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Abstract. The following intuitively evident result is shown. 
Given a probability P and a radius r, assume that we have to 

estimate an unknown law belonging to a sphere with centre P and 
radius r for the Hellinger distance using n independent i den t idy  

I 
distributed observations. If the risk is measured by the square of the 

I Hellinger distance, then the observations carry no information and 
I the best estimator is just the centre P of the sphere. 
I 

I I. Introduction. A number of recent papers have been devoted to compu- 
tations of the minimax risk when we want to estimate some parameter or 
some density by observing n i.i.d. variables, the loss function being the square 
of Hellinger distance, (see e.g. [I], [2], [ 5 ] ,  and C73). When we choose to 
consider such problems from a robustness point of view we are led to 
consider parameter spaces which contain full Hellinger balls. Then the 
global rtsk is certainly larger than the risk computed on such a ball. That is 
why it may be interesting to compute the exact minimax risk for a Hellinger 
ball. Actually, with such an enormous parameter space, which is highly 
infinite-dimensional, it is intuitively obvious that a finite number of obser- 
vations can give no information about the true underlying law but, as far as I 

I know, there is no such proof in the statistical literature. The purpose of the 
paper is therefore to give a proof of this result with simple coroIIaries. But 
before going to it, I shall first recall a few definitions. 

The set of all probability measures on the measured space flR, ,d will be 
denoted by 9, (Q). If P, Q belong to 9, (52) and are absolutely continuous 
with respect to some positive measure p, the Hellinger distance between P 
and Q is defined by 
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and independent of p. Closely related to it is the Hellinger affinity: 

p ( P ,  Q) = s\/c 9 d p  = 1-h2(P ,  Q ) .  
d l  d~ 

For sake of simplicity we shall generally omit p and write 

e ( P ,  Q) = jJdPd@ 

We shall denote by g ( P ,  r) the closed Hellinger ball of center P and 
radius r, i.e. 

W ( p ,  r)  = ( Q ~ @ ~ ( Q ) l h ( p ,  Q )  G r } ,  

and notice that g ( P ,  1) = PI (9) for any P. 
The Kullback information number K I P ,  Q )  is defined by 

(+a in the other cases. 

Suppose we are given an increasing function , g  of x, for x 3 0, with 
g(0) = 0, and a subset B of B1(i2) (the parameter space). Given n i.i.d. 
observations XI, . . . , X ,  of law PE 9, an estimator of P is any measurable 
function T,,(X,, . . . , X,) with values in the metric space (9, (Q), h). The 
minimax risk is defined by 

R, (9, g) = inf sup Ep Cg o h(P, TJ]. 
T ,  PEP 

We want to compute quantities of the type 

R , ( a ( P , ,  r ) ,  g ) ,  . O < r d  1. 
3 .  

2. Constrllction of special nets of probabilities on an infinite space, We shall 
always suppose that D and d are inhite. In this case we can find a sequence 
{A i ) i , ,  of meqsurabIe subsets of B which do not intersect. 

Choose four numbers a, by k, and m in the following way: k, rn E N ;  m 2 1, 
k 2 2 ;  O < b < l < a < k ;  a, b € R +  and 

Put 1 = mk and select a probability p such that p(Ai) = I-' for i 
= 1, ..., I. For any subset I = (i,; ... ; i,} of cardinal m of L =  (1; 2; ... ; I) 
define A, to be U Ai and A,, in an obvious way. We shall define PI by its 

id 

density with respect to p: 

a if X E A ~ ,  
- (x) = 

b i f x ~ A , , .  
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PI is easily seen to be a probability because of (1). 3," is the set of a11 
different 1's and its cardinal is equal to (:I. It is easily seen from (2) that if P, 
and P, are such that Card ( I  n J )  = p, 0 < p G rn, we get 

m-P h2(PIj  PJ) 
i 

Let us denote by 9, the set {PI},,,, and, for sake of simplicity, since 9, 
is finite, just identify it to {I; 2; . . . ; (A)} = M, so that PI becomes P, for 
some integer s. We are now able to prove the following 

PROPOSITION 1. For arbitrary E, 0 < E < 1, there exist values a, b, k, 
depending only of E and such that f i r  all large m there exists a subset S,,, of 
M = { l ; 2 ;  ...;(:)I with: 

m 
Log [Card S,] 3 -. 

