Abstract. Consider the Dirichlet space associated with a direct product diffusion process. Dirichlet forms having the same domain as it can be expressed by integro-differential forms [7]. We establish two estimates for harmonic functions with respect to such Dirichlet forms, which correspond to Harnack’s inequalities in the theory of partial differential equations. Further we show the continuity of such harmonic functions. Then we apply those results to study some properties of diffusion processes associated with Dirichlet forms as above.

0. INTRODUCTION

Let $m_i, 1 \leq i \leq d$ ($d \geq 2$), be nonnegative Radon measures on \mathbb{R}^1 such that

\begin{align}
(0.1) & \quad m_i(dt) \geq Adt, \quad 1 \leq i \leq d, \ t \in \mathbb{R}^1, \\
(0.2) & \quad m_i([j, j+1]) \leq M, \quad 1 \leq i \leq d, \ j = 0, \pm 1, \pm 2, \ldots,
\end{align}

for some $0 < A < 1 \leq M < \infty$, where dt is the one-dimensional Lebesgue measure.

Let us define d-dimensional Radon measures m, $v_{ij}, 1 \leq i, j \leq d$, and v as follows:

\begin{align}
m(dx) &= m(dx_1 \ldots dx_d) = \prod_{1 \leq k \leq d} m_k(dx_k), \\
v_{ij}(dx) &= v_{ij}(dx_1 \ldots dx_d) = \begin{cases}
\prod_{k \neq i} m_k(dx_k) dx_i & \text{if } i = j, \\
\prod_{k \neq i, j} m_k(dx_k) dx_i dx_j & \text{if } i \neq j,
\end{cases} \\
v &= \sum_{1 \leq i \leq d} v_{ii}.
\end{align}
Let Ω be a domain in \mathbb{R}^d and $\mathcal{F}^2_0(\Omega; \{v_{ii}\})$, $\mathcal{F}^2(\Omega; \{v_{ii}\})$ be the function spaces defined in [7], that is, $\mathcal{F}^2_0(\Omega; \{v_{ii}\})$ and $\mathcal{F}^2(\Omega; \{v_{ii}\})$ are the completions of $C^\infty_0(\Omega)$ and $C^\infty_0(\Omega)$, respectively, with respect to the norm

$$
\|u\|_{2,\alpha,\{v_{ii}\}} = \left(\int_\Omega \left(\sum_{i=1}^d \frac{\partial u}{\partial x_i} \right)^2 dv_{ii} \right)^{1/2} + \left(\int_\Omega u^2 dm \right)^{1/2},
$$

where $C^\infty_0(\Omega)$ denotes the space of all infinitely differentiable functions with compact support in Ω and $C^\infty_0(\Omega)$ stands for the space of all restrictions to Ω of functions in $C^\infty_0(\mathbb{R}^d)$. Let E be a subdomain of Ω. We define a bilinear form ε_E on $\mathcal{F}^2(E; \{v_{ii}\}) \times \mathcal{F}^2(E; \{v_{ii}\})$ by

$$
\varepsilon_E(u, v) = \sum_{i,j=1}^d \int_E D_i u(x) D_j v(x) a_{ij}(x) v_{ij}(dx),
$$

where each $D_i u$ is the weak derivative defined in [7], Section 1, and a_{ij}, $1 \leq i, j \leq d$, are measurable functions on Ω satisfying

$$
a_{ij} = a_{ji}, \quad 1 \leq i, j \leq d,
$$

$$
\gamma^{-1} \sum_{i=1}^d \xi_i^2 v_{ii}(dx) \leq \sum_{i,j=1}^d \xi_i \xi_j a_{ij}(x) v_{ij}(dx)
$$

$$
\leq \gamma \sum_{i=1}^d \xi_i^2 v_{ii}(dx), \quad \xi \in \mathbb{R}^d, x \in \Omega,
$$

for some $\gamma \geq 1$.

A function u is called a solution of $[\varepsilon_E, \mathcal{F}^2(E; \{v_{ii}\})]$ if it belongs to $\mathcal{F}^2(E; \{v_{ii}\})$ and satisfies $\varepsilon_E(u, \varphi) = 0$ for every $\varphi \in C^\infty_0(E)$. $|E|$ stands for the Lebesgue measure of E.

In Section 1 we show the following

Theorem 1. Assume (0.1) and (0.2). Let E be a domain with $E \cap \Omega \neq \emptyset$ and u be a nonnegative solution of $[\varepsilon_{E \cap \Omega}, \mathcal{F}^2(E \cap \Omega; \{v_{ii}\})]$ such that $|E \cap \{u > 0\}| > 0$ in case of $E \subset \Omega$, or such that $u = \text{const} > 0$ on $E \cap \partial \Omega$ and $|E - \Omega| > 0$ in case of $E \cap \partial \Omega \neq \emptyset$. Then

$$
u(x) > 0 \quad \text{for } \nu\text{-a.e. } x \in E \cap \Omega.
$$

This fact is obtained by Moser [3] for $m_i(dt) = dt$, $1 \leq i \leq d$. We know [7] that some inequalities of Sobolev type hold for functions belonging to $\mathcal{F}^2_0(\Omega; \{v_{ii}\})$ or $\mathcal{F}^2(\Omega; \{v_{ii}\})$. Therefore we can employ his methods in our case.

In Section 2 we are concerned with continuity of solutions of $[\varepsilon_E, \mathcal{F}^2(E; \{v_{ii}\})]$. In case of $m_i(dt) = dt$, $1 \leq i \leq d$, Moser [3] showed that Harnack's inequality leads us to Hölder continuity of solutions of
Harnack's inequalities

\[\mathcal{E}_E, \mathcal{G}^2(E; \{v_i\}) \]. Though it may be hopeless to obtain such results in our general case, we can extend his results in the following direction:

Theorem 2. Assume (0.1) and (0.2) as well as

\[
\lim_{\varrho \downarrow 0} m_1((a_i - \varrho, a_i + \varrho)) / \varrho (\log |\log \varrho|)^{1/(d - 1)} = 0,
\]

\[a = (a_1, \ldots, a_d) \in \Omega, \quad 1 \leq i \leq d. \]

Let \(E \) be a domain with \(E \cap \Omega \neq \emptyset \) and \(u \) be a solution of \([\mathcal{E}_{E \cap \Omega}, \mathcal{G}^2(E \cap \Omega; \{v_i\})]\). Further, if \(E \cap \partial \Omega \neq \emptyset \), suppose that for every \(a \in E \cap \partial \Omega \) there is a cone included in \(E \setminus \Omega \) with vertex at \(a \) and \(u = \text{const} \) on \(E \cap \partial \Omega \). Then \(u \) is continuous on \(E \cap \Omega \).

In Section 3 we show another type Harnack's inequality under the additional condition:

\[d = 2. \] For any rectangle \(K = I^1 \times I^2 \) there are a real number \(\delta = \delta(K) \geq 2 \) and sequences of partitions of \(I^n \)'s,

\[A_{n^1}^i : I^1 = \bigcup_{1 \leq k < N_n^1} J_{n,k}^i, \quad i = 1, 2, \quad n = 0, 1, 2, \ldots, \]

where \(1 = N_0^i \leq N_1^i \leq \ldots \uparrow \infty \) and \(J_{n,k}^i \)'s fulfil the following properties for every \(i, j, k, l, n \):

(i) \(m_i(J_{n,k}^i) > 0 \),

(ii) \(J_{n,k}^i \cap J_{n,l}^j = \emptyset \) if \(k \neq l \),

(iii) \(|J_{n,k}^i| = \sup J_{n,k}^i - \inf J_{n,k}^i \) and \(\lim_{n \uparrow \infty} \max_{1 \leq k < N_n^i} |J_{n,k}^i| = 0 \),

(iv) \(0 \leq |J_{n,k}^i| \leq \delta m_j(J_{n,l}^j) \),

(v) \(J_{n,k}^i = \bigcup_{p \in P_{n,k}^i} J_{n+1,p}^i \) and \(m_i(J_{n,k}^i) \leq \delta m_i(J_{n+1,p}^i) \), \(p \in P_{n,k}^i \),

where \(\{P_{n,k}^i : 1 \leq k \leq N_n^i\} \) is an appropriate partition of \(\{1, 2, \ldots, N_{n+1}^i\} \).

Theorem 3. Suppose (0.1), (0.2) and (0.7). Let \(E \) be a subdomain of \(\Omega \) and \(u \) be a nonnegative solution of \([\mathcal{E}_E, \mathcal{G}^2(E; \{v_i\})]\). Then for any compact set \(K \subset E \) there is a positive constant \(C \) independent of \(u \) such that

\[
m \text{-ess max}_K u \leq C m \text{-ess min}_K u.
\]

Moser [4] proved this theorem for the case \(m_1(dt) = dt, 1 \leq i \leq d \). He made good use of an important estimate on functions of bounded mean oscillations due to John and Nirenberg [2]. Under condition (0.7) we can give an analogous estimate on functions of bounded mean oscillations with respect to \(m \). Thus we can utilize ideas in [4]. We will discuss on condition (0.7) in Section 3.
Now let \(n \) be a Radon measure on \(\mathbb{R}^d \) such that
\[
\Lambda^{-1} \, dx \leq n(dx) \leq \Lambda m(dx), \quad x \in \mathbb{R}^d,
\]
for some \(1 \leq \Lambda < \infty \), \(dx \) being the \(d \)-dimensional Lebesgue measure. Let \((\mathcal{F}, \mathcal{B}) \) be a Dirichlet space relative to \(L^2(\Omega; \mu) \) such that \(\mathcal{F} = \mathcal{F}_0^2(\Omega; \{v_{ii}\}) \) and \(\mathcal{B}(u, v) = 0 \) if \(u = \text{const} \) on \(\text{Supp}\ [v] \). Then \(\mathcal{B} \) can be expressed by
\[
\mathcal{B}(u, v) = \sum_{i,j=1}^{d} \int_{\Omega} D_i u(x) D_j v(x) a_{ij}(x) v_{ij}(dx),
\]
where \(a_{ij}, 1 \leq i, j \leq d \) fulfil (0.4) and (0.5) (see [7]). It is known [1] that there is a diffusion process on \(\Omega \) associated with \((\mathcal{F}, \mathcal{B}) \). This diffusion process has the resolvent density [7]. The estimate in Theorem 1 implies the positivity of the resolvent density, Theorem 2 leads us to the continuity and the estimate in Theorem 3 gives us a comparison theorem of the resolvent density with that of a direct product diffusion. These facts and some other properties will be proved in Section 4.

