ON THE RATE OF CONVERGENCE IN THE CENTRAL LIMIT THEOREM FOR FUNCTIONS OF THE AVERAGE OF INDEPENDENT RANDOM VARIABLES

BY

DOMINIK SZYNAL (LUBLIN)

Abstract. We give the rate of convergence in the central limit theorem and the random central limit theorem for functions belonging to the class \mathcal{G} of all real differentiable functions g such that $g' \in L(1)$.

1. Introduction and notation. Let $\{X_k, k \geq 1\}$ be a sequence of independent random variables and put $S_n = \sum X_k, k = 1, 2, \ldots, n$. The asymptotical normality of $\{g(S_n/n), n \geq 1\}$, where g is a real function, was considered for instance in [1] (Theorem 4.2.5, p. 76), [8] (Theorem 9.3.1, p. 259), [5], [6], and in [3] for random elements of a Hilbert space. We are interested in the rate convergence in law of the normalized sequence $\{g(S_n/n), n \geq 1\}$.

Throughout this paper we shall use the following notation:

- $\mathcal{G} = \text{the class of all real, differentiable functions } g \text{ such that } g' \text{ satisfies the Lipschitz condition, i.e.}$

\begin{equation}
|g'(x) - g'(y)| < L|x - y|,
\end{equation}

where L is a positive constant;

- $\Phi = \text{the class of all functions } \varphi \text{ defined on } R \text{ for which }$

(a) φ is nonnegative, even, and nondecreasing on $[0, \infty]$,
(b) $x/\varphi(x)$ is defined for all x and nondecreasing $[0, \infty]$;

- $\mathcal{D} = \text{the class of all sequences } \{d_n, n \geq 1\} \text{ of positive numbers such that } d_n \to \infty, n \to \infty,$

\[\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt, \]

C denotes a positive constant.

Moreover, we shall often use the following results.
Lemma 1.1 ([7], p. 28). Assume that X and Y are random variables and $F(x) = P[X < x]$, $G(x) = P[X + Y < x]$. Then, for any $\varepsilon > 0$, $x \in \mathbb{R}$, and any distribution function H,

\begin{align*}
(i) \quad |G(x) - H(x)| & \leq \sup_{x} |F(x) - H(x)| + \\
& + \max \{ |H(x - \varepsilon) - H(x)|, |H(x + \varepsilon) - H(x)| \} + P[|Y| \geq \varepsilon].
\end{align*}

From (i) we get

Corollary 1.1. For any given $\varepsilon > 0$

\begin{align*}
(ii) \quad \sup_{x} |G(x) - \Phi(x)| & \leq \sup_{x} |F(x) - \Phi(x)| + \varepsilon/\sqrt{2\pi} + P[|Y| \geq \varepsilon].
\end{align*}

2. Uniform estimates. In what follows we need the following

Lemma 2.1. Let Z be a random variable, and let $b, c \in \mathbb{R}$, $c \neq 0$. Then for every $d > 0$ and every $g \in \mathcal{G}$ with $g'(b/c) \neq 0$

\begin{align*}
2) \quad \sup_{x} |P \left\{ \frac{c}{g'(b/c)} \left[g \left(\frac{Z}{c} \right) - g \left(\frac{b}{c} \right) \right] < x \right\} - \Phi(x)| \\
& \leq 5 \sup_{x} |P[Z - b < x] - \Phi(x)| + \frac{4}{d} \exp \{ -d^2/2 \} + \frac{Ld^2}{|cg'(b/c)| \sqrt{2\pi}}.
\end{align*}

Proof. Put

\begin{align*}
h(x) &= \begin{cases}
\frac{g(x) - g(b/c)}{(x - b/c)g'(b/c)} & \text{if } x \neq b/c, \\
1 & \text{if } x = b/c.
\end{cases}
\end{align*}

We see that

\begin{align*}
\frac{c}{g'(b/c)} \left[g \left(\frac{Z}{c} \right) - g \left(\frac{b}{c} \right) \right] = (Z - b) h \left(\frac{Z}{c} \right).
\end{align*}

Hence, by (ii), for any given $\varepsilon > 0$, we have

\begin{align*}
3) \quad \sup_{x} |P \left\{ \frac{c}{g'(b/c)} \left[g \left(\frac{Z}{c} \right) - g \left(\frac{b}{c} \right) \right] < x \right\} - \Phi(x)| \\
& = \sup_{x} |P \{ Z - b + (Z - b)(h(Z/c) - 1) < x \} - \Phi(x)| \\
& \leq \sup_{x} |P[Z - b < x] - \Phi(x)| + \varepsilon/\sqrt{2\pi} + P[|Z - b| (h(Z/c) - 1) \geq \varepsilon].
\end{align*}

