ON THE RATE OF CONVERGENCE FOR THE WEAK LAW OF LARGE NUMBERS

BY
ROBERT BARTOSZYŃSKI* (Warszawa) and PREM S. PURI** (WEST Layafyette)

Abstract. Let X, X_{1}, X_{2}, \ldots be i.i.d. random variables with the common distribution F. Further, let $\left\{c_{n}\right\}$ be a sequence of positive numbers, and $\left\{b_{n}\right\}$ be a strictly increasing sequence of positive integers. The paper considers the convergence of the series

$$
\sum_{n=1}^{\infty} c_{n} P\left(\left|X_{1}+\ldots+X_{b_{n}}\right| \geqslant \varepsilon b_{n}\right)
$$

under the interplay of three types of conditions:
(i) convergence of this series,
(ii) an appropriate moment condition on X,
(iii) a condition imposing constraints on the behavior of the sequences $\left\{c_{n}\right\}$ and $\left\{b_{n}\right\}$.

Three theorems have been proven; in each of these two among (i)-(iii) implying the third, with one of the theorems being valid for the general case, where the random variables involved are not necessarily i.i.d.

1. Introduction. Let X, X_{1}, X_{2}, \ldots be independent random variables with the common distribution function $F(t)=P(X \leqslant t)$, and let $S_{n}=X_{1}+\ldots$ $+X_{n}(n \geqslant 1)$. In studying the rate of convergence in weak laws of large numbers, the convergence of the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} P\left(\left|S_{n}\right| \geqslant n \varepsilon\right) \tag{1.1}
\end{equation*}
$$

for some $\varepsilon>0$, was found to be connected with the existence of second moment of X (see Hsu and Robbins [6], Erdös [3] or Révész [9]). In

[^0]particular, Erdös [3] has shown that series (1.1) converges for some $\varepsilon>0$ if and only if $\mathrm{E} X^{2}<\infty$ and $|\mathrm{E} X|<\varepsilon$.

Subsequently, number of authors (notably Heyde and Rohatgi [5], Chow and Lai [2] and Lai and Lan [8]) analysed the convergence of the series of the form

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n} P\left(\left|S_{n}\right| \geqslant a_{n}\right) \tag{1.2}
\end{equation*}
$$

for various $\left\{c_{n}\right\}$ and $\left\{a_{n}\right\}$, again connecting it with the appropriate moment conditions.

Certain considerations arising in stochastic modeling for the growth of cancer tumors (see [1]), led us to the analysis of convergence of series of type (1.1) with the index of summation restricted to a subsequence.

The problem of this note may be formulated as follows. Let.$\left\{K_{n}\right\}$ be a sequence of integers satisfying

$$
\begin{equation*}
1 \leqslant K_{1} \leqslant K_{2} \leqslant \ldots \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} K_{n}=\infty \tag{1.4}
\end{equation*}
$$

Consider the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} P\left\{\left|S_{K_{n}}\right| \geqslant \varepsilon K_{n}\right\} \tag{1.5}
\end{equation*}
$$

for some $\varepsilon>0$. By grouping the terms corresponding to identical indices K_{n}, we may write (1.5) as

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n} P\left\{\left|S_{b_{n}}\right| \geqslant \varepsilon b_{n}\right\} \tag{1.6}
\end{equation*}
$$

where the sequences $\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ are defined by

$$
\begin{equation*}
c_{0}=0, \quad c_{n+1}=\min \left\{r: K_{r}>K_{c_{n}+1}\right\}-1-c_{0}-\ldots-c_{n} \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{n+1}=K_{c_{0}+c_{1}+\ldots+c_{n}+1} \tag{1.8}
\end{equation*}
$$

for $n=0,1, \ldots$
Note that, since $\lim K_{n}=\infty$, we have $1 \leqslant c_{n}<\infty$ for all $n \geqslant 1$ and $1 \leqslant b_{1}<b_{2}<\ldots$

We shall now drop the condition that c_{n} 's are. integers, and consider generally the problem of convergence of series (1.6), where $\left\{c_{n}\right\}$ is some sequence of positive real numbers and $\left\{b_{n}\right\}$ is a strictly increasing sequence of positive integers.