Finally, I would like to thank Professor Yukio Ogura for his valuable suggestions.

1. PROOF OF THEOREM 1

Throughout this section we assume (0.1) and (0.2). Given \(E \subset \Omega \), we call a function \(u \) a subsolution of \([\mathcal{E}_E, \mathcal{F}^2(E; \{v_{ii}\})]\) if \(u \in \mathcal{F}^2(E; \{v_{ii}\}) \) and \(\mathcal{B}(u, \varphi) \leq 0 \) for every nonnegative \(\varphi \in \mathcal{F}^2_0(E; \{v_{ii}\}) \).

Put
\[
\Omega(a, \varrho) = \Omega \cap Q(a, \varrho),
\]
\[
\mu(a, \varrho) = \max_{1 \leq i \leq d} m_i((a_i - \varrho, a_i + \varrho))/2\varrho \quad \text{for } a = (a_1, \ldots, a_d) \text{ and } \varrho > 0.
\]

In order to prove Theorem 1 we need two lemmas. The first one is a small modification of [7], Theorem 2.5.

Lemma 1.1. Let \(Q(a, \varrho) \subset \Omega \) or \(a \in \partial \Omega \). Let \(u \) be a subsolution of \([\mathcal{E}_{\Omega(a, \varrho)}, \mathcal{F}^2(\Omega(a, \varrho); \{v_{ii}\})]\) such that \(u \leq \Phi \) (= const) on \(\partial \Omega \cap Q(a, \varrho) \) if \(a \in \partial \Omega \). Then
\[
v \text{-ess max}_{\Omega(a, r)} u \leq \bar{\Phi} + C_1 (r - \varrho)^{-d/2} \left(\int_{\Omega(a, \varrho)} (u - \bar{\Phi})^2 \, dv \right)^{1/2}, \quad 0 < r < \varrho,
\]
for a positive constant \(C_1 = C_1(A, d, \gamma) \), where \(\bar{\Phi} = 0 \) if \(a \in \Omega \), \(\bar{\Phi} = \Phi \lor 0 \) if \(a \in \partial \Omega \).

Proof. Put \(Q(r) = Q(a, r), \Omega(r) = \Omega(a, r) \) and \(E = \Omega(a, \varrho) \). For all \(t \geq \bar{\Phi} \), \(v = (u - t) \lor 0 \) is nonnegative subsolution of \([\mathcal{E}_E, \mathcal{F}^2(E; \{v_{ii}\})]\) and, in par-
ticular, if \(a \in \partial \Omega \), then \(v \) vanishes on \(\partial \Omega \cap Q(q) \). For each \(0 < q_2 < q_1 \leq q \) we choose a function \(\varphi \in C^\infty_0(Q(q)) \) such that \(\varphi = 1 \) on \(Q(q_2) \), \(\varphi = 0 \) outside \(Q(q_1) \) and \(|\varphi| \leq 1, |D_i \varphi| \leq 2/(q_1 - q_2)\). Since \(\varphi^2 v \) belongs to \(\mathcal{F}^2(E; \{v_{ij}\}) \) and is nonnegative, we have \(C(x, \varphi^2 v) \leq 0 \). Hence

\[
\sum_{i,j} \int_{E} \varphi^2 D_i v D_j \varphi a_{ij} dv_{ij} \leq -2 \sum_{i,j} \int_{E} \varphi v D_i v D_j \varphi a_{ij} dv_{ij} \\
\leq 2 \left(\sum_{i,j} \int_{E} \varphi^2 D_i v D_j \varphi a_{ij} dv_{ij} \right)^{1/2} \left(\sum_{i,j} \int_{E} v^2 D_i \varphi D_j \varphi a_{ij} dv_{ij} \right)^{1/2},
\]

that is,

\[
\sum_{i,j} \int_{E} \varphi^2 D_i v D_j \varphi a_{ij} dv_{ij} \leq 4 \sum_{i,j} \int_{E} v^2 D_i \varphi D_j \varphi a_{ij} dv_{ij}.
\]

By condition (0.5)

\[
\sum_{i} \int_{E} (\varphi D_i v)^2 dv_{ii} \leq 4 \gamma^2 \sum_{i} \int_{E} (v D_i \varphi)^2 dv_{ii}.
\]

Therefore, by using Hölder's inequality and [7], Proposition 1.4, we obtain

\[
\int_{\Omega_{q_2} \cap \{u > t\}} (u-t)^2 dv \\
\leq \int_{E} (\varphi v)^2 dv \\
\leq \left(\int_{E} |\varphi v|^q dv \right)^{2/q} v(E \cap \{\varphi v \neq 0\})^{1-2/q} \\
\leq C_2 v(E \cap \{\varphi v \neq 0\})^{2/d} \sum_{i} \int_{E} (v D_i \varphi + \varphi D_i v)^2 dv_{ii} \\
\leq 2C_2 (1 + 4\gamma^2) v(E \cap \{\varphi v \neq 0\})^{2/d} \sum_{i} \int_{E} (v D_i \varphi)^2 dv_{ii} \\
\leq 8C_2 (1 + 4\gamma^2)(q_1 - q_2)^{-2} v(E \cap \{\varphi v \neq 0\})^{2/d} \int_{\Omega_{q_2} \cap \{u > t\}} (u-t)^2 dv \\
\leq 8C_2 (1 + 4\gamma^2)(q_1 - q_2)^{-2} (t-s)^{-4/d} \left(\int_{\Omega_{q_2} \cap \{u > s\}} (u-s)^2 dv \right)^{1+2/d},
\]

for \(\overline{\Phi} \leq s < t \), where \(2 < q < 2d/(d-2) \) and \(C_2 = C_2(A, d) \). Taking

\[
\int_{\Omega_{q_2} \cap \{u > t\}} (u-t)^2 dv
\]
as \(\varphi(t, r) \) in [5], Lemma 5.1, we get the assertion, q.e.d.

Lemma 1.2. Assume \(Q(a, q_1) \subset \Omega \) or \(a \in \partial \Omega \). Let \(q_1 > q_2 > q_3 > 0 \) and let \(u \) be a nonnegative solution of \([C^\infty_0(\Omega_{q_2}), \mathcal{F}^2(\Omega(a, q_1); \{v_{ii}\})] \) such that \(|\Omega(a, q_2) \cap \{u \geq 1\}| \geq \varepsilon |\Omega(a, q_2)| \) for some \(\varepsilon > 0 \) in case of \(Q(a, q_1) \subset \Omega \), or such that \(u = \text{const} \geq 1 \) on \(\partial \Omega \cap Q(a, q_1) \) and \(|\Omega(a, q_2) - \Omega| \geq \varepsilon |\Omega(a, q_2)| \) for some \(\varepsilon > 0 \) in case of \(a \in \partial \Omega \). Then
for some positive constant $C_3 = C_3(A, d, \gamma, \varepsilon)$.

Remark. When $m_i(dt) = dt$, 1 \leq i \leq d, taking $\varphi = \psi_1 = 2\psi_2 = 4\psi_3$ shows

$$\text{ess min } u \geq \exp (-2^d C_3),$$

which is the result due to Moser [3].

Proof. Put $E = \Omega(a, \varepsilon_1)$. Fix an arbitrary $\eta \in (0, 1)$ and let $f(x) = \{-\log (x + \eta)\} \lor 0$. In spite of $f(0) > 0$, the proof of Proposition 1.3 in [7] works in showing $f(u) \in \mathcal{F}^2(E; \{v_{ii}\})$. Since f is convex, $\delta_E \{f(u), \varphi\} \leq \delta_E \{f(u), f'(u)\varphi\} = 0$ for every nonnegative $\varphi \in C_0^\infty(E)$, that is, $f(u)$ is a subsolution of $[\delta_E, \mathcal{F}^2(E; \{v_{ii}\})]$. Noting $f(u) = 0$ on $\partial \Omega \subset Q(a, \varepsilon_2)$ if $a \in \partial \Omega$, we have, by Lemma 1.1,

$$\text{ess max } f(u) \leq C_1 \langle \psi_2 - \psi_3 \rangle^{-d/2} \langle \int_{\Omega(a, \varepsilon_2)} f^2(u) dv \rangle^{1/2}. \tag{1.1}$$

In the same way as in the proof of Proposition 1.2 in [7], we see that

$$\int_{\Omega(a, \varepsilon_2)} f^2(u) dv \leq C_4 \mu(a, \varepsilon_2)^{-d-1} \left(\int_{\Omega(a, \varepsilon_2)} f^2(u) dx + \varepsilon_2^2 \sum_i \int_{\Omega(a, \varepsilon_2)} (D_if(u))^2 dv_{ii} \right)$$

for some positive $C_4 = C_4(A, d)$.