Note now that for any $d > 0$

\begin{align*}
4) \quad P \left[|(Z - b)(h(Z/c) - 1)| \geq \varepsilon \right] & \leq P \left[|Z - b| > d \right] + P \left[|h(Z/c) - 1| \geq \varepsilon/d \right] \\
& \leq 2 \sup_{x} |P[Z - b < x] - \Phi(x)| + 2(1 - \Phi(d)) + P[|h(Z/c) - 1| \geq \varepsilon/d].
\end{align*}
On the rate of convergence

Taking into account the definition of \(h \) and (1), we get

\[
(5) \quad P[|h(Z/c) - 1| > \varepsilon/d] = P\left[\left| \frac{g(Z/c) - g(b/c)}{Z/c - b/c} - 1 \right| \geq \varepsilon/d \right]
\]

\[
= P\left[\left| \frac{g'(b/c + \theta(Z/c - b/c))}{g(b/c)} - 1 \right| \geq \varepsilon/d \right] \leq P\left[|Z - b| \geq (\varepsilon/d) L^{-1} |cg'(b/c)| \right]
\]

\[
\leq 2 \sup_x P[|Z - b| < x] - \Phi(x) + 2 \left(1 - \Phi \left((\varepsilon/d) L^{-1} |cg'(b/c)| \right) \right)
\]

as \(0 < \theta < 1 \).

Combining (3)-(5) we obtain

\[
(6) \quad \sup_x P\left\{ \frac{c}{g'(b/c)} \left[g(Z/c) - g(b/c) \right] < x \right\} - \Phi(x) \leq 5 \sup_x P[|Z - b| < x] - \Phi(x) + 2 \left(1 - \Phi \left((\varepsilon/d) L^{-1} |cg'(b/c)| \right) \right) + \frac{\varepsilon}{\sqrt{2\pi}}.
\]

Putting, in (6), \(\varepsilon = \frac{Ld^2}{|cg'(b/c)|} \) we get (2).

Corollary 2.1. Let \(\{X_k, k \geq 1\} \) be a sequence of random variables, and let \(S_n = \sum X_k \) \((k = 1, 2, \ldots, n)\). Suppose that \(\{a_k, k \geq 1\} \), \(\{b_k, k \geq 1\} \) and \(\{c_k, k \geq 1\} \) are sequences of real numbers such that \(a_k > 0, c_k \neq 0, k \geq 1 \). Then for every \(d > 0 \) and every \(g \in \mathcal{G} \) with \(g'(b/c) \neq 0, k \geq 1 \),

\[
(7) \quad \sup_x P\left\{ \frac{c_k}{g'(b/c_n)} \left[g\left(\frac{S_n}{a_k c_n} \right) - g\left(\frac{b_k}{c_n} \right) \right] < x \right\} - \Phi(x) \leq 5 \sup_x P\left[\frac{S_n - b_k}{a_k c_n} < x \right] - \Phi(x) + \frac{4}{d \sqrt{2\pi}} \exp \left\{ -d^2/2 \right\} + \frac{Ld^2}{|c_n g'(b/c)|} \sqrt{2\pi}.
\]

Corollary 2.2. Let \(\{X_k, k \geq 1\} \) be a sequence of independent random variables with finite expectations \(EX_k \) and variances \(\sigma^2 X_k, k \geq 1 \). Then for every \(d > 0 \) and every \(g \in \mathcal{G} \) with \(g'(\mu_n) \neq 0 \), where \(\mu_n = n^{-1} \sum EX_k \) \((k = 1, 2, \ldots, n)\),

\[
(8) \quad \sup_x P\left\{ \frac{n}{s_n g'(\mu_n)} \left[g\left(\frac{S_n}{n} \right) - g(\mu_n) \right] < x \right\} - \Phi(x) \leq 5 \sup_x P\left[\frac{S_n - ES_n}{s_n} < x \right] - \Phi(x) + \frac{Ld^2 s_n}{n |g'(\mu_n)|} + \frac{4}{d \sqrt{2\pi}} \exp \left\{ -d^2/2 \right\},
\]