Clearly, we have here an interplay of three types of conditions:
(i) convergence of series (1.6),
(ii) and appropriate moment condition and
(iii) a condition imposing constraints on the behaviour of the sequences $\left\{c_{n}\right.$ \} and $\left\{b_{n}\right\}^{\prime}$.

We shall prove three theorems, in each of them two among (i)-(iii) implying the third, with Theorem 1 being valid for the general case where the random variables involved are not necessarily independent and identically distributed (i.i.d.).
2. The results. We start by presenting a lemma due to von Bahr and Esséen [11], which will be needed below.

Lemma 1. Let Y_{1}, \ldots, Y_{n} be a finite sequence of random variables. Write $S_{i}=Y_{1}+\ldots+Y_{i}$ and assume that $\mathrm{E}\left(Y_{i} \mid S_{i-1}\right)=0, \mathrm{E}\left|Y_{i}\right|^{1+\lambda}<\infty, i=1, \ldots, n$, for some λ with $0<\lambda \leqslant 1$. Then there exists a constant $C(\lambda)>0$ such that

$$
\begin{equation*}
\dot{\mathrm{E}}\left|S_{n}\right|^{1+\lambda} \leqslant C(\lambda) \sum_{i=1}^{n} \mathrm{E}\left|Y_{i}\right|^{1+\lambda} . \tag{2.1}
\end{equation*}
$$

In fact, as pointed out by Rubin [10], we have

$$
\begin{equation*}
C(\lambda)=\sup _{x}\left[\frac{|1+x|^{1+\lambda}-1-(1+\lambda) x}{|x|^{1+\lambda}}\right] \tag{2.2}
\end{equation*}
$$

with $1 \leqslant C(\lambda) \leqslant 2$ for $0 \leqslant \lambda \leqslant 1$.
We first prove
Theorem 1. Let Y_{1}, Y_{2}, \ldots be a sequence of random variables with $\mathrm{E}\left(Y_{i} \mid S_{i-1}\right)=0, i=1,2, \ldots$, where $S_{0} \doteq 0, S_{i}=Y_{1}+\ldots+Y_{i}, i=1,2, \ldots$

Assume that, for some sequence $\left\{\lambda_{n}\right.$ \} with $0<\lambda_{n} \leqslant 1$, we have $\mathrm{E}\left|Y_{i}\right|^{1+\lambda}$ $<\infty, i=1,2, \ldots$, where $\lambda=\sup \lambda_{n}$, and the sequences $\left\{c_{n}\right\}$ and $\left\{b_{n}\right\}$ satisfy the condition

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n} \bar{\theta}_{n} b_{n}^{-\lambda_{n}}<\infty \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{\theta}_{n}=\frac{1}{b_{n}} \sum_{j=1}^{b_{n}} \mathrm{E}\left|Y_{j}\right|^{1+\lambda_{n}} . \tag{2.4}
\end{equation*}
$$

Then for every $\varepsilon>0$ we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n} P\left\{\left|Y_{1}+\ldots+Y_{b_{n}}\right| \geqslant \varepsilon b_{n}\right\}<\infty . \tag{2.5}
\end{equation*}
$$

Proof. We may estimate the terms of the series in (2.5), using Markov inequality and Lemma 1, as follows:

$$
\begin{align*}
c_{n} P\left\{\left|Y_{1}+\ldots+Y_{b_{n}}\right| \geqslant \varepsilon b_{n}\right\} & =c_{n} P\left\{\left|S_{b_{n}}\right|^{1+\lambda_{n}} \geqslant\left(\varepsilon b_{n}\right)^{1+\lambda_{n}}\right\} \tag{2.6}\\
& \leqslant c_{n} \frac{\mathrm{E}\left|S_{b_{n}}\right|^{1+\lambda_{n}}}{\left(\varepsilon b_{n}\right)^{1+\lambda_{n}}} . \\
& \leqslant c_{n} C\left(\lambda_{n}\right) \bar{\theta}_{n} b_{n}^{-\lambda_{n}} \varepsilon^{-\left(1+\lambda_{n}\right)} .
\end{align*}
$$