Set $N = Q(a, \varepsilon_2) \cap \{u \geq 1\}$ or $N = Q(a, \varepsilon_2) - \Omega$ according to $Q(a, \varepsilon_1) \subset \Omega$ or $a \in \partial \Omega$. By virtue of [3], Lemma 2, we obtain

$$\int_{\Omega(a, \varepsilon_2)} f^2(u) dx \leq C_5 \varepsilon_2^2 \sum_i \int_{\Omega(a, \varepsilon_2)} (D_if(u))^2 dv_{ii}$$

with $C_5 = C_5(A, d, \varepsilon)$. Therefore

$$\int_{\Omega(a, \varepsilon_2)} f^2(u) dv \leq C_4 C_5 + 1 \varepsilon_2^2 \mu(a, \varepsilon_2)^{-d-1} \sum_i \int_{\Omega(a, \varepsilon_2)} (D_if(u))^2 dv_{ii}. \tag{1.2}$$

Moreover, we have

$$\sum_i \int_{\Omega(a, \varepsilon_2)} (D_if(u))^2 dv_{ii} \leq 16\gamma^2 \langle \psi_1 - \psi_2 \rangle^{-2} v(\Omega(a, \varepsilon_1)). \tag{1.3}$$

Because $\delta_E \{u, f'(u)\varphi^2\} = 0$, $\varphi \in C_0^\infty(Q(a, \varepsilon_1))$ and $f'' \geq (f')^2$, and hence

$$\sum_i \int_{E} (\varphi D_if(u))^2 dv_{ii} \leq 4\gamma^2 \sum_i \int_{E} (D_i\varphi)^2 dv_{ii}, \quad \varphi \in C_0^\infty(Q(a, \varepsilon_1)). \tag{1.4}$$

In order to get (1.3) we may take a $\varphi \in C_0^\infty(Q(a, \varepsilon_1))$ with $\varphi = 1$ on $Q(a, \varepsilon_2)$, $|D_i\varphi| \leq 2/(\psi_1 - \psi_2)$, $1 \leq i \leq d$. It follows from (1.1)-(1.3) that

$$\text{ess max } \{-\log (u + \eta)\} \quad \Omega(a, \varepsilon_3)$$
\[
\leq C_1 \left\{ C_4(C_5+1)16\lambda^2 \left(\varepsilon_1 - \varepsilon_2 \right)^{-2} \left(\varepsilon_2 - \varepsilon_3 \right)^{-d} \varepsilon_2^2 \right\}^{1/2} \times \\
\times \left\{ \mu(a, \varepsilon_2)^{d-1} \nu(\Omega(a, \varepsilon_1)) \right\}^{1/2} \\
\leq C_1 \left\{ C_4(C_5+1)16\lambda^2 \left(\varepsilon_1 - \varepsilon_2 \right)^{-2} \left(\varepsilon_2 - \varepsilon_3 \right)^{-d} \varepsilon_2^2 \right\}^{1/2} \times \\
\times \left\{ \mu(a, \varepsilon_2)^{d-1} d(2\varepsilon_1)^d \mu(a, \varepsilon_1)^{d-1} \right\}^{1/2}.
\]

Since \(\eta \) is arbitrary, we get the desired estimate, q.e.d.

Proof of Theorem 1. We can take a cube \(Q(a, 3\varepsilon) \subseteq E \) and a positive constant \(C_6 \) such that \(\varepsilon \equiv |Q(a, 2\varepsilon) \cap \{ u \geq C_6 \}|/|Q(a, 2\varepsilon)| > 0 \) in case of \(E \subseteq \Omega \), or such that \(u = C_6 \) on \(E \cap \partial \Omega \) and \(\varepsilon \equiv |Q(a, 2\varepsilon) \setminus Q(a, \varepsilon)|/|Q(a, 2\varepsilon)| > 0 \) otherwise. Namely, \(u/C_6 \) satisfies the conditions in Lemma 1.2. Therefore \(u(x) \geq C_7(A, d, \gamma, \varepsilon, \rho) > 0 \) for \(\nu \text{-a.e. } x \in \Omega(a, \rho) \). Repeating this argument, we obtain the conclusion, q.e.d.

As an immediate consequence of Theorem 1 we get the following

Corollary 1.3. Let \(E \) be a subdomain of \(\Omega \). If \(u \) is a nonnegative continuous solution of \([\delta \mathcal{F}^2(E; \{v_\infty\})]\), then \(u \) is positive or identically zero in \(E \).

2. Continuity of Solutions

First of all we give

Proof of Theorem 2. Fix an \(a \in E \cap \partial \Omega \). If \(a \in \partial \Omega \), by the assumption of the theorem there is an \(\delta, 0 < \delta \leq 1/2 \), such that

\[
\inf_{r > 0} |Q(a, r) - \Omega|/|Q(a, r)| \geq \varepsilon.
\]

Put \(C_8 = C_3(A, d, \gamma, \varepsilon)^{2d+1} \) and fix an \(\alpha \in (0, C_8^{-1/(d-1)}) \) and a \(\beta \in (0, 1) \) such that \(\alpha^{d-1} C_8 \leq (1 - \beta)^{1 + d/2} (\delta) \). Since \(\mu(a, \rho)^{d-1} \leq \alpha^{d-1} \log \log \rho \) for sufficiently small \(\rho \), putting \(\rho_n = \beta^n \) gives us

\[
\exp \left\{ -C_8 (1 - \rho_{n+1}/\rho_n)^{-d/2-1} \mu(a, \rho_{n+1}^{-d-1}) \right\} \\
\geq \exp \left\{ -C_8 (1 - \beta)^{-d/2-1} \alpha^{d-1} \log (n|\log \beta|) \right\} \\
\geq 1/n|\log \beta|
\]

for \(n \geq n_0, n_0 \) being a certain number depending only on \(\alpha \) and \(C_8 \).

Now set

\[
S = v\text{-ess max } u \quad \text{and} \quad I = v\text{-ess min } u.
\]

By Lemma 1.1 we have \(-\infty < I \leq S < +\infty\). If \(I < S \), we put \(u_1 = 2(u-I)/(S-I), \) \(u_2 = 2(S-u)/(S-I), \) which are nonnegative solutions of \([\delta \mathcal{F}^2(\Omega(a, \rho_n); \{v_{\infty}\})]\).

5 — Probability Math. Statistics 5/1
Let us take \(r = (\varrho_n + \varrho_{n+1})/2 \). Obviously \(|\Omega(a, r) \cap \{ u_i \geq 1 \}| \geq |\Omega(a, r)|/2 \geq \varepsilon|\Omega(a, r)|\) for \(i = 1 \) or \(2 \) and if \(a \in \partial \Omega \), then \(u_i = \text{const} \geq 1 \) on \(\partial \Omega \cap \Omega(a, r) \) and \(|\Omega(a, r) - \Omega| \geq \varepsilon|\Omega(a, r)|\) for \(i = 1 \) or \(2 \). In view of Lemma 1.2 we obtain

\[
\varepsilon\text{-ess } \min_{\Omega(a, \varrho_{n+1})} u_i \geq \exp \left[-C_3 (A, d, \gamma, \varepsilon) \left(\varrho_n^d r^2 (\varrho_n - r)^{-2} (r - \varrho_{n+1})^{-d} \mu(a, \varrho_n)^{d-1} \mu(a, r)^{d-1} \right)^{1/2} \right] \]

\[
= \exp \left[-C_3 (A, d, \gamma, \varepsilon) 2^{d/2} (1 + \beta) (1 - \varrho_{n+1}/\varrho_n)^{-d/2-1} \mu(a, \varrho_n)^{d-1/2} \mu(a, r)^{d-1/2} \right] \]

\[
\geq \exp \left\{ -C_8 (1 - \varrho_{n+1}/\varrho_n)^{-d/2-1} \mu(a, \varrho_n)^{d-1} \right\} \]

\[
\geq \frac{1}{n} |\log \beta|,
\]

where \(i = 1 \) or \(2 \).

Therefore \(S \geq u \geq 1 + (S-I)/2n|\log \beta| \) or \(I \leq u \leq S - (S-I)/2n|\log \beta| \)

\(\varepsilon\text{-a.e. on } \Omega(a, \varrho_{n+1}) \). This implies

\[
\omega(\varrho_{n+1}) \equiv \varepsilon\text{-ess } \max_{\Omega(a, \varrho_{n+1})} u - \varepsilon\text{-ess } \min_{\Omega(a, \varrho_{n+1})} u \leq (1 - 1/2n|\log \beta|) \omega(\varrho_n)
\]

\[
\leq \prod_{k=n_0}^{n} (1 - 1/2k|\log \beta|) \omega(\varrho_{n_0}) \leq \exp \left\{ - \sum_{k=n_0}^{n} 1/2k|\log \beta| \right\} \omega(\varrho_{n_0}),
\]

whence

\[
\lim_{n \to \infty} \omega(\varrho_{n+1}) = 0.
\]

Thus we can get a continuous version of \(u \), q.e.d.