\[s_n^2 = \sum_{k=1}^{n} \sigma^2 X_k.\]
COROLLARY 2.3. Let \(\{X_k, k \geq 1\} \) be a sequence of independent identically distributed random variables with \(E X_1 = \mu, \sigma^2 X_1 = \sigma^2 < \infty \). Then for every \(d > 0 \) and every \(g \in \mathcal{G} \) with \(g'(\mu) \neq 0 \)

\[
\sup_x \left| P \left\{ \frac{\sqrt{n}}{\sigma} \left[g \left(\frac{S_n}{n} \right) - g(\mu) \right] < x \right\} - \Phi(x) \right|
\leq 5 \sup_x \left| P \left[\frac{S_n - n\mu}{\sigma \sqrt{n}} < x \right] - \Phi(x) \right| + \frac{Ld^2 \sigma}{\sqrt{n |g'(\mu)|}} + \frac{4}{d \sqrt{2\pi}} \exp \left(-\frac{d^2}{2}\right).
\]

Put

\[
\mu_n = n^{-1} \sum_{k=1}^n EX_k, \quad s^2_n = \sum_{k=1}^n \sigma^2 X_k, \quad X^0_k = X_k - EX_k, \quad k \geq 1.
\]

Estimates (7)-(9) and the known estimates the convergence rate in the central limit theorem allow to obtain, among other things, the following results.

THEOREM 2.4. Let \(\{X_k, k \geq 1\} \) be a sequence of independent random variables such that \(E (X^0_k)^2 \varphi(X^0_k) < \infty, k \geq 1, \) for some \(\varphi \in \Phi. \)

Then for every \(g \in \mathcal{G} \) with \(g'(\mu) \neq 0, n \geq 1, \) and any sequence \(\{d_n, n \geq 1\} \in \mathcal{G} \)

\[
\sup_x \left| P \left\{ \frac{n}{s_n g'(\mu)} \left[g \left(\frac{S_n}{n} \right) - g(\mu) \right] < x \right\} - \Phi(x) \right|
= O \left(\sum_{k=1}^n E (X^0_k)^2 \varphi(X^0_k) \right) \left(\frac{s_n d^2_n}{s_n^2 \varphi(s_n)} + \frac{s_n d^2_n}{n |g'(\mu)|} d_n^{-1} \exp \left(-\frac{d^2_n}{2}\right) \right).
\]

If \(E |X^0_k|^3 < \infty, k \geq 1, \) then for every \(g \in \mathcal{G} \) with \(g'(\mu) \neq 0, n \geq 1, \) and any sequence \(\{d_n, n \geq 1\} \in \mathcal{G} \)

\[
\sup_x \left| P \left\{ \frac{n}{s_n g'(\mu)} \left[g \left(\frac{S_n}{n} \right) - g(\mu) \right] < x \right\} - \Phi(x) \right|
= O \left(\sum_{k=1}^n E |X^0_k|^3 \right) \left(\frac{s_n d^2_n}{s_n^3} + \frac{s_n d^2_n}{n |g'(\mu)|} d_n^{-1} \exp \left(-\frac{d^2_n}{2}\right) \right).
\]

COROLLARY 2.5. If \(\{X_k, k \geq 1\} \) is a sequence of independent identically distributed random variables, then under the assumptions of Theorem 2.4 for every \(g \in \mathcal{G} \) with \(g'(\mu) \neq 0, \) and any sequence \(\{d_n, n \geq 1\} \in \mathcal{G}, \) we have

\[
\sup_x \left| P \left\{ \frac{\sqrt{n}}{\sigma g'(\mu)} \left[g \left(\frac{S_n}{n} \right) - g(\mu) \right] < x \right\} - \Phi(x) \right|
= O \left(\frac{1}{\varphi(\sqrt{n}) + \frac{d^2_n}{\sqrt{n}}} + d_n^{-1} \exp \left(-\frac{d^2_n}{2}\right) \right),
\]
(11') \[\sup_x \left| P \left\{ \sqrt{\frac{n}{\sigma g'(\mu)}} \left[g \left(\frac{S_n}{n} \right) - g(\mu) \right] < x \right\} - \Phi(x) \right| = O \left(\frac{d_n^2}{\sqrt{n}} + d_n^{-1} \exp \{-d_n^2/2\} \right), \]

respectively.

