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ON THE RATE OF CONVERGENCE
FOR THE WEAK LAW OF LARGE NUMBERS

BY
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Abstract. Let X, X;, X,, ... be iid. random variables with the
common distribution F. Further, let {c,} be a sequence of positive
numbers, and {b,} be a strictly increasing sequence of positive
integers. The paper considers the convergence of the series

. . |

Z CnP(IX1+ o +Xb"l 2 bbn)
n=1
under the interplay of three types of conditions:

(i) convergence of this series,

(ii) an appropriate moment condition on X,

(iii) a condition imposing constraints on the behavior of the
sequences {c,} and {b,}.

Three theorems have been proven; in each of these two among
(i)-(iii) implying the third, with one of the theorems being valid for
the general case, where the random variables involve‘d_ are not
necessarily ii.d.

1. Introduction. Let X, X,, X5, ... be independent random variables with
the common distribution function F(f)=P(X <1), and let §,= X, +
+X, (n>=1). In studying the rate of convergence in weak laws of large
numbers, the convergence of the series

(L S P(SI = m),
‘n=1 .

for some ¢ > 0, was found to be connected with the existence of second
moment of X (see Hsu and Robbins [6], Erdds [3] or Révész [9]). In
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particular, Erdds [3] has shown that series (1.1) converges for some & > 0 if
and only if EX? < o0 and |EX| <e.
Subsequently, number of authors (notably Heyde and Rohatgi [5], Chow

‘and Lai [2] and Lai and Lan [8]) analysed the convergence of the series of

the form

(12  LaPisiza)

for various {c,} and la,), agdm connectmg it with the appropriate moment
conditions.

Certain considerations arising in stochastic modeling for the growth of
cancer tumors (see [1]), led us to the analysis of convergence of series of type
(1.1) with the index of summation restricted to a subsequence.

The problem of this note may be formulated as follows. Let 'K, be a
sequence of integers satisfying -

3y - 1<K, <K, <...
and .
(14) : lim K, = 0.

Consider the series

(1.5). | Y PiiSg,| > eK,)
. . n=1

~ for some ¢ > 0. By grouping the terms corresponding to identical indices K,,

we may write (1.5) as

(1.6) Z cu P {ISs,| = by}

¥

where the sequences {b,} and [c,} are defined by

(1’.7) co=0, ¢,y =min {r:-K,>KCn+1}—1—c0—...——c,,
and -

(1-8) bn+1 = Kc0+c1+...+;"+1

for n=0, 1, |

Note that since lim K, = oo, we have 1 <¢, < oo for all n>1 and

1<bh <b, <

We shall ngw drop the condition that ¢,’s are. integers, and consider
generally the problem of convergence of series (1.6), where [c,} is some
sequence of positive real numbers and 'b is a strictly increasing sequence of
posmve integers. ' ‘
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Clearly, we have here an interplay of three types of conditions:
(i) convergence of series (1.6),

(i) and appropriate moment condition and

(ii}) a condition imposing constraints on the behaviour of the sequences
‘c,) and 'b,}. '

We shall prove three theorems, in each of them two among (i)-(iii)
implying the third, with Theorem 1 being valid for the general case where the
random variables involved are not necessarily independent and identically
distributed (i.i.d.).

2. The resulfs. We start by presenting a lemma due to von Bahr and
Esséen [11], which will be needed below.

LemMma 1. Let Y, ..., Y, be a finite sequence of random variables. Write
S; =Y+ ... +Y, and assume that E(Y|S;_;) =0, E|¥|'""* <0, i=1, ..., n,
Jor some 4 with 0 < A < 1. Then there exists a constant C(A) > 0 such that

(2.1) . Els)'™<C@) Y. BlY)'
. i=1 .
In fact, as pointed out by Rubin [10], we have

|1+x|1+'1—1—(1+/1)xJ

!x|1+i. )

22 aa=wp[

with 1<C{l)<2for 0<Ai<g1.
We first prove

THeorem 1. Let Y;, Y,,... be a sequence of random variables with
E(Y(S,_,)=0,i=1,2,..., where So=0, S;=Y,+...4+Y, i=1,2,...

Assume that, for some sequence ',) with 0 < A, <1, we have E|YJ'**
<ow,i=1,2,..., where A =sup A,, and the sequences |c,} and {b,} satisfy
the condition v

oo

2.3) ' Y ¢, 0,b, "< 0
- n=1
where
1 I
(2.4) m=gzﬁm“%
~

Then for every ¢ >0 we have

(2.5) Z C"P{|Y1_+...+Y|.,"[>8b,,}<00.
n=1 . .
Proof. We may estimate the terms of the series in (2.5), using Markov
inequality and Lemima 1, as follows: ~
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(2.6) P{Yi+ ...+ % | > b} =c, P{IS, """ > (eby)' "™
E lsb,,ll +
CII
(eby)
<e¢,C(A,) 0, b, *ng 10

The theorem now follows from (2.3), since sup C(A) <2, and
—(1+4ip
&

1+4,

<& ! or £ 2 depending on whether e > 1 or ¢ <1

In particular, in the case of iid. random variables X, X, X,,... we
obtain '

.COROLLARY 1. Assume that E|X|'** < oo for some A with 0 <A <1.
Moreover, let EX = 0 and assume that the sequences {b,} and {c,} satisfy the
condition

o
@7 | Y cabg* <00,

n=1

Then series (1. ’6) converges for every &> 0

Observé that for > 0, if we put ¢, = r’, b =nand 1> 1+r we obtain

the sufficiency part of Theorem 1 of Katz [7].