Now let \(n \) satisfy (0.8) and put \(\delta_{E, \lambda}(u, v) = \delta_E(u, v) + \lambda(u, v) \) for \(E \subset \Omega \) and \(\lambda \geq 0 \). \(\delta_{E, \lambda}(u, v) \) being the inner product in \(L^2(E; n) \). A function \(u \) is called a solution of \([\delta_{E, \lambda}(f, \mathcal{F}_E(E; \{ v_i \}) \{ \{ \delta_{E, \lambda}(f, \mathcal{F}_E(E; \{ v_i \}) \} \} \} \} \) if \(u \) belongs to \(\mathcal{F}_E(E; \{ v_i \}) \) and satisfies \(\delta_{E, \lambda}(u, \phi) = (f, \phi)_n \) for every \(\phi \in \mathcal{F}_E(E; \{ v_i \}) \).

Proposition 2.1. Assume (0.1) and (0.2). Let \(E \) be a bounded domain of \(\Omega \) and \(u \) be a solution of \(\mathcal{F}_E(E; \{ v_i \}) \), where \(f \in L^p(E; n) \) with \(p > d \) and \(\lambda \geq 0 \). Then

\[
\varepsilon\text{-ess } \max_{E} |u| \leq C_9 m(E)^{1/d-1/p} \left(\int f^p \, dn \right)^{1/p},
\]

with some \(C_9 = C_9(A, d, M, p, \gamma, \Lambda) \).

Noting Sobolev's inequalities ([17], Proposition 1.4), we can use the same methods as in [5], Theorem 4.2. So we omit the proof.

Theorem 2.2. Suppose (0.1), (0.2) and (0.6). Let \(E \) be a domain with \(E \cap \Omega \neq \emptyset \) and \(u \) be a bounded solution of \([\delta_{E, \cap \Omega, \lambda}(f, \mathcal{F}_E^2(E \cap \Omega; \{ v_i \})] \) with \(f \in L^p(E \cap \Omega; n) \), \(p > d \) and \(\lambda \geq 0 \). Moreover, if \(E \cap \partial \Omega \neq \emptyset \), suppose that for every \(a \in E \cap \partial \Omega \) there is a cone included in \(E - \Omega \) with vertex at \(a \) and \(u = \text{const} \) on \(E \cap \partial \Omega \). Then \(u \) is continuous on \(E \cap \partial \Omega \).
Proof. Fix a $p > d$, an $f \in L^p(E \cap \Omega; \eta)$ and a $\lambda > 0$. Let u be a bounded solution of $[\mathcal{E}_{E \cap \Omega, \lambda}, f, \mathcal{F}^2(E \cap \Omega; \{v_{ii}\})]$. Put $g = f - \lambda u$. Since m is a continuous measure, for any $\varepsilon > 0$ and for any $a \in E \cap \Omega$ we have a $\varrho > 0$ for which $\Omega(a, \varrho) \subset E$ and

$$C \varrho m(\Omega(a, \varrho))^{1/d - 1/p} \left(\int_{\Omega(a, \varrho)} |g|^p \, d\eta \right)^{1/p} < \varepsilon/4.$$

It follows from Riesz theorem and [7], (1.11), that there is a unique solution w of $[\mathcal{E}_{E \cap \Omega, a}, g, \mathcal{F}^2(\Omega(a, \varrho); \{v_{ii}\})]$. By Proposition 2.1

$$\text{m-ess max } |w| < \varepsilon/4.$$

Set $v = u - w$. Then v is a solution of $[\mathcal{E}_{E \cap \Omega, \varrho}, \mathcal{F}^2(\Omega(a, \varrho); \{v_{ii}\})]$ such that $v = \text{const}$ on $Q(a, \varrho) \cap \partial \Omega$ if $a \in \partial \Omega$.

By Theorem 2, v is continuous at a. We thus have an $r \in (0, a)$ such that the oscillation of v in $\Omega(a, r)$ is smaller than $\varepsilon/2$ and hence that of u in $\Omega(a, r)$ is smaller than ε, which shows the assertion of the theorem, q.e.d.

3. PROOF OF THEOREM 3

We can obtain Theorem 3 in case of $d \geq 3$ if (0.7.iv) is replaced by

$$(iv') \quad |J_{n,k}'| \geq \delta^{-1} m_j(J^k_{n,l}).$$

However (0.1), (0.2) and (0.7) with (iv') in place of (iv) are satisfied if and only if $m_i(dt) = m_0^i(t) \, dt, A \leq m_0^i(t) \leq M$ a.e., $1 \leq i \leq d$. Putting $b_{ij} = a_{ij} \prod_{k \neq i} m_k^0$ if $i = j$, $b_{ij} = a_{ij} \prod_{k \neq i,j} m_k^0$ if $i \neq j$, we get

$$\mathcal{E}_E(u, v) = \sum_{i,j=1}^d \left[D_i u(x) D_j v(x) b_{ij}(x) \right] dx.$$

The matrix (b_{ij}) is symmetric and positive definite. Moreover, $\mathcal{F}^2_0(E; \{v_{ii}\})$ and $\mathcal{F}^2(E; \{v_{ii}\})$ coincide with $H^1_0(E)$ and $H^1(E)$ (= Sobolev spaces), respectively, and $D_i u$'s are the distributional derivatives. Thus the case where $d \geq 3$ and (0.1), (0.2) and (0.7) with (iv') in place of (iv) are satisfied is reduced to the case treated in [4]. Therefore we restrict ourselves to the case of $d = 2$. At the end of this section we will find some examples satisfying (0.1), (0.2) and (0.7), which contain every continuous measure.

Now Theorem 3 can be easily deduced from the following Theorem 3.1, so that we omit the proof of Theorem 3 itself.

Theorem 3.1. Let $Q(a, q_1) \subset \Omega$ and $q_1 > q_2 > q_3 > q_4 > 0$. If u is a solution of $[\mathcal{E}_{Q(a, q_1)}, \mathcal{F}^2(Q(a, q_1); \{v_{ii}\})]$ and it is positive on $Q(a, q_2)$, then

$$\text{m-ess max } u \leq \{C_{10} (1 - q_4/q_3)^{-1} \mu(a, q_3)\}^{c_1} \text{m-ess min } u.$$
for $C_{10} = C_{10}(A, \gamma)$ and $C_{11} = C_{11}(\gamma) \delta^{5/2} (1 - \zeta_3/\zeta_2)^{-1} \mu(a, \zeta_2)^{1/2}$, where δ is a positive number as in (0.7) for $K = Q(a, \zeta_2)$.

To prove this we have to prepare some lemmas. Following (0.7) we take a positive number $\delta = \delta(Q(a, \zeta_2))$ and sequences $\{A_n\}_{n=0}^\infty$.

$$A_n^i: (a_i - \zeta_3, a_i + \zeta_3) = \bigcup_{1 \leq k \leq N_n^i} J_{n,k}^i, \quad i = 1, 2.$$

Put $\mathcal{H} = \{J_{n,k_1}^1 \otimes J_{n,k_2}^2: 1 \leq k_i \leq N_n^i, i = 1, 2, n \geq 0\}$. We may assume that u is strictly positive on $Q(a, \zeta_2)$ without loss of generality.

Lemma 3.2. Set $v = -\log u$ and $v_H = \int_H v dm/m(H)$. Then

$$\int_H |v - v_H| dm \leq 2\gamma^{5/2} (1 - \zeta_3/\zeta_2)^{-1} \mu(a, \zeta_2)^{1/2} m(H)$$

for every $H \in \mathcal{H}$.

Proof. By Lemma 1.1, u is bounded on $Q(a, \zeta_2)$ and hence v belongs to $\mathcal{F}^2(Q(a, \zeta_2); \{v_H\})$. Let $H = J_{n,k_1}^1 \times J_{n,k_2}^2 \in \mathcal{H}$. Hölder's inequality gives us

$$(\int_H |v - v_H| dm)^2 \leq m(H) \int_H (v - v_H)^2 dm = \frac{1}{2} \int_H \int (v(x) - v(y))^2 m(dx) m(dy)$$

$$\leq m(H) \sum_i |J_{n,k}^i| m_i(J_{n,k}^i) \int_H (D_i v)^2 dv_{ii}$$

$$\leq 4\gamma^2 m(H) \sum_i |J_{n,k}^i| m_i(J_{n,k}^i) \sum J_{Q(a, \zeta_2)} (D_j \phi)^2 dv_{jj}$$

for $\phi \in C_0^\infty(Q(a, \zeta_2))$ with $\phi = 1$ on H, where the last inequality is shown in the same way as for (1.4).

Choose a $\phi \in C_0^\infty(Q(a, \zeta_2))$ such that $\phi = 1$ on the set $Q(a, \zeta_2)$, $|D_i \phi| \leq 2/(\zeta_2 - \zeta_3)$. Since

$$\sum_i |J_{n,k}^i| m_i(J_{n,k}^i) \leq 2\delta m(H)$$

by (0.7.iv), we have

$$(\int_H |v - v_H| dm)^2 \leq 2^5 \gamma^2 \delta m(H)^2 (\zeta_2 - \zeta_3)^{-2} \nu(Q(a, \zeta_2))$$

$$\leq 2^8 \gamma^2 \delta m(H)^2 (1 - \zeta_3/\zeta_2)^{-2} \mu(a, \zeta_2),$$

q.e.d.

The following lemma is a modification of the one in [2]. For completeness we give the proof at the last section.

Lemma 3.3. If there is a constant C_{12} such that

$$\int_H |v - v_H| dm \leq C_{12} m(H), \quad H \in \mathcal{H},$$
then
\[\int_{\mathcal{H}} e^{C_{13}|v-v_H|} \, dm \leq \frac{1+2t}{1-t} m(H), \quad H \in \mathcal{H}, \]
where \(C_{13} = 1/e^{e^2} C_{12} \) and \(0 < t < 1 \).