Note now that putting in (10)
\[d_n = \left\{ 2 \ln \left(1 + \frac{s_n^2 \varphi(s_n)}{\sum_{k=1}^n E(X_k^0)^2 \varphi(X_k^0)} \right) \right\}^{1/2}, \]
and in (11)
\[d_n = \left\{ 2 \ln \left(1 + \frac{s_n^3}{\sum_{k=1}^n E|X_k^0|^3} \right) \right\}^{1/2}, \]
one can get the following estimates:

Corollary 2.6. Under the assumptions of Theorem 2.4 for every \(g \in \mathcal{G} \) with \(g'(\mu) \neq 0, \ n \geq 1, \)

(13) \[\sup_x \left| P \left\{ \sqrt{\frac{n}{s_n g'(\mu)}} \left[g \left(\frac{S_n}{n} \right) - g(\mu) \right] < x \right\} - \Phi(x) \right| = O \left(\frac{\sum_{k=1}^n E(X_k^0)^2 \varphi(X_k^0)}{s_n^2 \varphi(s_n) + \frac{s_n \ln \varphi(s_n)}{ng'(\mu)\sqrt{n}}} \right), \]

and

(14) \[\sup_x \left| P \left\{ \sqrt{\frac{n}{s_n g'(\mu)}} \left[g \left(\frac{S_n}{n} \right) - g(\mu) \right] < x \right\} - \Phi(x) \right| = O \left(\frac{\sum_{k=1}^n E|X_k^0|^3}{s_n^3} + \frac{s_n \ln s_n}{ng'(\mu)\sqrt{n}} \right), \]

respectively.

From (13) and (14) we get

Corollary 2.7. Under the assumptions of Corollary 2.5 we have

(10') \[\sup_x \left| P \left\{ \sqrt{\frac{n}{\sigma g'(\mu)}} \left[g \left(\frac{S_n}{n} \right) - g(\mu) \right] < x \right\} - \Phi(x) \right| = O \left(\frac{1}{\varphi(\sigma \sqrt{n})} + \frac{\ln \varphi(\sigma \sqrt{n})}{\sigma \sqrt{n}} \right), \]

(11') \[\sup_x \left| P \left\{ \sqrt{\frac{n}{\sigma g'(\mu)}} \left[g \left(\frac{S_n}{n} \right) - g(\mu) \right] < x \right\} - \Phi(x) \right| = O \left(\frac{\ln n}{\sqrt{n}} \right). \]
The estimate (9) allows us to give a generalization of a result given in paper [2]:

Theorem 2.8. Let \(\{X_k, k \geq 1\} \) be a sequence of independent identically distributed random variables with \(EX_1 = \mu, \sigma^2 X_1 = \sigma^2 < \infty, \) and \(E|X_1|^{2+\delta} < \infty, \) \(0 < \delta < 1. \)

Then for every \(g \in \mathcal{G} \) with \(g'(\mu) \neq 0 \)

\[
\sum_{n=1}^{\infty} n^{-1+\delta/2} \sup_x P \left\{ \frac{\sqrt{n}}{\sigma g'(\mu)} \left[g \left(\frac{S_n}{n} \right) - g(\mu) \right] < x \right\} - \Phi(x) < \infty.
\]

If \(E(X_1 - \mu)^2 \log(1 + |X_1 - \mu|^2) < \infty, \) then (15) converges with \(\delta = 0. \)

Proof. From (9) with \(d = \sqrt{\ln n}, \) we get

\[
\sup_x P \left\{ \frac{\sqrt{n}}{\sigma g'(\mu)} \left[g \left(\frac{S_n}{n} \right) - g(\mu) \right] < x \right\} - \Phi(x) \leq C \left(\sup_x P \left[\frac{S_n - n\mu}{\sigma \sqrt{n}} < x \right] - \Phi(x) + \frac{\ln n}{\sqrt{n}} \right).
\]

Moreover, we know [2] that

\[
\sum_{n=1}^{\infty} n^{-1+\delta/2} \sup_x P \left[\frac{S_n - n\mu}{\sigma \sqrt{n}} < x \right] - \Phi(x) < \infty,
\]

which together with the obvious fact

\[
\sum_{n=1}^{\infty} (n^{-1+\delta/2}(\ln n)/\sqrt{n}) < \infty, \quad 0 \leq \delta < 1,
\]

allow us to obtain (15).