The theorem now follows from (2.3), since $\sup C\left(\lambda_{n}\right) \leqslant 2$, and $\varepsilon^{-\left(1+\lambda_{n}\right)} \leqslant \varepsilon^{-1}$ or ε^{-2}, depending on whether $\varepsilon \geqslant 1$ or $\varepsilon^{n}<1$.

In particular, in the case of i.i.d. random variables X, X_{1}, X_{2}, \ldots we obtain

Corollary 1. Assume that $\mathrm{E}|X|^{1+i}<\infty$ for some λ with $0<\lambda \leqslant 1$. Moreover, let $\mathrm{E} X=0$ and assume that the sequences $\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ satisfy the condition

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n} b_{n}^{-\lambda}<\infty \tag{2.7}
\end{equation*}
$$

Then series (1.6) converges for every $\varepsilon>0$.
Observe that for $\tau>0$, if we put $c_{n}=n^{\tau}, b_{n}=n$ and $\lambda>1+\tau$, we obtain the sufficiency part of Theorem 1 of Katz [7].

We prove
Theorem 2. Assume that $\lim \inf c_{n}>0$. If, for some $\lambda>0$,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{b_{n+1}^{\lambda}\left(b_{n+1}-b_{n}\right)}{c_{n} b_{n}}<\infty \tag{2.8}
\end{equation*}
$$

and series (1.6) converges for some $\varepsilon>0$, then $\mathrm{E}|X|^{1+\lambda}<\infty$ and $|\mathrm{E} X|<\varepsilon$.
Proof: Using the inequality (see Feller [4], p. 149)

$$
\begin{equation*}
P\left\{\left|X_{1}+\ldots+X_{n}\right| \geqslant t\right\} \geqslant \frac{1}{2}\left(1-e^{-n[1-F(t)+F(-t)]}\right) \tag{2.9}
\end{equation*}
$$

we infer from the convergence of series (1.6) that

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n}\left(1-e^{-b_{n}\left[1-F\left(\varepsilon b_{n}\right)+F\left(-\varepsilon b_{n}\right)\right]}\right)<\infty \tag{2.10}
\end{equation*}
$$

Since $b_{n} \uparrow \infty$ and c_{n} 's are bounded away from 0 for n large enough, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} b_{n}\left[1-F\left(\varepsilon b_{n}\right)+F\left(-\varepsilon b_{n}\right)\right]=0 \tag{2.11}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n} b_{n}\left[1-F\left(\varepsilon b_{n}\right)+F\left(-\varepsilon b_{n}\right)\right]<\infty \tag{2.12}
\end{equation*}
$$

Again (see Feller [4], p. 151), we have $E|X|^{1+\lambda}<\infty$ iff

$$
\begin{equation*}
\int_{0}^{\infty} x^{\lambda}[1-F(x)+F(-x)] d x<\infty \tag{2.13}
\end{equation*}
$$

Also, from (2.8), it follows that, for some constant M, we have

$$
\begin{equation*}
b_{n+1}^{\lambda}\left(b_{n+1}-b_{n}\right) \leqslant M c_{n} b_{n}, \quad n=1,2, \ldots \tag{2.14}
\end{equation*}
$$

Since the sequence $\left\{b_{n}\right\}$ is strictly increasing, while $1-F(t)+F(-t)$ is nonincreasing, we bound the integral in (2.13) as follows:

$$
\begin{align*}
& \int_{0}^{\infty} x^{\lambda}[1-F(x)+F(-x)] d x \tag{2.15}\\
& \leqslant \sum_{n=1}^{\infty}\left(\varepsilon b_{n+1}\right)^{\lambda}\left[1-F\left(\varepsilon b_{n}\right)+F\left(-\varepsilon b_{n}\right)\right]\left(b_{n+1}-b_{n}\right)+\left(\varepsilon b_{1}\right)^{1+\lambda} \\
& \quad \leqslant M \varepsilon^{\lambda} \sum_{n=1}^{\infty} c_{n} b_{n}\left[1-F\left(\varepsilon b_{n}\right)+F\left(-\varepsilon b_{n}\right)\right]+\left(\varepsilon b_{1}\right)^{1+\lambda}
\end{align*}
$$

The fact that the last sum is finite in view of (2.12), implies that $\mathrm{E}|X|^{1+\lambda}<\infty$.

