LAW OF THE ITERATED LOGARITHM - CLUSTER POINTS OF DETERMINISTIC AND RANDOM SUBSEQUENCES

Ingrid Torrång

Abstract: Let \(\{X_k\}_{k=1}^{\infty} \) be a sequence of i.i.d. random variables with mean 0 and finite, positive variance \(\sigma^2 \) and let

\[S_n = \sum_{k=1}^{n} X_k, \quad n \geq 1. \]

Further, let

\[\varepsilon^*\left(\{n_k\}\right) = \inf\{\varepsilon > 0; \sum_{k=3}^{\infty} (\log n_k)^{-\varepsilon^2/2} < \infty\}, \]

where \(\{n_k\}_{k=1}^{\infty} \) is a strictly increasing subsequence of the positive integers. Then the set of cluster points of \(\{S_{n_k}/\sqrt{n_k \log \log n_k}\}_{k=3}^{\infty} \) equals \([-\sigma \sqrt{2}, \sigma \sqrt{2}] \) a.s. if \(\liminf_{k \to \infty} n_k/n_{k+1} > 0 \), and \([-\sigma \varepsilon^*\left(\{n_k\}\right), \sigma \varepsilon^*\left(\{n_k\}\right)] \) a.s. if \(\limsup_{k \to \infty} n_k/n_{k+1} < 1 \).

These results are then applied to randomly indexed partial sums.

2000 AMS Mathematics Subject Classification: Primary: -; Secondary: -;

Key words and phrases: -

The full text is available HERE