100 

Proof. First choose k large enough for 

(7) 
1 

E Log ~+2(1-E)  Log (1 - E ) + E  Log k > - k~ > 1, 
50' 

to hold which is always possible since r < 1. Since & - 3 = Jm 
-JL, we may choose b small enough to get &-$ = ,/-. Then, 
using (3), this shows that 

(8) h(P,, P,) > ( 1  -&)-Card (In J )  <: r n ~ .  

Now suppose a, b, k are fixed in that way and that S,,, is a subset of 
maximal cardinality in 9m satisfying (4). Because of this maximality property 
the set {P,)-,,,l is a (1 -+net of p',, which means that 

9, c U C9(PS, l - 4 n 9 m 1 ,  
(9) s%I 

Card 9, ,< Card S, x sup Card Cg(P, ,  1 - r )  n PA. 
8% 

Fix s in S,. Going back to the previous notation we have P, = P I .  The 



number of different J c L such that Card ( I  n J )  = j is exactly (Y){f,--T) so 
that, if we denote by p the smallest integer such that p 2 ~ m ,  

But from 

and the fact that the ratio on the right is obviously decreasing with i ,  we can 
bound (10) by 

and, finally, 

(1 1) Card [B(P, ,  1 - E )  n P,,,] d 

provided that (1 -&I2 < E (k - 2 + ~ )  which is the case because of (7). Going 
back to (9) we find, as a lower bound for Card S,, 

Using Stirling approximation, many factors cancel and this, finally, 
becomes 

hence 

Log Card S ,  3 CTiLog m+m[k Log k+2(1 -E)  Log ( I - & ) +  

+ E  Log ~ + ( k - 2 + & )  Log (k -2+&)-2 (k -1 )  Log (k-I)] 

> C-+Log m+m[& Log & + 2 ( 1 - E )  Log ( I - & ) + &  Log k]. 
Then from (7) we deduce that 

rn 
Log Card S ,  > C-$Log m+- 

50 

and (6) follows for large rn. (5) is obvious from the definition of Pi, q.e.d. . 
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Let us now consider on 9, (Q) the ball B(Q, r) of center Q and radius r 
with 0 < r G 1. Choose some arbitrary infinite set AE d and some E > 0. 
Then from Proposition 1 we may find, for all large m, a set of probabilities 
(P,)s,m with support on A(Ps(A) = 1) satisfying (4), ( 5 )  and (6). If 0 is such 
that r   sin+^, O < t 3 < 7 ~ / 2 ,  we define Q, by 

getting a new set of probabilities {Q,),,m of cardinality Iarger than 
exp [m/100] with the following properties: 

~ C I P O S I T I O N  2. The probabili~ies Q,, defined by (141, satisfy: 

C being a constant independent of r, pn, Q and A. 
Suppose Q(A) = A 2  and M is a probability such that 

Then M(A) > O and the probability n/I,, defined on A by 

MA (B) = ' 
M ( A n  B) 

7 .  

satisfies 

Proof.  Since Log (dQ$dQ,) is smaller than Log (dPJdP,) if it is positive, 
we easily get from (5) that K(Q, ,  Q,) < Log (alb), a and b depending only on 
E, which is (16). We also have Q (Q, QJ 2 cos 0 and (15) follows from the 
definition of 0. Let us now consider g ( M ,  Q,): 

Q (M, Qd = ,/cos2 I3 dQdM+sin2 0 dPs dM 

If M(A) = 0, Q ( M ,  Q,) $ cos 0 and h(M, QJ B r, which is impossible by 
assumption. Then put M ( A )  = sin2 q, 0 < q d n/2. We get 

Q(M, QJ B cos B[MS (~+A]+sin 0 sin C l , / ' m  
A 



or, taking Q = @(P,, MA),  

Q (My Q,) < cos 8 lcos q.+ i] + p sin 0 sin cp. 

We may now maximize this expression with respect to rp and, with tg cp 
= Q tg % if r < 1 (cos 0 > O), find easily 

(1% q ( M ,  Q,) < cos 0[l+./1+e2 tg20]. 

But by assumption h ( M ,  Q,) ,< r - q, which implies Q (M, Q,) 2 1 - r2 + qr. 
Using (171, (19) and cos 8 = I -r2, we find 

which leads finally to 

We easily deduce (18) for the case r < 1. I f  r = 1, cos 8 = 0 and we find 
e ( M ,  Q,) d Q (MA, P,); which concludes the proof. 