Let $\mu=\mathrm{E} X$. In the case $|\mu|>\varepsilon$, we can find an interval of the form $(\mu-\delta, \mu+\delta) \subset(-\varepsilon, \varepsilon)^{c}$ for some $\delta>0$, such that by the weak law of large numbers we have

$$
\begin{equation*}
1=\lim _{n \rightarrow \infty} P\left\{\left|\frac{S_{b_{n}}}{b_{n}}-\mu\right|<\delta\right\} \leqslant \lim _{n \rightarrow \infty} P\left\{\left|\frac{S_{b_{n}}}{b_{n}}\right| \geqslant \varepsilon\right\} \tag{2.16}
\end{equation*}
$$

This means that series (1.6) cannot converge, since $\underset{n \rightarrow \infty}{\lim \inf } c_{n}>0$, leading thereby to a contradiction. The argument in the case with $|\mu|=\varepsilon$ being similar, proves that we must have $|\mathrm{E} X|<\varepsilon$.

For the next theorem we shall use the following lemma (see Feller [4], p. 277):

Lemma 2. Suppose that $\lambda_{n+1} / \lambda_{n} \rightarrow 1$ and $a_{n} \rightarrow \infty$ as $n \rightarrow \infty$. If U is a monotone function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[\lambda_{n} U\left(a_{n} x\right)\right]=\chi(x) \leqslant \infty \tag{2.17}
\end{equation*}
$$

exists on a dense set and χ is finite and positive in some interval, then U varies regularly and $\chi(x)=c x^{\varrho}$ for some $-\infty<\varrho<\infty$.

We now prove
Theorem 3. Let $b_{n} / b_{n+1} \rightarrow 1$. Assume that for some $\lambda>0$

$$
\begin{equation*}
\lim _{x \rightarrow \infty} x^{1+i}[1-F(x)+F(-x)] \tag{2.18}
\end{equation*}
$$

exists and is positive, say equal to c. Then the convergence of series (1.6) for some $\varepsilon>0$ implies (2.7).

Proof. As in the proof of Theorem 2, convergence of (1.6) implies (2.12).
Let us write the series in (2.12) as

$$
\begin{equation*}
\sum c_{n} b_{n}\left[1-F\left(\varepsilon b_{n}\right)+F\left(-\varepsilon b_{n}\right)\right]=\sum\left(c_{n} b_{n}^{-\lambda}\right)\left\{b_{n}^{1+\lambda}\left[1-F\left(\varepsilon b_{n}\right)+F\left(-\varepsilon b_{n}\right)\right]\right\} \tag{2.19}
\end{equation*}
$$

We now apply Lemma 2 with $\lambda_{n}=b_{n}^{1+\lambda}, a_{n}=b_{n}, U(t)=1-F(t)+F(-t)$ and $x=\varepsilon$. As a result, $\lim _{n \rightarrow \infty} \lambda_{n} U\left(a_{n} x\right)$ becomes $\lim _{n \rightarrow \infty} b_{n}^{1+\lambda}\left[1-F\left(\varepsilon b_{n}\right)+\right.$ $\left.+F\left(-\varepsilon b_{n}\right)\right]$, which exists and is positive in view of the assumption of the theorem. Consequently, the latter limit equals $c \varepsilon^{e}$ for some ϱ. In fact, replacing x by εx in (2.18) we infer that $\varrho=-(1+\lambda)$. From the convergence of (2.19) it follows now that $\sum c_{n} b_{n}^{-\lambda}<\infty$, as asserted.