Since
\[\int_{Q} e^{C_{13}t'} \, dm = \int_{Q} e^{C_{13}t''} \, dm \leq e^{C_{13}t''} \int_{Q} e^{C_{13}|v-v_Q|} \, dm, \]
from Lemmas 3.2 and 3.3 we obtain immediately

Lemma 3.4.
\[\int_{Q} e^{C_{14}t} \, dm \int_{Q} e^{-C_{14}t} \, dm \leq \left(\frac{1+2t}{1-t} m(Q) \right)^2, \]
where \(Q = Q(a, e_3), 0 < t < 1, \) and \(C_{14} = C_{14}(\gamma) \delta^{-5/2}(1 - e_3/e_2) \mu(a, e_2)^{-1/2}. \)

Lemma 3.5. Set \(Q = Q(a, e_2) \) and \(w = u^k \) with \(k \in \mathbb{R}^1. \) If \(k \neq 1/2, \) then
\[\sum_{i=1,2} \int_{Q} (\varphi_i D_i w)^2 \, dv_i \leq \gamma^2 (2k/(2k-1))^2 \sum_{i=1,2} \int_{Q} (w D_i \varphi)^2 \, dv_i \]
for every \(\varphi \in C_0^\infty(Q). \)

Noting that \(u^{2k-1} \) belongs to \(\mathcal{F}^2(Q; \{v_i\}) \) and \(\delta_Q(u, u^{2k-1} \varphi^2) = 0, \varphi \in C_0^\infty(Q), \) we can get above lemma. So we omit the proof.

Proof of Theorem 3.1. We may assume \(C_{14} \leq 1. \) Fix a positive integer \(N \) such that \(6C_{14} \leq 3N \leq 18C_{14}^1. \) Set \(t = 2(3^N C_{14})^{-1} \) and \(\alpha = \pm C_{14} t = \pm 2/3^N. \) Then \(9^{-1} \leq t \leq 3^{-1} \) and \(3^n \alpha \neq 1, n = 0, 1, 2, \ldots \)

Put \(w_n = u^{3^{n/2}}, r_n = e_4 + (e_3 - e_4)/(n+1), \) \(Q_n = Q(a, r_n), n = 0, 1, 2, \ldots \)

For each \(n \) we take a function \(\varphi_n \in C_0^\infty(Q_n) \) with \(\varphi_n = 1 - \) on \(Q_{n+1}, \)
\[|D \varphi_n| \leq 2(r_n - r_{n+1})^{-1}. \]
Appealing to Proposition 1.4 of [7] and Lemma 3.5 we get
\[\left(\int_{Q_{n+1}} w_n^6 \, dm \right)^{1/3} \leq \left(\int_{Q_n} (\varphi_n w_n)^6 \, dm \right)^{1/3} \leq C_{15} m(Q_n)^{1/3} \sum_{i} \int_{Q_n} (D_i (\varphi_n w_n))^2 \, dv_i \]
\[\leq 4C_{15} m(Q_0)^{1/3} \left\{ \gamma^2 (3^n \alpha/(3^n \alpha - 1))^2 \right\} (r_n - r_{n+1})^{-2} \int_{Q_n} w_n^2 \, dv \]
for some constant \(C_{15} = C_{15}(A). \)

For all \(n, (3^n \alpha/(3^n \alpha - 1))^2 \leq 1 \) if \(\alpha = -C_{14} t \) or \(\leq 4 \) if \(\alpha = C_{14} t, \) and \(r_n - r_{n+1} = (e_3 - e_4)/(n+1)(n+2) \geq (e_3 - e_4)/(n+2)^2. \) Therefore we have
\[\left(\int_{Q_{n+1}} w_n^6 \, dm \right)^{1/3} \leq 8A^{-1} C_{15} (1+4\gamma^2)(e_3 - e_4)^{-2} m(Q_0)^{1/3} (n+2)^4 \int_{Q_n} w_n^2 \, dm. \]
Putting \(U_n = \int u^{3^n} dm \) leads us to
\[
U_n \leq (C_{16}(n+1)^4 U_{n-1})^3 \leq C_{16}^{3^{n+1}} \cdot 3^n \cdot (n+1)^3 \cdot n^3 \cdot 2^{3n} U_0^{3n},
\]
where \(C_{16} = 8A^{-1} C_{15} (1+4\gamma^2)(\eta_3 - \eta_4)^{-2} m(Q_0)^{1/3} \). Hence
\[
m\text{-ess max } u^x = \lim_{n \to \infty} U_n^{3^n} \leq C_{17} (\eta_3 - \eta_4)^{-3} m(Q_0)^{1/2} \int_{Q(a,\eta_3)} u^x \, dm
\]
for an appropriate \(C_{17} = C_{17}(A, \gamma) \). Combining Lemma 3.4 with this and noting \(1/9 < t < 1/3 \), we obtain
\[
m\text{-ess max } u \leq (C_{17}(1+2t)(1-t)^{-1}(\eta_3 - \eta_4)^{-3} m(Q_0)^{3/2})^{2/C_{14}} m\text{-ess min } u
\]
\[
\leq (3C_{17}(\eta_3 - \eta_4)^{-3} m(Q_0)^{3/2})^{18/C_{14}} m\text{-ess min } u
\]
\[
\leq (2C_{17}(1-\eta_4/\eta_3)^{-3} \mu(\eta_3)^{3})^{18/C_{14}} m\text{-ess min } u,
\]
which proves the theorem, q.e.d.

Corollary 3.6. Let \(E \) be a subdomain of \(\Omega \) and \(u \) a continuous solution of \([\mathcal{E}_E, \mathcal{F}^2(E; \{v_i\})]\). If \(u \) attains the maximum (minimum) inside \(E \), then \(u \) is constant.

Proof. Assume
\[u(a) = \max_{E} u = \mu. \]

Choose a compact set \(K(\subset E) \) containing \(a \). For any \(\varepsilon > 0 \) let \(v = \mu - u + \varepsilon \); then \(v \) is a positive solution of \([\mathcal{E}_E, \mathcal{F}^2(E; \{v_i\})]\) and
\[\min_K v = \varepsilon. \]

Therefore
\[\max_K (\mu - u + \varepsilon) \leq C_{18} \varepsilon, \quad \text{that is,} \quad \mu \leq \varepsilon (C_{18} - 1) + \min_K u. \]

Letting \(\varepsilon \downarrow 0 \), we get
\[\min_K u = \mu. \]

Since \(K \) is arbitrary, we have \(u = \mu \) inside \(E \), q.e.d.

Now we exhibit examples satisfying our assumptions.

Proposition 3.7. Let \(m_i, i = 1, 2 \), be continuous measures and assume (0.1) and (0.2). Then (0.7) follows automatically.

Remark. Measures \(m_i \)'s are not necessarily absolutely continuous with respect to \(dt \).
Proof. Let $I^i = (a^i, b^i)$, $i = 1, 2$. By the continuity of m_i, for each i, n there are the points $a^i = c^i_{n,0} < c^i_{n,1} < \ldots < c^i_{n,2^n} = b^i$

such that $m_i((c^i_{n,k-1}, c^i_{n,k})) = 2^{-n} m_i(I^i)$, $1 \leq k \leq 2^n$. Put $I^i_{n,k} = [c^i_{n,k-1}, c^i_{n,k}) - \{a^i\}$, $1 \leq k \leq 2^n$; (0.7) is satisfied by the following:

$$\Delta^i_n: I^i = \bigcup_{1 \leq k \leq N^i_n} I^i_{n,k}, \quad N^i_n = 2^n, \quad n \geq 0, \quad i = 1, 2,$$

$$\delta = 2 \vee [A^{-1} \max_{1 \leq i,j \leq 2} m_i(I^i)/m_j(I^j)],$$

q.e.d.

PROPOSITION 3.8. Let

$$m_i(dt) = m^i_2(dt) + \sum_{l=1}^{\infty} \alpha^i_l \delta_{\lfloor \lfloor l \rfloor \rfloor l}(dt), \quad \alpha^i_l \geq 0, \quad \sum_{l=1}^{\infty} \alpha^i_l < \infty, \quad i = 1, 2,$$

where each m^i_2 is a continuous measure.

Assume (0.1) and (0.2). Then (0.7) follows if for given intervals I^i, $i = 1, 2$, there is a positive number R such that

$$(3.1) \quad \left(\sum_{l=1}^{\infty} \alpha^i_l \right) \vee \left(2^s \sum_{l \in I^i_{s,k}} \alpha^i_l \right) \leq R, \quad i = 1, 2, \quad 1 \leq k \leq 2^s, \quad s = 1, 2, \ldots,$$

where $I^i_{s,k} = \{l: d^i_l \in I^i_{s,k}, \alpha^i_l < 2^{-s+1} m^i_2(I^i)\}$ and $\{I^i_{s,k}: 1 \leq k \leq 2^s\}$ is a partition of I^i with $m^i_2(I^i_{s,k}) = 2^{-s} m^i_2(I^i)$, $1 \leq k \leq 2^s$, as mentioned above.