3. Minimax risk for Elellinger balls and related sets. Before we prove the 
main result, we shall need a few technical lemmas. The first one is a version 
of the result known in information theory as Fano's lemma (see 111 or 151). 

LEMMA 1. Suppose wa are giuen p +  1 probabilities Po, . . . , P ,  saridving 
K(Pi, Pj)  < K for 0 < i ,  j d p, then for any estimate t,& with values in the set 
{O; 1 ; . . . ; p) the Bayes risk has the foliowing lower bound: 

The second lemma is connected with the diameter of convex sets (Jung's 
theorem) and the fact that Hellinger distance is of Hilbertian type and that, 
with this distance, a finite set of probabilities may be considered as a set of 
points on a Euclidian sphere. 

LEMMA 2. Suppose we are given p+ 1 probabilities Po, . . . , P, such that 
h(Pi,  Pj)  3 6 V i # j. Then for any arbitrary probability P we have 

As an easy consequence we find the following 
LEMMA 3. Suppose we are given two numbers r and S with 0 < r < 1 ; 

r J2 - r2  < S < 1 and a set S of probabilities such that h(Q,, Q,) 2 S for any 
Q , ,  Q ,  in S. For any arbitrary probabiky P we have 
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1 
Card [S n B ( P ,  r ) ]  6 

d2 - r2 (2- r2) ' 

The proof of Lemma 2 being purely geometrical and related to known I 

results, will not be given here. 
I 

I 
I THEOREM 1. Let us consider on some injinite space (Q, the Hellinger 

ball $ = g(Q, r). Then for any estimate Q,  depending on n i.i.d. observations, 
with values on the set PI (a) we have, fur q > 0, I 

(23) sup ~ ' " [ h ( $ , ,  Q') 3 r - g ]  = 1. 
Q'EJ 

Proof.  Suppose this is not true, then there exists v, q' > 0, and some 
estimate Q, with 

(24) Q ' ~ C ~ ( Q , ,  Q') 6 P - q ]  2 JI' > O b' Q'E 9. 

Fix 

Choose r ,  E > 0 in such a way that 

Now select an infinite subset A of i2 with 

which is always possible, and, using A as shown in the preceding paragraph, 
consider the sets (QS)SESm c 9 ( Q ,  r) which satisfy Proposition 2. 'From (24) 
we gqt 

But h (on, Q,) < r - v implies that Q, is well defined and satisfies 
h(QlnA3 ps) < 1 - 7- 

Now let us consider a new randomized estimate pn with values in 
{QJ,, and defined as follows: if $(A) = 0, take for pn anything you want; 
if QnA is well-defined, consider the uniform distribution on the finite (because 
S, is finite) set {Ps),,m n w ( Q ~ ,  1-y), choose P, according to this distri- 
bution and take pn = Q,. If Q: is the true underlying distribution, we know 
that with probability at least q', P, will belong to the ball &I((?,, 1 - y). But 
the mutual distance between the P, being at least 1 - E ,  Lemma 3 proves that 



and then we have a probability larger than to find the correct value P,. 

Finally, we get 

inf Q : [ P ~  = Q ~ ]  z l l rL1 .  
s% 

But using Propositions 1 and 2 we find' that 

and applying Lemma 1 with m large enough we get 

which, together with (26), gives the desired contradiction. 

COROLLARY 1 .  Suppose we have n i.i.d. observations of an unknown prob- 
ability with continuous (or wen g4)) density with respect to Lebesgue measure 
on LO, I]. Than for any estimate p, 

B being the set of aa possible continuous (or gm) densities. 
Proof.  It is just a particular case of Theorem 1. The restriction that the 

densities must be continuous is not serious because in the construction of the 
family (P,),,m we may take the Ai to be contiguous intervals and then take 
a smooth version of (2) without changing Proposition 1. 

COROLLARY 2. FOP any increasing function ' g the minimax risk 
R , ( g ( P o ,  r),  g) is g(r) and one best possible estimate is T,,(X,, . . ., X,) = Po. 

The proof is obvious from Theorem 1, an analogous result holds with the 
assumptions of CorolIary 1. This means that there is no nice estimate in such 
a case, the parameter space being too large. The only reasonable thing to 
do is to throw away the observations and take as an estimate the center of 
the ball. If you want to estimate a continuous density, take anything you like 
as an estimate, it does not make any difference as long as you want to 
compute the minimax risk. 
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