As an example, consider the case when X has the central t-distribution with 2 degrees of freedom, so that $\mathrm{E} X^{2}=\infty$ and $\mathrm{E}|X|<\infty$. Here the limit (2.18) exists with $\lambda=1$ and $c=1 / 2$, so that Theorem 2 applies.

Note that since the sequence $\left\{b_{n}\right\}$, is strictly increasing, condition (2.8) may be written as

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{c_{n} b_{n}^{-\lambda}}{\left(b_{n+1} / b_{n}\right)^{\lambda}\left(\frac{b_{n+1}}{b_{n}}-1\right)}>0 \tag{2.20}
\end{equation*}
$$

Now, if (2.7) holds, then $c_{n} b_{n}^{-\lambda} \rightarrow 0$, so that condition (2.20) (and hence (2.8)) may hold only if $b_{n+1} / b_{n} \rightarrow 1$.

Let us also note that the existence of the positive limit (2.18) implies $\mathrm{E}|X|^{1+\lambda}=\propto$, although $\mathrm{E}|X|^{1+\sigma}<\infty$, for all $0<\sigma<\lambda$. Conversely, if

$$
\begin{equation*}
\sigma_{0}=\sup \left\{\sigma: \int_{0}^{\infty} x^{\sigma}[1-F(x)+F(-x)] d x<\infty\right\} \tag{2.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\infty} x^{\sigma_{0}}[1-F(x)+F(-x)] d x=\infty \tag{2.22}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{x \rightarrow \infty} x^{1+\sigma}[1-F(x)+F(-x)]=0 \tag{2.23}
\end{equation*}
$$

for all $\sigma<\sigma_{0}$. Here we cannot say that the limit (2.23) is positive or 0 in the case with $\sigma=\sigma_{0}$.

REFERENCES

[1] R. Bartoszyński and P.S. Puri, On two classes of interacting stochastic processes arising in cancer modeling, Mimeograph Series \#81-28 (1981), Department Statistics, Purdue University.
[2] Y. S. Chow and T. L. Lai, Some one-sided theorems on the tail distribution of sample sums with applications to the last time and largest excess of boundary crossings, Trans. Amer. Math. Soc. 208 (1975), p. 51-72.
[3] P. Erdös, On a theorem of Hsu and Robbins, Annals of Math. Statist. 20 (1949), p. 286291.
[4] W. Feller, An introduction to probability theory and its applications, II, John Wiley, New York, 1971.
[5] C. C. Heyde and V. K. Rohatgi, A pair of complementary theorems on convergence rates in the law of large numbers, Proc. Cambridge Phil. Soc. 63 (1967), p. 73-82.
[6] P. L. Hsu and Robbins, Complete convergence and the law of large numbers, Proc. Nat. Acad. Sci. USA 33 (2) (1947), p. 25-31.
[7] M. L. Katz, The probability in the tail of a distribution, Ann. Math. Statist. 34 (1963), p, 312-318.
[8] T. L. Lai and K. K. Lan, On the last time and the number of boundary crossing related to the strong law of large numbers and the law of iterated. logarithm, Z. Wahrscheinlichkeitstheorie verw. Geb. 34 (1976), p. 59-71.
[9] P. Révész, The laws of large numbers, Academic Press, New York 1968.
[10] H. Rubin, Personal communication, (1981).
[11] B. von Bahr and C. G. Esséen, Inequalities for the r'th absolute moment of a sum of random variables, $1 \leqslant r \leqslant 2$. Ann. Math. Statist. 36 (1965), p. 299-303.
R. Bartoszyński

Instytut Matematyczny PAN
Śniadeckich 8
00-950 Warszawa, Poland
$\because 1$

[^0]: * This research was done while this author was visiting the Department of Statistics and Mathematics at Purdue University, Indiana. The support of these departments is gratefully acknowledged.
 ** These investigations were supported in part by U.S. National Science Foundation Grant No MCS-8102733.