3. Partial sums with random indices. Following the consideration of Section 1 one can prove the following

Lemma 3.1. Let \(\{X_k, k \geq 1\} \) be a sequence of independent identically distributed random variables with \(EX_1 = \mu, \sigma^2 X_1 = \sigma^2 < \infty. \) Suppose that \(\{N_n, n \geq 1\} \) is a sequence of positive integer-valued random variables. Then for every \(d > 0, \varepsilon > 0, \) and every \(g \in \mathcal{G} \) with \(g'(\mu) \neq 0 \)

\[
\sup_x P \left\{ \frac{\sqrt{N_n}}{g'(\mu) \sigma} \left[g \left(\frac{S_{N_n}}{N_n} \right) - g(\mu) \right] < x \right\} - \Phi(x) \leq 3 \sup_x P \left[\frac{S_{N_n} - N_n\mu}{\sigma \sqrt{N_n}} < x \right] - \Phi(x) + P \left\{ \frac{|g'(\mu)|}{\sigma L}(\varepsilon/d)\sqrt{N_n} \right\} +
\]

\[
+ \frac{2}{d \sqrt{2\pi}} \exp \left\{ -d^2/2 \right\} + \varepsilon/\sqrt{2\pi}.
\]
Using Lemma 4.1 we can give the following results:

Theorem 3.2. Let \(\{X_k, k \geq 1\} \) be a sequence of independent identically distributed random variables with \(EX_1 = \mu \), \(\sigma^2 X_1 = \sigma^2 \), and \(E|X_1|^3 < \infty \). Suppose that \(\{N_n, n \geq 1\} \) is a sequence of positive integer-valued random variables such that

\[
P \left[\frac{N_n - 1}{na} \geq \varepsilon_n \right] = O(\sqrt{\varepsilon_n}),
\]

where \(a \) is a positive constant, and \(1/n \leq \varepsilon_n \to 0, n \to \infty \).

Then for every \(g \in \mathcal{G} \) with \(g'(\mu) \neq 0 \), and any sequence \(\{d_n, n \geq 1\} \)

\[
\sup_x P \left\{ \frac{\sqrt{N_n}}{\sigma g'(\mu)} \left[g \left(\frac{S_{N_n}}{N_n} \right) - g(\mu) \right] < x \right\} - \Phi(x) = O(\sqrt{\varepsilon_n} + d_n^2/\sqrt{n} + d_n^{-1} \exp \{-d_n^2/2\}).
\]

Proof. Following the considerations of the proof of Lemma 2.1 and using (16) together with assumption (17) one can get

\[
\sup_x P \left\{ \frac{\sqrt{N_n}}{\sigma g'(\mu)} \left[g \left(\frac{S_{N_n}}{N_n} \right) - g(\mu) \right] < x \right\} - \Phi(x) \leq C \sup_x P \left[\frac{S_{N_n} - N_n \mu}{\sigma \sqrt{N_n}} < x \right] - \Phi(x) + d_n^2/\sqrt{n} + d_n^{-1} \exp \{-d_n^2/2\}
\]

for any sequence \(\{d_n, n \geq 1\} \in \mathcal{G} \), where \(C \) is a positive constant. But it has been proved in [4] that

\[
\sup_x P \left[\frac{S_{N_n} - N_n \mu}{\sigma \sqrt{N_n}} < x \right] - \Phi(x) = O(\sqrt{\varepsilon_n}),
\]

hence we obtain (18).

Corollary 3.3. Under the assumptions of Theorem 3.2

\[
\sup_x P \left\{ \frac{\sqrt{N_n}}{\sigma g'(\mu)} \left[g \left(\frac{S_{N_n}}{N_n} \right) - g(\mu) \right] < x \right\} - \Phi(x) = O \left(\sqrt{\varepsilon_n} + \frac{\ln n}{\sqrt{n}} \right).
\]

Corollary 3.4. If (7) hold, \(\varepsilon_n = (\ln^2 n)/n \), then

\[
\sup_x P \left\{ \frac{\sqrt{N_n}}{\sigma g'(\mu)} \left[g \left(\frac{S_{N_n}}{N_n} \right) - g(\mu) \right] < x \right\} - \Phi(x) = O \left(\frac{\ln n}{\sqrt{n}} \right).
\]

Theorem 3.5. Let \(\{X_n, n \geq 1\} \) be a sequence of independent identically distributed random variables such that \(EX_1 = \mu, \sigma^2 X_1 = \sigma^2, E|X_1|^3 < \infty \), and \(\{\eta_n, n \geq 1\} \) be a sequence with \(n^{-1} \leq \eta_n \to \infty, n \to \infty \). Suppose that \(\{N_n, n \geq 1\} \) is a sequence of positive integer-valued random variables such that there
exist positive constants c_1, c_2 for which

\begin{equation}
P\left[\left|\frac{N_n}{\sqrt{\lambda_n}} - 1\right| > c_1 \eta_n\right] = O(\sqrt{n}),
\end{equation}

\begin{equation}
P\left[\lambda < \frac{c_2}{n \eta_n}\right] = O(\sqrt{n}),
\end{equation}

λ being a random variable taking values in $(0, \infty)$ and independent of $\{X_k, k \geq 1\}$.

