect to the measure P as
follows: first take a random variable X for which Ay = h and then take for
{hdP the value of {XdP. The crucial fact is that the value of this integral
does not depend on the special choice of the measurable space (2, .</) and
the o-ideal %.

Now let 9 be a complete Boolean algebra and denote by @ the Stone
representation space of 2. Let .7 be the o-field generated by the clopen
(closed and open) subsets of ©2. Then U is isomorphic to «7/4", where A" is
the o-ideal consisting of the subsets of first category. Let .</* consist of the
clopen subsets of Q. Every mod .#-equivalence class of &/ contains
exactly one element of /. So there exists.a one-to-one correspondence
between A and .o*. (This correspondence preserves the finite Boolean
operations). Since 2 is a complete Boolean algebra, the closure of any open
subset of Q is clopen, and the interior of any closed subset of Q is also
clopen. If (4);; = U, and (A4);; = o/* are the correspondmg elements, then
the closure of the set |J A; corresponds to sup A;. Thus this closed set is

iel
clopen.

We say that the random variables X and Y deﬁned on (Q, /) are
equivalent “mod 4™ if the set (X # Y) belongs to 4. Denote by
B(Q, o/, &) the set of “mod 4™ equivalence classes of .c7-measurable -
functions. Equippe this space with the “mod A4~ essentlai supremum “norm”,
ie. if XEB(Q o/, A, then write

|| X)lz = inf {c | there exists Ae N for whlch [Xl ¢ off the set A}

(1X||5 is not necessarily finite). Let C(£2) be the set of continuous functions

defined on €, the value of which may be equal to +o or —oco. Denote by
C(€Q) the set of bounded continuous functions. Since Q is the Stone represen-
tation space of the Boolean algebra U = o7/.4", the set C(Q) is a complete
lattice with the ordering defined as follows: X < Y means that X (o) < Y{(w)
for every we Q. Denote by ~ (v) the infimum (supremum) taken in the lattice

. C(Q) and by inf (sup) the infimum (supremum) taken pointwise. Since every

equivalence class of events contains one clopen set, there exists a function
0: B(Q, o/, 4) - C(Q) which is a strong lifting, i.e. isometric, lattice and

~algebra isomorphism (taking in C(Q) the supremum “norm”).

Let & be a sub-o-field of &/ containing 4" for which the Boolean:
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algebra & /A" is a complete Boolean subalgebra of . (This means that every
collection of elements of %/A4" has a least upper bound in ¥ and it belongs
to %/A). Denote by C(R, %) and C(Q, %) the subsets consisting of F-
measurable functions of the set C(Q) or C(£), respectively. The set C(Q, %)
is a complete lattice and the restriction of ¢ to B(Q, &, .4") maps the latter
onto C(Q, #). The following lemma makes a correspondence between the
operations A (v) and inf (sup). This lemma is taken from Wright [6],
Lemma 1.1; it is repeated here in our notations for the reader’s convenience.

LemMmA 1. Let (X)), be a non-empty subset of C(Q, #), bounded from

below. Let
Y = /\(X!).

del
Then the set
Y # inf X;
) iel .
belongs to N, ie. it is a set of first category.
Proof. Obviously inf X; > Y. Consider the set
iel
iel
This is equal to the union of the sets
‘ 1
C,= {inf X = Y—l——%.
iel h
C, is the intersection of the family of closed sets {X; > Y+ 1/n} so it is
closed and its interior is clopen. Detone by D, the interior of C,. The
indicator function y, of D, is continuous and

1
X,z Y+- - Xb, for every iel.

Thus D must be the empty set So C, is nowhere dense proving that C is
of first category.
- The following lemma is a straightforward application of our previous
considerations and it is interesting m itself.

LemMa 2. Let us be given two statistical spaces (L2q, sy, Po) and
(Q,, </,, P,) for which the corresponding Boolean algebras W, and A, are
isomorphic and this isomorphism — denoted by i — gives rise to a one-to-one
correspondence between P, and P; — denoted also by i. Suppose further that
we are given two o-fields F, and F,, N(Py) < Fo,c< Ay,
N(P) © Fy < oy, in such a way that the isomorphism i transfers

Fol A (Po) onto F [N (Py).
Then the o-field F is sufficient iff F, is sufficient.
Proof. Take any event Ac </, and let Be o/, be such that i(A)

=B
Suppose that %, is sufficient, i.e. there exists a common version E (yz| #,) of
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the conditional expectations Eq(yg, #1), @ € #,. The inverse mapping of the
random variable E (XBIJH) defines a o-homomorphism hg: % — F,/ A (Z,).
Then the mapping i~ ohy: B — Fo/ A (B) is also a g-homomorphism and
consequently there is an % ,-measurable random variable Y inducing it.
Take any measure PeZ, and event Ce %,. Then, denoting by De %, an
event for which B = i(C), we have

[YdP =  ¥icdP = [E(gsl #) 20 di(P) = [E sl #1)di(P)
C D
= [xdi(P) = i(P)(B,D) = P(4,C) = [14dP.
D C

Thus Y = Ep(x4| #,) P-ae. for every Pe 2, proving that %, is sufficient.