Remark. (3.1) is satisfied if one of the following holds for $i = 1$ or 2:

$$(3.2) \quad \# \{l: \alpha^i_l > 0\} < \infty;$$

$$(3.3) \quad \sup_{s \geq 1} \# \{l: \alpha^s_{s-1} \leq \alpha^i_l < \alpha^s_l\} < \infty \quad \text{for an } \alpha \in (0, 1);$$

$$(3.4) \quad m^i_2(dt) = dt, \quad \alpha^i_l = l^{-\beta}, \quad d^i_l = l^{-\beta+1} \in I^i = (0, 1), \quad l \geq 2, \quad \text{with } \beta > 1.$$

Indeed, (3.1) is trivial in case of (3.2). If (3.3) holds,

$$\lambda = \sup_{s \geq 1} \# \{l: 2^{-s} m^i_2(I^i) \leq \alpha^i_l < 2^{-s+1} m^i_2(I^i)\} < \infty,$$

whence

$$\sum_{l \in I^i_{s,k}} \alpha^i_l \leq \lambda m^i_2(I^i) \sum_{l=s}^{\infty} 2^{-l+1} = 4 \lambda m^i_2(I^i) 2^{-s},$$

which implies (3.1).
If (3.4) is satisfied, then
\[I_{s,k}^i = [(k-1)2^{-s}, k2^{-s}) - \{0\}, \quad 1 \leq k \leq 2^s, \quad s \geq 1, \]
\[\sum_{l \in I_{s,k}^i} A_l^i \leq \sum_{l > 2^{s/(\beta-1)}} l^{-\beta} \leq 2(\beta-1)^{-1} (2^{1/(\beta-1)} - 1)^{-\beta+1} 2^{-s}, \]
\[\sum_{l \in I_{s,k}^i} A_l^i \leq (\beta-1)^{-1} \left\{ (k^{-1}(\beta-1) - 2^{-s/(\beta-1)})^{-\beta+1} - \left((k-1)^{-1/(\beta-1)} + 2^{-s/(\beta-1)} \right)^{\beta+1} \right\} 2^{-s} \]
\[\leq C_{19} 2^{-s}, \quad 2 \leq k \leq \lfloor 2^{(s+\beta-1)/\beta} \rfloor, \quad s \geq 2, \]
\[\sum_{l \in I_{s,k}^i} A_l^i \leq (\beta-1)^{-1} \left\{ 2^s(2^{(s-1)/\beta} - 1)^{-\beta+1} - \left((k-1)^{-1/(\beta-1)} + 2^{-s/(\beta-1)} \right)^{\beta+1} \right\} 2^{-s} \]
\[\leq C_{20} 2^{-s}, \quad \lfloor 2^{(s+\beta-1)/\beta} \rfloor + 1 \leq k \leq 2^s, \quad s \geq 2, \]
where \(C_{19}, C_{20} \) depend only on \(\beta \) and \([a] \) denotes the smallest integer not exceeding \(a \). Therefore (3.1) follows.

Proof of Proposition 3.8. Let \(L_0 = \{ l : A_l^i \geq m_\ell (I^i) \}, \quad L_s = \{ l : 2^{-s} m_\ell (I^i) \leq A_l^i < 2^{-s+1} m_\ell (I^i) \}, \quad s = 1, 2, \ldots, \)
\[L_s^i = \{ l_{s,1}, \ldots, l_{s,\nu_s^i} \}, \quad \nu_s^i = \# L_s^i, \]
\[n_{s-1} = 0, \quad n_s = \sum_{j=0}^{\nu_s^i} \nu_j^i + s+1, \]
\[d^i (s, j) = d_{n_s}^i, \quad 1 \leq j \leq \nu_s^i, \quad s \geq 0. \]

We define sequences of partitions \(\{ A_n^i \}_{n=0}^\infty, \quad i = 1, 2, \) as follows. Set
\[n_{s+1} = n_{s-1}, \quad 1 \leq k \leq N_n^i, \quad n_s = \left(\sum_{j=0}^{s \nu_s^i} \nu_j^i \right) + 2^s. \]

\[d^i (t, k - \sum_{j=0}^{t-1} \nu_j^i) \]
\[d^i (s, k - \sum_{j=0}^{s-1} \nu_j^i) \]
\[d^i (s, k - \sum_{j=0}^{s-1} \nu_j^i) \]
\[d^i (s, k - \sum_{j=0}^{s-1} \nu_j^i) \]
\[n_{s+1} = n_{s-1}, \quad 1 \leq k \leq N_n^i - 2^s, \]
\[n_s = \left(\sum_{j=0}^{s \nu_s^i} \nu_j^i \right) + 2^s. \]

Case of \(n_{s-1} + 1 \leq n \leq n_s - 1, \quad s = 0, 1, 2, \ldots : \)
\[N_n^i = n \wedge \left(\sum_{j=0}^{s \nu_s^i} \nu_j^i \right) + 2^s. \]
where $I_{s,k}$'s are intervals mentioned in the proof of Proposition 3.8, that is,
$\{I_{s,k} : 1 \leq k \leq 2^s\}$ is a partition of I^i and $m^i(I_{s,k}) = 2^{-s}m^i(I^i)$.

(3.6) Case of $n = n_s$, $s = 0, 1, 2, \ldots$:

$$N_n^i = N_{n-1}^i + 2^s = \sum_{j=0}^{s} x_{j}^i + 2^{s+1},$$

$$J_{n,k}^i = \begin{cases}
J_{n-1,k}^i = \{d(t, k - \sum_{j=0}^{t-1} x_{j}^i)\} & \text{if } \sum_{j=0}^{t-1} x_{j}^i < k \leq \sum_{j=0}^{t} x_{j}^i, \ 0 \leq t \leq s, \\
I_{s+1,k-N_n^i} - \bigcup_{1 \leq k \leq N_{n-1}^i} J_{n-1,k}^i & \text{if } N_{n-1}^i - 2^s < k \leq N_n^i.
\end{cases}$$

Obviously $N_n^i \to \infty$ ($n \to \infty$) and (0.7.i)-(0.7.iii) are fulfilled. We prove that there is a positive number δ satisfying (0.7.iv) and (0.7.v).

By (0.1) and the definitions of $I_{n,k}$ and L_{n}^i we have

$$|J_{n,k}^i| \leq A^{-1} m^i(J_{n,k}^i) \leq A^{-1} 2^{-s} m^i(I^i) \leq A^{-1} m^i(J_{n,k}^i), \quad 1 \leq k \leq N_n^i,$$

in case (3.5). By the same reason

$$|J_{n,k}^i| \leq A^{-1} 2^{-s-1} m^i(I) \leq A^{-1} m^i(J_{n,k}^i), \quad 1 \leq k \leq N_n^i,$$

in case (3.6). Therefore

$$0 \leq |J_{n,k}^i|/m^i(J_{n,k}^i) \leq A^{-1} \max_{1 \leq i,j \leq 2} m^i(I)/m^j(I)$$

for $i, j = 1, 2, \quad 1 \leq k \leq N_n^i, \ n \geq 0$.

This means that (0.7.iv) is satisfied if

$$\delta \geq A^{-1} \max_{i,j} m^i(I)/m^j(I).$$

In order to show (0.7.v) let

$$J_{n,k}^i = \bigcup_{p \in P_{n,k}^i} J_{n+1,p}^i$$

as in (0.7). Clearly $P_{n,k}^i$ is a single-point set or a two-points set. The latter case occurs if and only if either of the following is satisfied:

(3.7) \hspace{1cm} n_{s-1} \leq n \leq n_s - 2, \quad J_{n,k}^i \supseteq J_{n,k}^i \cap \{d_i^l : l \in L_{s}^i\} \neq \emptyset,

(3.8) \hspace{1cm} n = n_s - 1, \quad J_{n,k}^i \text{ is not a single-point.}

In case of (3.7), putting $P_{n,k}^i = \{p, q\}$, $p < q$, we actually see that

$$J_{n+1,p}^i = \{d_i^l\}, \quad J_{n+1,q}^i = I_{n,k}^i - \bigcup_{1 \leq k \leq N_n^i + 2^s} J_{n+1,k}^i.$$
for some \(l \in L^k_1, 1 \leq k \leq 2^r \), and hence, in case of \(s = 0 \), we have

\[
m_t^i(I^i) \leq m_l(J^n_{k+1, p}) \leq \max_{l \in L^k_0} a_l^i \leq R,
\]

\[
m_t^i(I^i) \leq m_l(J^n_{k+1, q}) \leq m_t^i(I^i) + \sum_{l=1}^i a_t^i \leq m_t^i(I^i) + R;
\]

for \(s \geq 1 \) we have

\[
2^{-s}m_t^i(I^i) \leq m_t(J^n_{k+1, p}) < 2^{-s+1}m_t^i(I^i),
\]

\[
2^{-s}m_t^i(I^i) = m_t(J^n_{k+1, q}) \leq m_t(J^n_{k+1, q}) \leq m_t^i(J^n_{k+1, q}) + \sum_{l \in L^k_s} a_t^i \leq 2^{-s}m_t^i(I^i) + R \cdot 2^{-s}.
\]

Therefore

\[
m_t(J^n_{i,k})/(m_t(J^n_{k+1, p}) \wedge m_t(J^n_{k+1, q})) \leq \{ 2 + R/m_t^i(I^i) \}.
\]

It is obvious that \(m_t(J^n_{i,k})/m_t(J^n_{k+1, p}) = 2, \ p \in P^i_{n,k} \) in case of (3.8). We thus take

\[
\delta = \max \{ A^{-1} \max_{1 \leq i, j \leq 2} m_t^i(I^i)/m_j^i(I^i), 3, 2 + R/\{ m_t^i(I^i) \wedge m_t^i(I^2) \} \},
\]

q.e.d.