We prove
THEOREM 2. Assume that lim inf cn > 0. If, for some A > Q,
, Ao(ho :
28) | lim sup b"—*ic"%ﬂ <00

and series (1.6) converges for some ¢ >0, then E[X|'** < oo and |EX| <e.
Proof: Using the inequality (see Feller [4], p. 149)

(29) P{X,+..+X =8> 1(1—e™ Mt -FO+FC-0])
we infer from the convergence of series (1.6) that

—byl1~ F(gb,) + F(— by}

(2.10) ' f c,,(l— ) < 0.
n=1

Since b,1 0 and c,’s are bounded away from O for n large enough, we
have .

(2.11) : lim b, [1 F(sb,,)+F(—eb,.)] 0
. land henqe
2.12) : f ¢, by [1—F (sb,)+ F(—£b)] < oo.

n=1
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Again (see Feller [4], p. 151), we have E|X]'** < oo iff
2.13) [ x*[1—F(x)+ F(—x)]dx < 0.
0 o

Also, from (2.8), it follows that, for some constant M, we have

(2.14) a+1(bns1—b) < Mc,b,, n=1,2

Since the sequence {b,} is strictly increasing, while 1—F()+F(—1) is
nonincreasing, we bound the integral in (2.13) as follows:

(215) . [x*[1-F()+F(—x)]dx

8

Z n+1)1[1 F(eb,)+F( gbn)](bn+1_bn)+(£b1)l+l

< Me Y eba[1 F(sb,,)+F(——sb,,)]+(sb )1“
n=1
The fact that the last sum is finite in view of (2. 12), implies that
|X|1+A < .
Let u=EX. In the case |y > & we can find an interval of the form
(u—9, u+9) =(—¢, gf for some & > 0, such that by the weak law of large

umbers we have
<6} Iim P{ e}

This means that series (1.6) cannot converge, since lim inf ¢, > 0, leading

n—oo

Sy
Tn_”

(216) . 1=1lim P%

A

thereby to a contradiction. The argument in the case with |yl =¢ being
similar, proves that we must have |[EX| <e&.

For the next theorem we shall use the following lemma (see Feller [4], p
277):
' LEMMA 2. Suppose that An, /A, —1 and a,—> o as n—o. If U is a
monotone function such that
2.17) lim [1,U(a,x)] = x(x)

n—aw

exists on a dense set and y is finite and positive in some interval, then U varies
regularly and y(x) = cx® for some —oo <@ <
We now prove

THEOREM 3. Let b,/b,,, = 1. Assume that for some A >0
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(2.18) lim x'**[1—F(x}+F(—x)]
exists and is positive, say equal to c. _Then the convergence of series (1.6) for
some ¢ > 0 implies (2.7)..
Proof. As in the proof of Theorem 2 convergence of (1 6) implies (2.12).
Let us write the series in (2.12) as

(219) :
Y caby[1—F(eb))+F(—eb)] =3 (caby*) {bs** [1—F(eb,)+ F (—eby)]}.

We now apply Lemma 2 with 4, =bh1**, a,=b,, Ut} =1-F(t)+F(-1)
and x=¢ As a result, lim 4,U(a,x) becomes lim b,**[1—F (eb,)+

n—w n—w

+F(—eb,)], which exists and is positive in view of the assumption of

the theorem. Consequently, the latter limit -equals cz? for some g. In fact,
replacing x by &x in (2.18) we infer that ¢ = —(1+4). From the convergence
of (2.19) it follows now that Y ¢, b, * < ¢, as asserted.

As an example, consider the case when X has the central t-distribution
with 2 degrees. of freedom, so that EX? = oo and E|X| < co. Here the limit
(2.18) exists with A =1 and ¢ = 1/2, so that Theorem 2 applies.

Note that since the sequence (b, is strictly increasing, condition (2.8)
may be written as ‘

a

n+1
-1
1)

Now, if (2.7) holds, then c,b, * = 0, so that condition (2.20) (and hence
(2.8)) may hold only if b,, /b, — 1.

Let us also note that the existence of the positive limit (2 18) implies
E|X|'*4 = ¢, although E|X|'*" < x, for all 0 <o < A. Conversely, if

¢, b

(2.20) : lim inf "b > 0.

e (bn+ l/bn)l

(2.21) 0o = sup {o: Tx“[l—F(xH-F(—x)]dx ;.oo} |

and 0 -
(2.22) ' Tx"" [1—F(x)+F(—x)]dx = o

then 0 |

(2.23) - lim XM [1=F(x)+F(-x)]=0

~ for all ¢ < 6. Here we cannot say that the limit (2.23) is positiVe or 0.in the

case with o = g,.
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