Sufficiency and Boolean algebra completeness.

THEOREM. Let (8, 44, Py) be a statistical space such that the Boolean
algebra Wy = ot/ N (Py) is complete. Let F,, %, be two sub-o-fields for
which .V (Py) = Fo < Gy and F, is sufficient. '

Then %, is sufficient iff G/ N (J’o) is a complete Boolean subalgebra of

the algebra Ug,.
Proof. In the paper Gonddcs-Michaletzky [2] we have shown that if

- A, is complete, then for any sufficient o-field the corresponding Boolean

algebra is a complete subalgebra. So %o/A (%) is complete, and the
necessity part of Theorem follows immediately.

Now suppose that %,/A"(%,) is a complete Boolean subalgebra of Ay .
The sufficiency part of the Theorem will be proved through a series of
lemmas. ' .

As the first step we show that the sample space can be supposed to be
the Stone representation space of ;. Let £ be the Stone representation
space of Uy, cf. [4]. Consider the o-field o7 generated by the clopen subsets
of Q. Then — as we have said before — ; is isomorphic to U = .o7/.4,
where /" is the o-ideal consisting of the subsets of first category. Let i: U
— U, be the isomorphims. By means of i we can define in a natural way a
measure family 2 on U and also on .« (the sets of first category have
probability zero, and precisely .4 will be the null-ideal 4"(#)). Set

F=1Aeo | i(A)e Fo/ N (Py)},
G =de o | i(AD)eGo/V (D).
According to Lemma 2 the o-field # is sufficient for £ and it is enough

to prove that ¥ is also sufficient for 2. -
Let .o7* consist of the clopen subsets of Q and write #* = # N o/*.
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Now take any event Ae o/. Our aim is to define a random variable
E(x4|%), which will be a common version of the conditional expectations

" Ep(x4|%) for every Pe 2, using the assumption that the smaller sub-o-field

& is sufficient.
Define the following space:

UH = {X: @ > RIX %-measurable, |[E(X?(1+x,)|F)||s < 0}

Eqﬁippe the space H with a real-valued norm, further with a continuous
function-valued norm and scalar product: -

X1l = [|E(X* (1 +x0)| )|z € R,
1Xlla = o [E(X2(1+ 1| F) ] eC(2; 5,
(X, Vg = o[E(XY (1 + x| #)]€C(2, #).

Readers familiar with the notion of continuous function-valued scalar
product will note that we are dealing with a Kaplansky-Hilbert module.
Still,’ we shall not’ explicitely rely on the original work of Kaplansky [3]
because the special structure of our space Q allows a considerable simplifi-
cation of his method.

Lemma 3. Let (Y,),.~ = H and suppose that

c=Y %la < +oo.
neN

n

Then there exists a random variable Y e H for which Z ; converges to Y in

the sense that

7= 3 ¥l

converges to zero off an event belonging to N ().
Proof. Write :

X, = ¥ %@,  X)=sup X,(@).

Then

E(X2(14 x| )2 < Z E(Y2(1+29| F)?  P-ae.

for every Pe 2. Applymg the hypothes1s and the monotone convergence

theorem we get

E(X2(1+x)lF)?<C P a.e. for every Pe 2.
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Thus the set D = (X = ov) belongs to A°(#) and off this set ) Y is
i=1 .

convergent. Let

(w) for wé¢D,

P,
s
~

0 for weD.

Obviously, 1Y ()] € |X ()] for cvery'a)eQ..We see that

- 3 ¥
i=1

converges pointwise to zero off the set D and each term is dominated by
2X?%. Applying the conditional version of the dominated convergence
theorem for every P separately, we get that

E(|Y- Z Y?(1+x)|#) >0 P-ae. for every Pe 2,
ie.