Then for every $g \in G$ with $g'(\mu) \neq 0$ and any sequence $\{d_n, n \geq 1\} \in \mathcal{D}$

\begin{equation}
\sup_x \left| P\left\{\sqrt{N_n} \left[g\left(\frac{S_{N_n}}{N_n}\right) - g(\mu) \right] < x \right\} - \Phi(x) \right|
= O(\sqrt{n} d_n^2 + d_n^{-1} \exp \left\{-d_n^2/2\right\}).
\end{equation}

Proof. From (16) we have

\begin{equation}
\sup_x \left| P\left\{\sqrt{N_n} \left[g\left(\frac{S_{N_n}}{N_n}\right) - g(\mu) \right] < x \right\} - \Phi(x) \right|
\leq 3 \sup_x \left| P\left[\frac{S_{N_n} - N_n \mu}{\sigma \sqrt{N_n}} < x \right] - \Phi(x) \right|
+ P\left[\left|\frac{S_{N_n} - N_n \mu}{\sigma \sqrt{N_n}} \right| \geq \frac{|g'(\mu)|}{\sigma L} \left(\epsilon_n d_n \sqrt{N_n} \right) \right]
+ \frac{2}{d_n \sqrt{2\pi}} \exp \left\{-d_n^2/2\right\} + \epsilon_n \sqrt{2\pi}
\end{equation}

for any given $\epsilon_n > 0$ and $\{d_n, n \geq 1\} \in \mathcal{D}$.

Note now that by (19) and (20) we have

\begin{equation}
P\left[\left|\frac{S_{N_n} - N_n \mu}{\sigma \sqrt{N_n}} \right| \geq \frac{|g'(\mu)|}{\sigma L} \left(\epsilon_n d_n \sqrt{N_n} \right) \right]
\leq C\left\{ P\left[\left|\frac{S_{N_n} - N_n \mu}{\sigma \sqrt{N_n}} \right| \geq \frac{|g'(\mu)|}{\sigma L} \left(\epsilon_n \sqrt{(1 - C_1 \eta_n) [c_2/\eta_n]/d_n} \right) + \sqrt{\eta_n}\right]\right\}
\leq C\left\{2 \sup_x \left| P\left[\frac{S_{N_n} - N_n \mu}{\sigma \sqrt{N_n}} < x \right] - \Phi(x) \right| + 2(1 - \Phi\left(\frac{|g'(\mu)|}{\sigma L} \epsilon_n \sqrt{(1 - C_1 \eta_n) [c_2/\eta_n]/d_n} \right) + \sqrt{\eta_n}\right\}.
\end{equation}

Putting

$$\epsilon_n = d_n^2 \left(\frac{|g'(\mu)|}{\sigma L} \sqrt{(1 - C_1 \eta_n) [c_2/\eta_n]} \right)$$
On the rate of convergence

and combining (22) and (23), we obtain

\[
\sup_x \left| P \left\{ \frac{\sqrt{N_n}}{\sigma g'(\mu)} \left[g\left(\frac{S_n}{N_n} \right) - g(\mu) \right] < x \right\} - \Phi(x) \right|
\leq C \left(\sup_x \left| P \left[\frac{S_n - N_n \mu}{\sigma \sqrt{N_n}} < x \right] - \Phi(x) \right| + \sqrt{\eta_n} d_n^2 + d_n^{-1} \exp\left\{ -d_n^2/2 \right\} \right).
\]

Using now [4] the estimate

\[
\sup_x \left| P \left[\frac{S_n - N_n \mu}{\sigma \sqrt{N_n}} < x \right] - \Phi(x) \right| = O(\sqrt{\eta_n}),
\]

we obtain (21)

Corollary 3.6. Under the assumptions of Theorem 3.5 for every \(g \in \mathcal{G} \) with \(g'(\mu) \neq 0 \)

\[
\sup_x \left| P \left\{ \frac{\sqrt{N_n}}{\sigma g'(\mu)} \left[g\left(\frac{S_n}{N_n} \right) - g(\mu) \right] < x \right\} - \Phi(x) \right| = O(\sqrt{\eta_n} \ln(1/\eta_n)).
\]

References

Institute of Mathematics UMCS
ul. Nowotki 10,
20-031 Lublin, Poland

Received on 15. 8. 1985