4. APPLICATIONS TO DIFFUSION PROCESSES

Let \(\Omega \) be a bounded rectangle whose faces are parallel to coordinate axes. We consider the Dirichlet space relative to \(L^2(\Omega; n) \) such that \(\mathscr{F} = \mathscr{F}_0^2(\Omega; \{ v_{ii} \}) \) and \(\mathcal{E}(u, v) = 0 \) if \(u = \text{const} \) on \(\text{Supp} \ [v] \). Note that \(\mathcal{E} \) is given by (0.9). Further we assume (5.4) in [7]. Namely,

\[
(\mathcal{F}, \mathcal{E}) \text{ can be extended to a Dirichlet space } (\mathcal{F}, \mathcal{E}) \text{ relative to } L^2(\mathbb{R}^d; n) \text{ which is given by (0.9) with } \mathbb{R}^d, \bar{a}_{ij} \text{ in place of } \Omega, a_{ij}, \text{ respectively, where } \bar{a}_{ij}, 1 \leq i, j \leq d, \text{ are measurable, satisfy (0.4) and (0.5) for } \Omega = \mathbb{R}^d \text{ and for another positive constant } \bar{\gamma}, \text{ and } \bar{a}_{ij} = a_{ij} \text{ on } \Omega. \text{ Moreover, for any bounded domain } E, f \in C^0_0(E) \text{ and } \lambda \geq 0, \text{ every solution of } [\delta x, f, E] \text{ belongs to } C(E). \text{ (See [7] for significations of above symbols.)}
\]

Let \(\{ G_\lambda \colon \lambda \geq 0 \} \) be the resolvent associated with \((\mathcal{F}, \mathcal{E}) \): \(\mathcal{E}_\lambda(G_\lambda f, \varphi) = (f, \varphi), f \in L^2(\omega; n), \varphi \in \mathcal{F} \). Under assumptions (0.1), (0.2) and (4.1) we have a unique diffusion process \(X = [x_t, \zeta, P_x], x \in \Omega \), such that

\[
G_\lambda f(x) = E_x \left[\int_0^\infty e^{-\lambda t} f(x_t) \, dt \right], \quad \lambda \geq 0, \quad f \in C_\infty(\Omega)
\]

(cf. [7], Theorem 5.1). This diffusion \(X \) has the resolvent density \(g_\lambda(x, y) \) such that for each \(\lambda \geq 0 \)
(4.2) \[G_{\lambda}f(x) = \int_{\Omega} g_\lambda(x, y) f(y) n(dy), \quad x \in \Omega, \quad f \in \mathcal{B}_b, \]

(4.3) \[g_\lambda(x, \cdot) = g_\lambda(\cdot, x) \in C(\Omega - \{x\}), \quad x \in \Omega \]

(cf. [7], Theorems 5.6 and 5.8). Moreover, in view of [7], (5.22), and Corollary 1.3, we find

(4.4) \[g_\lambda(x, y) > 0, \quad x, y \in \Omega, \quad x \neq y. \]

From now on we write \(g(x, y) \) instead of \(g_\lambda(x, y) \).

For an open set \(E \subset \Omega \) let

\[\mathcal{L}_E = \{ u \in \mathcal{F}: u \geq 1 \text{ n.a.e. on } E \}, \]

\[\text{Cap}(E) = \begin{cases} \inf_{u \in \mathcal{L}_E} \mathcal{E}(u, u) & \text{if } \mathcal{L}_E \neq \emptyset, \\ \infty & \text{otherwise.} \end{cases} \]

For any set \(E \subset \Omega \) let

\[\text{Cap}(E) = \inf \{ \text{Cap}(G): G \text{ is open, } G \supset E \}. \]

\(\sigma_E \) stands for the hitting time for \(E \) of \(X: \sigma_E = \inf \{ t > 0: x_t \in E \} \).

For \(1 \leq i \leq d, a \in \mathbb{R}^1 \), put

\[U^i_a(t) = \int_0^t m_i((a - s, a + s)) ds \]

and denote by \(\Phi^i_a \) the inverse function of \(t \mapsto U^i_a(t) \).

Theorem 4.1. Assume (0.1), (0.2) and (4.1). Then for a given point \(a = (a_1, \ldots, a_d) \in \Omega \), the following (i)-(iv) are equivalent:

(i) \(\text{Cap} (\{a\}) > 0 \),
(ii) \(\bar{g}(a, a) = \lim_{\rho \to 0} \max_{|x-a|=\rho} g(x, a) < \infty \),
(iii) \(P_\lambda(\sigma_{\{a\}} < \zeta) > 0, \quad x \in \Omega, \)
(iv) \(\int_0^r \left\{ \prod_{i=1}^d m_i((a_i - \Phi^i_{a_i}(t), a_i + \Phi^i_{a_i}(t))) \right\}^{-1} dt \) converges for some \(r > 0 \).

Further, \(\bar{g}(a, a) = 1/\text{Cap}(\{a\}) \) whenever one of conditions (i)-(iv) is satisfied.

Proof. By virtue of (4.4) and [7], Theorems 5.5 and 5.10, we obtain the equivalences: \((i) \iff (iii) \iff (iv) \).

Let \(B(a, \rho) \) be a closed ball with center \(a \) and radius \(\rho \), where \(0 < \rho < \text{dist}(a, \partial \Omega) \). It follows from [7], Theorem 5.10, that

(4.5) \[\min_{|x-a|=\rho} g(a, x) \leq 1/\text{Cap}(B(a, \rho)) \leq \max_{|x-a|=\rho} g(a, x), \]
which yields $1/Cap \{a\} \leq \bar{g}(a, a)$ and the implication (ii) \Rightarrow (i). Conversely, when (i) is satisfied, by using [7], (5.27), we see that

$$g(x, a) \ Cap \{a\} = P_x(\sigma_{\{a\}} < \zeta) \leq 1, \quad x \in \Omega,$$

and hence we get (ii) as well as $\bar{g}(a, a) = 1/Cap \{a\}$, q.e.d.

We proceed our arguments under condition (0.7). Given two data $\{a^{(1)}\}$, $\{a^{(2)}\}$ satisfying (0.4) and (0.5), let $X^{(1)}$, $X^{(2)}$ be the corresponding diffusions as above. For each i we mark the characteristics of $X^{(i)}$ with (i): $g^{(i)}(x, y)$, $Cap^{(i)}(E)$, etc.

Theorem 4.2. Assume (0.1), (0.2), (0.7) and (4.1). For any $a \in \Omega$ and any $0 < q < \text{dist} (a, \partial \Omega)/2$, there is a positive constant C_{21} such that

$$C_{21}^{-1} g^{(2)}(a, b) \leq g^{(1)}(a, b) \leq C_{21} g^{(2)}(a, b), \quad |a - b| = q.$$

Remark. (i) In the case of $d \geq 3$, mentioned at the beginning of Section 3, the same inequality is given by [5], Theorem 8.5.

(ii) C_{21} depends on A, γ and the behavior of m near $Q(a, q)$.

(iii) Let $a_{ij} = \delta_{ij}/2$. Then $X^{(2)}$ is no other than a direct product diffusion (cf. [7]). Therefore $g^{(1)}(x, y)$ can be compared with that of the direct product diffusion.

Proof. By Theorem 3 we have

$$\max_{|x - a| = q} g^{(i)}(x, a) \leq C_{22} \ \min_{|x - a| = q} g^{(i)}(x, a), \quad i = 1, 2.$$

On the other hand, noting (0.5) and (0.9), we find

$$\gamma^{-2} \ Cap^{(2)}(B(a, q)) \leq Cap^{(1)}(B(a, q)) \leq \gamma^2 \ Cap^{(2)}(B(a, q)).$$

Combining these with (4.5) shows the conclusion, q.e.d.

Finally we observe the following examples.

Example 4.3. Let m_1 be a nonnegative measure on \mathbb{R}^1 with (0.1) and (0.2), and $m_i(dt) = dt$, $2 \leq i \leq d$. Let $n(dx) = dx$ and consider a Dirichlet space $(\mathcal{F}, \mathcal{E})$ as above. We assume on (0.9) expressing \mathcal{E} that each a_{ij} belongs to C^{d_0}-class, where $d_0 = [(d - 1)/2] + 1$. (Of course (0.4) and (0.5) are fulfilled.) Then (4.1) is satisfied as it is claimed in [6].

Thus we have a unique diffusion process on Ω associated with $(\mathcal{F}, \mathcal{E})$, whose resolvent is continuous and whose resolvent density has properties (4.2)-(4.4). Moreover, $Cap \{\{a\}\} > 0$ if and only if

$$\int_0^r U_{a_1}^1(t)^{-(d - 1)/2} \ dt < \infty.$$
for some $r > 0$ or, equivalently, $d = 2$ and
\[
\int_0^1 U_a^1(t)^{-1/2} dt < \infty \quad \text{for some } r > 0.
\]

Further, if m_1 satisfies the condition of Proposition 3.8, then (0.7) follows. In this case let $X^{(1)}, X^{(2)}$ be the diffusions corresponding to $\{a_i^{(1)}\}, \{a_i^{(2)}\}$ of C^1-class with (0.4) and (0.5). Then we have
\[
\max_{1 \leq i, j \leq 2} \frac{g^{(i)}(a, x)}{g^{(j)}(a, x)} \leq \left(C_{23} \mu(a, \varrho) \right)^{C_{24} \mu(a, \varrho)^{3/2} \mu(a, \varrho)^{1/2}},
\]
where C_{23}, C_{24} are positive constants depending only on A and γ.