Y- Z": Y|u >0 off aﬂ event belonging to A ().
i=1

LEmMMA 4 Let (A);q © F, (X);q < H be such that the clopen sets (A;);
are pairwise disjoint,

Vi=a

iel

and there exists a number M such that || Xy, < M for every icl.
Then there exists an Xe H for which o(X) Xa; = @(X}) x4, for every icl.
Proof. The inverse mapping of the random variable ¢(X;) restricted to
the set A; determines a homomorphism h; from the Borel subsets # of the
real line into the principal ideal generated by A; of the lattice ¥/.A4 ().
Let '

h(B) =\/h(B) for every Be 3.

iel

This is a ¢-homomorphism, so there is a random variable X for which
hy = h The function X is %-measurable and

‘ Q(X)XA,-'_-Q(X.')XA,- - for every iel.
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Fﬁrther, )
X1l = sup le[E(x*(1 +xA)|f7)] ()|

= sup sup lg [E(X*(1+ 20| #)](w)|

iel wed;

= sup sup |o [E( X2(1+XA)I/)](co| M

il wed;

since the sets A; belong to F* c #.

In the sequel we shall denote this construction by X=Y% X Xa4,- Consider
. iel
the following subspaces of H:

Ho ={XeH | o[E(X|#)] =0},
H, ={YeH | (X, Y)y =0 for every XeH}.

LEmMMA 5. H is the direct sum of H, and H,.

Proof. If XeHy,nH,, then (X, X)g =0, thus Q[E(X2(1+x,4)|,/f)] 0.
This means that (E(X2(1+ )| F) # 0)e 4 (D) for every Pe 2, consequently
X =0 P-ae, thus the equivalence class of X is zero.

Now let X € H be arbitrary. We shall compute its components. For every
YeH, the function || X — Y||l% is continuous. Write

d= A\ IX-YIZ.

YeH

We claim that there exists a Ye H, for which d = IIX Y||i5. According
to Lemma 2 this lattice infimum is “mod 4" (2)” equal to the lnﬁmum taken
pointwise. Le. there exists a Ce 4#"(#) such that

d(@) = inf |X—Y|%(@) for every we\C.

YeH

For every ne N and a)eQ\C COIlSldeI' a random variable Y, .€H, such
that

X — Yo olli (@) < d(w)+1/n*.

The functions on both sides of this equality are continuous and %-
measurable, hence there is a clopen set 4, ,€ #* such that

I1X = Y, ullf (@) < d(@)+1/n%, . o'€Ad,,.
Obviously "
V 4,.,=4.

weN\C

Since the lattice F/A4"(#) is complete, there exists a subclass 2, of F*
consisting of disjoint sets such that for every Be 9, there exists an event
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‘A, ., = B. For every Be 9, we define a random variable Yy as follows: Take
an event A,, which contains the set B and let Y3 =Y, ,x5. Then

| Yallz, = sup le[E(Y7 (1 + 1) )] (w)]
< sup le[E(Y7 (1 + x| Z)] (w)] + sup e [E (Y& (1 + 24| #)] ()|

The second term is zero because Be #* < & and Yy = 0 off the event B.
In the first term we can change Y; by the Y, , and, using the triangle
inequality, we get

lo[E(Ys (1 + 201 )] (@) < (1X — Yy olla + 1 X11)* x5
< 21X, +2(sup d(w)+1/n*) if weB.

weB

Since

sup d(w) < |1 X1,
weB

(because the zero function belongs to H,), we have
| Yl < 411 XIIF,+2.

Thus we can apply Lemma 4. It follows that there exists a random
variable .

Y,= Z Ys 18

Be2),

such that'Y,,eH. Since o(Y,) xs = 0(Yy) x5 for every Be 9, and Y,eH,, ie,
e[E(Y3| #)1 =0, we have ¢[E(Y,|#)]1 =0, thus Y,eH, and [ X-Y/If <d
+1/n*. ' ’
Now the following computations are straightforward:

Y+ Y ?

1 ¥e 1= %llE = 201X = Gl +1X — Y, 1]17)—4 “x— _

H

i 1 11
<2(dttdb—— )—ad =2(= .
2<d+n4+ +(n+1)4> ‘<n4+(n+1)4)

Thus [|Y,,; — Yllg < 2/n? hence Lemma 3 guarantees the existence of a
random variable Y e H such that || Y- Y,||4 converges pointwise to zero except
on an event belonging to A"(#). Obviously || X —Y|[g =d and YeH,, as
claimed.

Now the proof of Lemma 5 is completed easily; for every Y'eH,, aeR

d<|IX—-Y—aY|lf = IX=Y|IF—22(X -, Y)g+o?| Y}
Since || X — Y||3 = d, we have a||Y'||Z—20(X — Y, Y')i = O for every a e R.
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Thus (XY, Y)=0ie. X—YeH,. Summing ﬁp we have got X = Y+ X
-Y with YeH,, X—YeH,, proving Lemma 5.
Consider now the space

Hi = {YeC(Q, #)lo(X)'Y =0 for every XcH,}.

LEMMA 6. There exists'a set Be #* and a random variable Z c H, such
that

Hy =43 C(Q, 7), |1ZIIF = 1—xs.

Proof. Let By =(Y # 0) if Ye Hi. Define the event B as the closure of
the union of these sets. Then .Be #* and By — B for every Ye HL. On the
other hand, if XeH;, then ¢(X)'Y=0 for every YeH{, consequently
(¢(X) = 0) = B. Thus if the function YeC(R, &) is such that (Y 2 0)> B
then o(X) Y = 0-for every XeH,, ie. YeHi. Thus HE = y,;-C(Q, ).

Fix now an &> 0. For every XEHI define an event Cye #* as the
closure of the set (J|X]|% > ¢). We have

\/ 6X = Q\B.
XeHy

Applying the Zorn lemma _we get a maximal collection of disjoint sets
Cy,, iel. Obviously V Cx, =Q\B.

iel

Write

X %

Yi = ACX,-, iel

NXilla ™ -

Then |[|Y||g, <1, so there exists the random variable
. Z= Z YiXCXi'

: iel

Since

Q(Z)XCX =Q(YJXCX and CX Eﬂ*’

it holds that “Z”HXCX = Xex,: Thus ||Z]|g = 1—xp.
LemMmA 7. For every YoeHI there exists a YleC L2, %) for which

o(Yo) = Y, 0(2).

Proof. Let Y = Y,—(Y,, Z)g Z. This belongs to H, and (Y, Z)y = 0. It is
enough to prove that ¢(Y)=0.

Suppose on the contrary that g(Y) is not identically zero. Then there
emsts an event Bye #* such that ||Y||% > 0 on the event By (observe that
BY < Q\B) Obviously Zyp,€H;.

i On the other hand,

1Zxsg = N Z1E Amy = (1 — x8) Xmy = Amy:
Y . A Y

11 — Probability Math. Statistics 5/1
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Thus ¢(Z) xp, does not vanish everywhere on €, consequently Zy, ¢ Ho.
So there exists an event Ce .#* for which

E(Zyp, | #) >0 “mod A ()" on C.
But E(ZXB,,I’%) =0 “mod A (#)” off By, so C = By. Since Ce F*
T E@Zyel#F) >0 “mod /(%) on C.

~So there exists a random variable X which is % -measurable such that
Xo[E(Zyc|#)] = xce[E(Y|F)].

Rearranging, we get
'E(Zxc X—xcY|#)=0 P-ae. for every Pe?.
But Zy.X—ycYeH,, so it vanishes “mod .4 (#)” on Q\B, thus,
moreover, on Q. Using (Y, Z)y =0, we have
0=90[E(ZXx Yl +XA)(1_—XB)|-9’-)] =o[E(Y2*(L+x N F)]xc = NYiZ xc-
We have got a contradiction.
Write Z, = ZE(Z|%). Let YeH. There exist YoeH,, Y, e H, for which
Y=Y,+Y;. In this case .
e[E(Y|#)] = e[E(Y1|#)] = o[E((V:, Z)HZI?)]
=(Y1, Z)ge[EZ|F)] =1, Z)u =Y, Z})y.
Substituting the definition of the scalar product (, )y and rearranging
we have
E(Y(U-Z)F)=E(YZ, 14 7’) P-ae. for every Pe Z.
First choose Y as the indicator function of the event (Z 1 < 1/2) and then
as that of (Z, >1). Since

Xz, <p1—2Z,) > Xz, <yl 2 Xz, <12 ZyXas

we have

‘ E(x(z1<1/z)(14—21)|5"') >E(g, <ynZi x4l F) P-ae. fqr every Pe 2.
Consequently, (Z; < 1/2)e V" (#). Similarly, we get (Z, > 1)e /(P).

Thus the random variable (1—Z,)/Z, is nonnegative and it is not greater

than. 1, so it belongs to H.
Take an arbitrary event B belonging to %. Let Y = yp/Z,. This belongs

~to H. Thus we can write

E(ﬂ (1_21)'3#) = E(jci Z, XA|9"—) P-ae., Pe?.
Z, Z, .
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Taking the expectation of each side we get

1-7
EP(XB 7 1) =Ep(xs'14)-

1

Thus Ep(x4|%) =(1—2,)/Z,, which proves the Theorem.

Remark. A little bit stronger version of the Theorem is also true.
Namely, the assumptions that %, is sufficient and F /A (#), %o/ NV (B) are
complete Boolean-subalgebras of W, = o7/ A (#) imply that %, is also
sufficient. Thus there is no need to suppose that 2, is complete. The proof of
this assertion is similar to the proof of the Theorem.
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