Example 4.4. Suppose (0.1), (0.2) and (0.6). In view of Theorem 2.2, we then get that $G_2 f$ belongs to $C_0(\Omega)$ for every bounded function f and $\lambda \geq 0$, where $C_0(\Omega)$ denotes the set of all continuous functions vanishing on $\partial \Omega$. Therefore we obtain the diffusion process uniquely associated with $(\mathcal{F}, \mathcal{F})$, whose resolvent density $g_a(x, y)$ possesses (4.2)-(4.4) and, moreover,
\[
\lim_{y \to a} g_a(x, y) = 0 \quad \text{for } x \in \Omega, a \in \partial \Omega.
\]

Since the integral in (iv) of Theorem 4.1 always diverges in this case, $\Cap (\{a\}) = 0$, $a \in \Omega$. Each m_i is a continuous measure and hence (0.7) is satisfied in case of $d = 2$. Writing
\[
\delta(Q(a, \varrho)) = 2 \vee A^{-1} \max_{1 \leq i, j \leq 2} m_i((a_i - \varrho, a_i + \varrho))/m_j((a_j - \varrho, a_j + \varrho)) \leq C_{25} \log |\log \varrho|
\]
for some $C_{25} = C_{25}(A)$, we find that for the diffusions $X^{(k)}$, $k = 1, 2$, corresponding to $\{a_i^{(k)}\}$ with (0.4) and (0.5),
\[
\max_{1 \leq i, j \leq 2} g^{(i)}(x, y)/g^{(j)}(x, y) \leq (C_{26} \log |\log \varrho|)^{C_{27}(|\log \log \varrho|)^3},
\]
where C_{26}, C_{27} depend only on A, γ.

5. PROOF OF LEMMA 3.3

It suffices to show the following

PROPOSITION. Under the same assumption as in Lemma 3.3
\[
m\{\{x \in H: |v(x) - v_H| > \sigma\} \leq 3e^{-C_{13}\sigma} m(H), \quad \sigma > 0, \quad H \in \mathcal{N}.
\]

In fact, putting $f(s) = \exp (C_{13} ts)$ and $\mu(s) = m\{\{x \in H: |v(x) - v_H| > s\}$, we
find

\[\int_{H} e^{C_{13}|v_{vH}|} \, dm = \int_{H} f(|v_{vH}|) \, dm = C_{13} t \int_{0}^{\infty} \mu(s) e^{C_{13}t \, ds} + \mu(0) \]

\[\leq \left\{ 3C_{13} t \int_{0}^{\infty} e^{-C_{13}(1-t)s} \, ds + 1 \right\} m(H) = \frac{1+2t}{1-t} m(H), \]

which proves Lemma 3.3.

Now we give

Proof of Proposition. We divide it into three steps.

Step 1. Let \(w \) be a function satisfying

\[\int_{H} |w| \, dm \leq \delta s m(H) \]

for some \(s > 0 \) and some \(H \in \mathcal{H} \). Then we have a sequence \(\{H_k\}_{k=1}^{\infty} \) such that

(i) for each \(k, H_k \subseteq H \) and \(H_k \in \mathcal{H} \) whenever \(H_k \neq \emptyset \),

(ii) \(H_k \cap H_l = \emptyset \) if \(k \neq l \),

(iii) \(|w(x)| \leq s \) \(m \)-a.e. \(x \in H - \bigcup_{k} H_k \),

(iv) \(\int_{H_k} |w| \, dm \leq \delta^2 s m(H_k), \quad k \geq 1 \),

(v) \(\sum_{k} m(H_k) \leq \frac{1}{s} \int_{H} |w| \, dm. \)

Indeed, we may set \(H = J_{n_0,k_0}^{1} \times J_{n_0,k_0}^{2} \) with some \(n_0 \geq 0, 1 \leq k_{0i} \leq N_{n_0}^{i}, \quad i = 1, 2 \). Let

\[\mathcal{H}_1 = \{J_{n_0+1,k_1}^{1} \times J_{n_0+1,k_2}^{2} : 1 \leq k_i \leq N_{n_0+1}^{i}, i = 1, 2\}, \]

\[\mathcal{H}_0 = \{H' \in \mathcal{H}_1 : H' \nsubseteq H, sm(H') \leq \int_{H'} |w| \, dm\}. \]

Since

\[\mathcal{H}_1 = \{J_{n_0+1,p_1}^{1} \times J_{n_0+1,p_2}^{2} : p_i \in P_{n_0,k_0i}, i = 1, 2\}, \]

we have by means of \((0.7v)\)

\[sm(H') \leq \int_{H'} |w| \, dm \leq \int_{H} |w| \, dm \leq sm(H) \leq \delta^2 sm(H'), \quad H' \in \mathcal{H}_1. \]
Next let
\[\mathcal{H}_2 = \bigcup_{H' \in \mathcal{J}_1 - \mathcal{J}_1^0} \{J^1_{i+2,k_1} \times J^2_{i+2,k_2} \subset H' : 1 \leq k_i \leq N_{i+2}, i = 1, 2\}, \]
\[\mathcal{H}_2'^0 = \bigcup_{H' \in \mathcal{J}_1 - \mathcal{J}_1^0} \{H'' \in \mathcal{H}_2 : H'' \subset H', \text{ sm}(H'') \leq \int_{H''} |w| \, dm\}. \]
Then
\[
(5.2)
\text{sm}(H'') \leq \int_{H''} |w| \, dm \leq \delta^2 \text{sm}(H''), \quad H'' \in \mathcal{H}_2.
\]
Repeating this argument, we obtain a denumerable set \(\mathcal{H}_2^0 \cup \mathcal{H}_2'^0 \cup \ldots \) whose elements are denoted by \(H_1, H_2, \ldots \) Then properties (i)-(ii) are trivial. In the same way as (5.1) and (5.2), we see
\[
\text{sm}(H_k) \leq \int_{H_k} |w| \, dm \leq \delta^2 \text{sm}(H_k), \quad k \geq 1.
\]
Hence (iv) follows and
\[
\sum_k m(H_k) \leq \frac{1}{\delta} \sum_k \int_{H_k} |w| \, dm \leq \frac{1}{\delta} \int_{H} |w| \, dm,
\]
which is (v). Further, by virtue of (0.7.iii) for any \(x \in H - \bigcup_k H_k \) we have a sequence \(\{H''_n\}_{n \geq 1} \) such that
\[
\bigcap_{n \geq 1} H''_n = \{x\}, \quad H''_n = J^1_{n_0 + n_1} \times J^2_{n_0 + n_2} \subset H
\]
with some \(1 \leq k_i \leq N_{n_0 + n}, i = 1, 2 \), and
\[
\int_{H''_n} |w| \, dm < \text{sm}(H''_n).
\]
Therefore (iii) is valid.

Step 2. Let \(F(\sigma) \) be the supremum of
\[
m(\{x \in H : |u - u_H| > \sigma\}) \int_{H}|u - u_H| \, dm
\]
which is taken over the set of all \(H \in \mathcal{H} \) and all \(u \) such that
\[
(5.3) \quad \int_{H} |u - u_H| \, dm \leq m(H), \quad H \in \mathcal{H},
\]
where we put 0/0 = 0. If \(\sigma \geq \delta^2 \), then
\[
(5.4) \quad F(\sigma) \leq s^{-1} F(\sigma - \delta^2 s), \quad 1 \leq s \leq \delta^{-2} \sigma.
\]
Indeed, fix a set $H \in \mathcal{H}$ and a function u satisfying (5.3). Let $w = u - u_H$; then w fulfills (5.3), $w_H = 0$ and

$$\int_H |w| \, dm \leq m(H) \leq sm(H).$$

Since by the last inequality there is a sequence $\{H_k\}_{k \geq 1}$ with (i)-(v) in Step 1, we see

$$m(\{x \in H : |w(x)| > \sigma\}) \leq \sum_k m(\{x \in H_k : |w(x)| > \sigma\}) \leq F(\sigma - \delta^2 s) \sum_k \int_{H_k} |w - w_{H_k}| \, dm$$

$$\leq F(\sigma - \delta^2 s) \sum_k m(H_k) \leq s^{-1} F(\sigma - \delta^2 s) \int_H |w| \, dm.$$

Since H and u are arbitrary, we get (5.4).

Step 3. Let $\alpha = 1/\delta^2 e$ and $\beta = \delta^2 e/(e-1)$. An easy calculation shows

$$F(\sigma) \leq \sigma^{-1} \leq \beta^{-1} \leq e^{-(\beta + \delta^2 e)} \leq e^{-\alpha \sigma}, \quad \beta \leq \sigma \leq \beta + \delta^2 e.$$

Hence, by (5.4) with $s = e$,

$$F(\sigma) \leq e^{-1} F(\sigma - \delta^2 e) \leq e^{-\alpha \sigma}, \quad \beta + \delta^2 e \leq \sigma \leq \beta + 2\delta^2 e.$$

Iteration of this argument leads us to $F(\sigma) \leq \exp(-\alpha \sigma)$ for $\beta \leq \sigma$. Setting $u = v/C_{12}$, we find

$$m(\{x \in H : |v - v_H| > \sigma\}) \leq F(\sigma/C_{12}) C_{12}^{-1} \int_H |v - v_H| \, dm \leq e^{-\alpha \sigma/C_{12}} m(H)$$

for $H \in \mathcal{H}$, $\sigma \geq C_{12} \beta$. Obviously,

$$m(\{x \in H : |v - v_H| > \sigma\}) \leq m(H) \leq 3e^{-\alpha \sigma/C_{12}} m(H), \quad 0 < \sigma \leq C_{12} \beta.$$

Thus we complete the proof, q.e.d.

REFERENCES

Harnack's inequalities

Department of Mathematics
Faculty of Science and Engineering
Saga University
Saga 840, Japan

Received on 19. 8. 1981